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Abstract 

The effect of climate change on the spatiotemporal dynamics of
malaria transmission is studied using an unprecedented ensemble of
climate projections, employing three diverse bias correction and down-
scaling techniques, in order to partially account for uncertainty in cli-
mate-driven malaria projections. These large climate ensembles drive
two dynamical and spatially explicit epidemiological malaria models to

provide future hazard projections for the focus region of eastern
Africa. While the two malaria models produce very distinct transmis-
sion patterns for the recent climate, their response to future climate
change is similar in terms of sign and spatial distribution, with malar-
ia transmission moving to higher altitudes in the East African
Community (EAC) region, while transmission reduces in lowland,
marginal transmission zones such as South Sudan. The climate model
ensemble generally projects warmer and wetter conditions over EAC.
The simulated malaria response appears to be driven by temperature
rather than precipitation effects. This reduces the uncertainty due to
the climate models, as precipitation trends in tropical regions are very
diverse, projecting both drier and wetter conditions with the current
state-of-the-art climate model ensemble. The magnitude of the project-
ed changes differed considerably between the two dynamical malaria
models, with one much more sensitive to climate change, highlighting
that uncertainty in the malaria projections is also associated with the
disease modelling approach.

Introduction

Malaria is one of the most well-studied vector-borne diseases in
terms of present day transmission and potential for change in future
climates. Studies have often used statistical relationships between
malaria transmission or vector occurrence and climate in order to proj-
ect the potential future distribution of malaria transmission areas
(Martens et al., 1995a, 1995b; Van Lieshout et al., 2004; Tonnang et al.,
2010). One area of intense debate focused on the highlands of western
Kenya where data appears to indicate an increase in epidemic fre-
quency due to warming temperatures, although these studies also
highlighted the need to account for non-climatic factors. There has
been debate regarding the attribution of these changes to anthro-
pogenic climate change since the 2000s. The debate divided opinion
on whether the key determinant was climate change (Patz et al., 2002;
Pascual et al., 2006) or non-climatic factors (Reiter, 2001; Hay et al.,
2002a, 2002b). It is more likely to be a combination of both effects
(Mouchet et al., 1998) as it is difficult to separate individual driving
factors in this highly coupled system (Tompkins and Di Giuseppe,
2015). However, there is an increasing amount of evidence emerging
that points to temperature changes favouring shifts in malaria trans-
mission zones as seen in the increase of human malaria at higher alti-
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tude regions across the planet (Alonso et al., 2011; Omumbo et al.,
2011; Caminade et al., 2014; Dhimal et al., 2014a, 2014b, 2014c; Siraj et
al., 2014). There is also increasing evidence that climate change has
already impacted the latitudinal and altitudinal ranges of avian malaria
in wild birds (Garamszegi, 2011; Loiseau et al., 2012; Zamora-Vilchis et
al., 2012). The controversial role of climate in driving 20th century
malaria changes was further highlighted by Gething et al. (2010), who
point out that societal and economic development have restricted the
geographical areas subject to malaria transmission against a backdrop
of warming temperatures. Nevertheless, it is informative to study the
potential climate impact on disease transmission in isolation from
other factors, in order to understand how climate trends may have hin-
dered or even helped global control and elimination efforts and offset

or enhanced change due to socio-economic development. The complex-
ity in the role of climate is important to stress, since climate change
could also cause transmission to reduce or even cease in areas present-
ly subject to transmission, either by pushing temperatures beyond the
upper limits at which transmission occurs, or by reducing precipitation
and therefore vector breeding site availability, or even by increasing
the incidence of intense rainfall events which increases first stage lar-
vae mortality (Paaijmans et al., 2007). Two recent reports using ver-
sions of the dynamical malaria models used in the present study clearly
demonstrate this. Ermert et al. (2012) used the Liverpool Malaria
Model (LMM) to show warming temperatures pushing malaria to high-
er altitudes, while reduced precipitation led to reduced transmission in
the West African monsoon area. This study used a single regional cli-

Figure 1. The effects of climate scenarios on simulated rainfall changes (super ensemble). Each map shows the results for a different
emission scenario [representative concentration pathway (RCP) from moderate (RCP4.5) to most-severe (RCP8.5)] and a different time
period. The different hues represent change in rainfall (%) for the mean of the super ensemble with respect to the 1980-2005 historical
mean. The different saturations represent sign agreement (%) across the multi-model ensemble. ar5_, Intergovernmental Panel on
Climate Change assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY FUTURES; all_bc, ensemble
average of all bias correction methods.

gh-2016_1S.qxp_Hrev_master  31/03/16  11:39  Pagina 103

Non
 co

mmerc
ial

 us
e o

nly



                   Article

mate model and a single malaria model and thus it was impossible to
gauge the uncertainty associated with the use of different climate mod-
els in the study. The more recent work of Caminade et al. (2014)
improved somewhat on this situation by employing five dynamical and
statistical malaria models driven by five global climate models. The
study repeated some of the conclusions of Ermert et al. (2012) but also
highlighted the substantial disagreement between the disease models,
in particular between those employing more complex dynamical and
simpler rule-based methods. To improve the understanding of the rela-
tionship between climate drivers and disease a platform must be devel-

oped such that disease transmission is modelled explicitly in time and
space in response to changing climate and in some cases other envi-
ronmental factors. In this report we focus on the impact of a changing
climate on malaria using a large ensemble of latest generation global
and regional climate projections conducted either for CMIP5, CORDEX
or the HEALTHY FUTURES EU-FP7 project. The use of such a large and
varied ensemble allows us to address the issues of uncertainty related
to climate model formulation and provide the most detailed projections
to date regarding the direct impact of climate change on malaria trans-
mission in the east African highlands. 

Figure 2. The effects of climate scenarios on simulated temperature changes (super ensemble). Each map shows the results for a different
emission scenario [representative concentration pathway (RCP) from moderate (RCP4.5) to most-severe (RCP8.5)] and a different time
period. The different hues represent change in temperature (°C) for the mean of the super ensemble with respect to the 1980-2005 his-
torical mean. The different saturations represent signal-to-noise ratio (m/s) across the super ensemble (the noise is defined as one stan-
dard deviation within the multi-global climate model-regional climate model ensemble). ar5_, Intergovernmental Panel on Climate
Change assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY FUTURES; all_bc, ensemble average
of all bias correction methods.
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Materials and Methods

Overview of climate and environmental drivers
Malaria is a parasitic disease caused by five forms of the

Plasmodium parasite that is transmitted by Anopheles species mosqui-
toes to humans. In Africa, infections with the tropical form of the par-
asite, Plasmodium falciparum, are the most common and the most dev-
astating for children of a young age, pregnant women and elders. It is
this form of the parasite that is modelled in this study. Malaria epi-
demics occur in areas of unstable transmission when the disease is
spread to vulnerable populations with low immunity. These epidemics
generally occur at the fringes of endemic tropical regions such as the
Sahel. The contribution of climate to malaria transmission is a signif-
icant determinant towards the spatial dynamics of the disease as both
temperature and precipitation are key drivers of malaria. Precipitation
provides the temporary breeding sites necessary for the Anopheles vec-

tors to breed, while temperature affects the lifecycles of both the adult
and immature vectors as well as the Plasmodium spp. parasite develop-
ment rate in the adult vector after infection (Craig et al., 1999).
Relative humidity impacts the vector activity and mortality rates, but to
a lesser degree than temperature (Yamana and Eltahir, 2013), while
wind speed is also thought to impact the ability of the female vector to
track humans (Lindsay et al., 1995; Takken and Knols, 1999). However,
this latter effect is poorly understood and is therefore neglected in the
models used in this study. 

Disease modelling approaches
Two disease models were employed to model malaria: the LMM

(Hoshen and Morse, 2004), and the Vector-borne Disease Community
Model of International Centre for Theoretical Physics Trieste (VECTRI)
(Tompkins and Ermert, 2013). Both models employ a similar frame-
work to model the adult and immature vector development, which is
compartmental (i.e. development is recorded in a series of stages with-

Figure 3. A) Malaria Atlas Project 2010 malaria prevalence and (B to J) simulated mean malaria prevalence based on climatic conditions
(%). This is carried out for the different HEALTHY FUTURES climate model ensembles for Liverpool Malaria Model (LMM), Vector-
borne Disease Community Model of International Centre for Theoretical Physics Trieste (VECTRI) and a super summary (LMM-VEC-
TRI). The ensemble mean of the historical experiments is shown for the period 1980-2005. The dotted area depicts regions where the
ensemble mean is below two standard deviation of the multi-model ensemble (regions where the signal is noisy). ar5_,
Intergovernmental Panel on Climate Change assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY
FUTURES; all_bc, ensemble average of all bias correction methods; cordex, Coordinated Regional Downscaling Experiment; som, self
organising map; Isimip, Inter-Sectoral Impact Model Intercomparison Project.
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in each spatial grid-cell). This approach allows the models to represent
the delay between the rainy season and the malaria transmission peaks
well. The LMM employs a linear relationship between rainfall and
female egg-laying, while VECTRI represents the changing fractional
coverage of small temporary pools with a simple surface hydrology
model.

Liverpool Malaria Model 
The LMM is an epidemiological model that has been formulated to

describe the dynamics of malaria transmission and its dependence on
climatic influences (rainfall and temperature). The model describes
the evolution of population and transmission dynamics for both the
mosquito vector (Anopheles spp.) and human host, with each popula-
tion divided into susceptible, exposed and infectious classes. 
A compartmental modelling approach is used to numerically solve

the first order differential equations associated with the system, since
some parameters controlling development rates vary as a function of

the daily climate time-series used to drive the model. The mosquito
population is modelled using larval and adult stages, with the number
of eggs deposited into breeding sites depending on the previous ten
days’ (dekadal) rainfall. The larval mortality rate is also dependent on
dekadal rainfall. Adult mosquito mortality rate and the egg-laying/biting
(gonotrophic) cycle are dependent on temperature. In the malaria
transmission component of the model, temperature dependencies
occur in the rate of development of the parasite within the mosquito
(sporogonic cycle) and the mosquito-biting rate. Both the sporogonic
and gonotrophic cycles progress at a rate dependent on the number of
degree-days above a specific temperature threshold. The gonotrophic
cycle takes approximately 37 degree days with a threshold of 9°C,
whereas the sporogonic cycle takes approximately 111 degree days with
a threshold of 18°C (for Plasmodium falciparum). This latter threshold
is one of the most critical areas of sensitivity in the model, and below
the threshold temperature no parasite development can occur. The
LMM, driven by climate reanalysis, has been shown to be capable of

Figure 4. Simulated length of the malaria transmission season (days). This is carried out for the different HEALTHY FUTURES climate
model ensembles (B to J) for Liverpool Malaria Model (LMM), Vector-borne Disease Community Model of International Centre for
Theoretical Physics Trieste (VECTRI) and a super summary (LMM-VECTRI). The ensemble mean of the historical experiments is
shown for the period 1980-2005. The dotted area depicts regions where the ensemble mean is below two standard deviation of the
multi-model ensemble (regions where the signal is noisy). The Mapping Malaria Risk in Africa (MARA) model driven by the CRUTS3.1
climate observations (1980-2009) is shown for comparison purposes in (A). ar5_, Intergovernmental Panel on Climate Change assess-
ment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY FUTURES; all_bc, ensemble average of all bias cor-
rection methods; cordex, Coordinated Regional Downscaling Experiment; som, self organising map; Isimip, Inter-Sectoral Impact
Model Intercomparison Project.
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simulating the inter-annual variability of malaria in Botswana, as com-
pared against a 20-year anomaly index of the disease derived from
malaria observations (Thomson et al., 2005), and has been used to
evaluate the potential for malaria early warning using seasonal climate
forecasts as driving conditions (Jones and Morse, 2010, 2012; MacLeod
et al., 2015).

Vector-borne Disease Community Model of International Centre
for Theoretical Physics Trieste 
The VECTRI is a different but related mathematical model for malar-

ia transmission that accounts for the impact of temperature and rain-

fall variability on the development cycles of the malaria vector in its lar-
val and adult stage, and also of the parasite itself. The majority of the
relationships are taken from the literature for the Anopheles gambiae
vector and the Plasmodium falciparum species of the parasite.
Temperature affects the sporogonic and gonotrophic cycle development
rates, as well as the mortality rates for adult vectors. 
Rainfall effects on transmission are represented by a simple, physi-

cally-based model of surface pool hydrology, where low rainfall rates
increase available breeding sites that decay through evaporation and
infiltration, while intense rainfall events decrease early stage larvae
through flushing (Tompkins and Ermert, 2013; Asare et al., 2016). The

Figure 5. The effect of climate scenarios on future malaria distribution: changes in length of the malaria season. Each row shows the results
for a different emission scenario [representative concentration pathway (RCP) from moderate (RCP4.5) to most-severe (RCP8.5)]. The dif-
ferent hues represent change in the length of the transmission season between future time slices (2020s, e.g. 2016-2025; 2050s, e.g. 2046-
2055; and 2080s, e.g. 2076-2085) and 1980-2005 for the ensemble mean of all bias-corrected experiments. The different saturations repre-
sent signal-to-noise ratio (m/s) across the super ensemble (the noise is defined as one standard deviation within the multi-global climate
model and multi-malaria ensemble). This is carried out for two malaria models [Liverpool Malaria Model (LMM) and Vector-borne Disease
Community Model of International Centre for Theoretical Physics Trieste (VECTRI)]. ar5_, Intergovernmental Panel on Climate Change
assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY FUTURES; all_bc, ensemble average of all bias cor-
rection methods.
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scheme presently uses a global calibration of the catchment fraction in
each grid-cell, which neglects spatial topographical variations. VECTRI
accounts for human population density in the calculation of biting rates,
allowing it to be used to represent differences between urban, peri-
urban and rural transmission rates. Higher population densities can
lead to a dilution effect resulting in lower parasite ratios in urban and
peri-urban environments compared with nearby rural locations. In this
respect the model is able to reproduce the reduction in EIR and PR with
population density that has been widely observed in field observations
in Africa (Kelly-Hope and McKenzie, 2009). Future population growth
could potentially reduce transmission intensity in VECTRI if included,
but this effect is precluded in the present simulations for compatibility

with the LMM experiments. Population density is thus fixed at present
day values using the high-resolution spatial maps of Afripop (Linard et
al., 2012). The model is designed for regional to continental scales at
high spatial resolutions of up to a maximum of 5 to 10 km. Full details
of the model’s mathematical framework and some evaluation of version
v1.2.6 are given in Tompkins and Ermert (2013). The simulations con-
ducted here use v1.3.2 which implements the sensitivity of the larvae
growth stage to water temperature, which is assumed equal to air tem-
perature, and impacts both the growth rate and mortality of larvae using
the relationships of Craig et al. (1999) and Bayoh and Lindsay (2003).
In addition, the larvae flushing effect is increased by reducing the e-
folding constant from 50 to 20 mm per day in order to better fit the

Figure 6. The effect of climate scenarios on future malaria distribution: changes in length of the malaria season. Each row shows the
results for a different emission scenario [representative concentration pathway (RCP) from moderate (RCP4.5) to most-severe
(RCP8.5)]. The different hues represent change in the length of the transmission season between future time slices (2020s, e.g. 2016-
2025; 2050s, e.g. 2046-2055; and 2080s, e.g. 2076-2085) and 1980-2005 for the ensemble mean of all bias-corrected experiments. The
different saturations represent signal-to-noise ratio (μ/σ) across the super ensemble (the noise is defined as one standard deviation
within the multi-globl climate model and multi-malaria ensemble). This is carried out for the Liverpool Malaria Model (LMM). ar5_,
Intergovernmental Panel on Climate Change assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY
FUTURES; all_bc, ensemble average of all bias correction methods.
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monthly relationship between cases and monthly rainfall reported in
Thomson et al. (2006) and Lowe et al. (2013). 

Malaria metrics
As VECTRI explicitly accounts for population density and can repre-

sent differences between urban, peri-urban and rural transmission
rates, person-month-at-risk statistics can differ substantially between
the two modelling systems. For example, VECTRI has been able to
model lower transmission intensities in areas of high population den-
sity in western Africa such as peri-urban Bobo-Dioulasso, Burkina Faso
(Tompkins and Ermert, 2013). Thus, in order to facilitate intercompar-

ison of the two malaria models only, the basic disease parameters of
prevalence [parasite ratio (PR)], entomological inoculation rate (EIR,
infective bites per person per day) and length of transmission season
(LTS, in days) are used in the analysis. The LTS is arbitrarily defined
as the total number of days for which the EIR rate exceeds 0.01 per day,
to match former estimates (Caminade et al., 2014). 

Climate and environmental data
The dynamical malaria models require daily input data for rainfall

and temperature and in the case of VECTRI, socio-economic and land
cover conditions. 

Figure 7. The effect of climate scenarios on future malaria distribution: changes in length of the malaria season. Each row shows the results
for a different emission scenario [representative concentration pathway (RCP) from moderate (RCP4.5) to most-severe (RCP8.5)]. The dif-
ferent hues represent change in the length of the transmission season between future time slices (2020s, e.g. 2016-2025; 2050s, e.g. 2046-
2055; and 2080s, e.g. 2076-2085) and 1980-2005 for the ensemble mean of all bias-corrected experiments. The different saturations rep-
resent signal-to-noise ratio (m/s) across the super ensemble (the noise is defined as one standard deviation within the multi-global climate
model and multi-malaria ensemble). This is carried out for the Vector-borne Disease Community Model of International Centre for
Theoretical Physics Trieste (VECTRI) malaria model. ar5_, Intergovernmental Panel on Climate Change assessment report 5 (upon which
future emission scenarios are based); _hf_, HEALTHY FUTURES; all_bc, ensemble average of all bias correction methods.
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Climate input
This study uses the largest and most varied collection of global and

regional climate model output yet assembled to assess climate-health
interactions. The global projection stream is based on five global cli-
mate models (GCMs) that stem from the latest round of the Climate
Model Intercomparison Project Phase 5 (CMIP5), which contributed
directly to the recent Intergovernmental Panel on Climate Change
(IPCC) 5th assessment report. These five models were selected for the
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)
(Warszawski et al., 2014). Two ensemble streams present the regional
projections. The first regional stream is based on an ensemble of eight
CMIP5 GCMs dynamically downscaled by a regional climate model
(SMHI-RCA4) at 50 km resolution over Africa within the African branch
of the Coordinated Regional Downscaling Experiment (CORDEX). The
second regional stream is based on an ensemble of ten CMIP5 GCMs
statistically downscaled by the self-organising map (SOM) based down-
scaling method (Hewitson and Crane, 2006) at 50 km resolution over
eastern Africa in the HEALTHY FUTURES project. 
Climate models suffer from biases (errors) in their representation of

mean and variability of observed climate and bias correction using
observations for adjustment is necessary before conducting malaria
model integrations. The 5 CMIP5 GCMs in ISI-MIP are interpolated to a
common 0.5-degree grid and then bias-corrected using a methodology
created in ISI-MIP (Hempel et al., 2013). The dynamically downscaled
CORDEX-Africa simulations are bias-corrected by the distribution-
based scaling (DBS) method (Yang et al., 2010). All these streams are
available for the representative concentration pathways RCP4.5 and
RCP8.5, representing moderate and most-severe greenhouse gas con-
centration scenarios (Moss et al., 2010), and the ISI-MIP stream
(Hempel et al., 2013) is available for all four RCPs (2.6, 4.5, 6.0, 8.5).
The three ensembles are illustrated and detailed in Table 1. One caveat
to note when assessing future climate change is that only one realisa-

tion (initial conditions) was conducted for each global model in all
three ensembles. This means that uncertainties related to natural vari-
ability cannot be accessed in the present study. Recent work with large
ensembles has indicated that these uncertainties can be significant in
the first half of the 21st century, after which scenario uncertainty dom-
inates (Hawkins and Sutton, 2009; Thompson et al., 2014; Xie et al.,
2015). Therefore in the following it should be recalled that climate
model uncertainty refers to the model and not to uncertainty related to
natural variability. Analysis was performed on these multi-model malar-
ia hazard projections by calculating the mean, spread (standard devia-
tion) and relative differences in time (anomalies) for the various
streams and different future time slices, e.g. 2020s (2016-2025), 2050s
(2046-2055) and 2080s (2076-2085). Anomalies were calculated using
the respective historical baseline for 1980-2005.

Results

The rainfall changes for the two RCPs are shown in Figure 1 for a
selection of decades spread across the 21st century. Rainfall is simulat-
ed to increase over the EAC region for the future. The precipitation
changes are comparable between RCP4.5 and RCP8.5, albeit with a
stronger signal in RCP8.5 relative to RCP4.5. However, there is much
disagreement between the various climate model streams in the major-
ity of the eastern Africa region. Specific regions where there appear to
be more general agreement in precipitation include areas of western
Kenya, Uganda, southeast Ethiopia and Somalia, where most models
appear to project future increases in rainfall to varying degrees. 
There is far more agreement in the overall temperature increase

simulated across eastern Africa (Figure 2), with greater warming
occurring over the border regions to the north and south of the EAC

Table 1. Overview of the climate modelling streams used and bias correction methods involved. 

Climate model streams                   Global models                                            Downscaling                               Bias correction

ar5_hf_isimip (ISI-MIP)                               5 global models                                                                    N/A                                   ISI-MIP CDF-based bias correction
                                                               (GFDL-ESM2M, HadGEM2-ES,                                                                                       that preserves trends (Hempel et al., 2013)
                                                          IPSL-CM5A-LR, MIROC-ESM-CHEM, 
                                                                               NorESM1-M)                                                                          
ar5_hf_som (SOM)                                       10 global models 
                                                           (BNU-ESM, CNRM-CM5, CanESM2,                    SOM downscaling using large-scale                                  N/A
                                                                  FGOALS-s2, GFDL-ESM2G,                        predictors (Hewitson and Crane, 2006)
                                                          GFDL-ESM2M, MIROC-ESM-CHEM, 
                                                     MIROC-ESM, MRI-CGCM3, BCC-CSM1-1)                                                
ar5_hf_cordex_bc                                          8 global models                                                       1 regional model                                    DBS bias correction 
(CORDEX)                                   (CanESM2, CNRM-CM5, HadGEM2-ES,                                       SMHI-RCA4                                   (Yang et al., 2010) by SMHI
                                                           NorESM1-M, EC-EARTH, MIROC5, 
                                                                GFDL-ESM2M, MPI-ESM-LR)                                                           
ar5_hf_all_bc                                          Super ensemble average                                                           N/A                                                                N/A
(SUPER ENSEMBLE)                                  interpolated on the
                                                                 ISI-MIP grid (23 members)                                                            
ar5_, Intergovernmental Panel on Climate Change assessment report 5 (upon which future emission scenarios are based); _hf_, HEALTHY FUTURES; ISI-MIP, Inter-Sectoral Impact Model Intercomparison Project;
GFDL-ESM2M, Geophysical Fluid Dynamics Laboratory - Earth System Model 2M; HadGEM2-ES, Met Office Hadley Global Environment Model 2 - Earth System; IPSL-CM5A-LR, Institut Pierre Simon Laplace - Modelling
Centre 5A - Low resolution; MIROC-ESM-CHEM, atmospheric chemistry coupled version of MIROC-ESM; MIROC-ESM, Model for Interdisciplinary Research on Climate - Earth System Model; NorESM1-M, Norwegian
Earth System Model 1-M; N/A, not available; ISI-MIP CDF, ISI-MIP cumulative distribution function; SOM, self organising map; BNU-ESM, Beijing Normal University Earth System model; CNRM-CM5, Centre National de
Recherches Météorologiques - CM5; CanESM2, Canadian Earth System Model 2; FGOALS-s2, Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2; GFDL-ESM2G, Geophysical Fluid Dynamics
Laboratory - Earth System Model 2G; MRI-CGCM3, Meteorological Research Institute - Coupled Global Climate Model 3; BCC-CSM1-1, Beijing Climate Center Climate System Model 1-1; CORDEX, Coordinated Regional
Downscaling Experiment; EC-EARTH, European Centre - Earth; MIROC5, Model for Interdisciplinary Research on Climate 5; MPI-ESM-LR, Max Planck Institute for Meteorology - Earth System Model - Low resolution;
SMHI-RCA4, Swedish Meteorological and Hydrological Institute - Rossby Centre regional atmospheric model, version 4; DBS,  distribution based scaling; all_bc, ensemble average of all bias correction methods.
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region of interest. Only the central regions of the Congo rainforest in
the Democratic Republic of Congo and northern South Sudan exhibit
large uncertainty in both precipitation and temperature changes. The
RCP8.5 experiments provide a stronger signal for the increase in tem-
perature compared to RCP4.5 as expected. The majority of the EAC
region is projected to increase in temperature by at least 3°C by the
2080s. Such high changes are expected to have considerable impacts
on transmission of vector-borne diseases such as malaria. 
The different malaria simulations carried out for the historical peri-

od (1980 to 2005) are compared with the Malaria Atlas Project 2010
(MAP2010) statistical model analysis developed by Gething et al. (2011).
This model combines available field data of parasite ratio (PR) with key
climate and socio-economic predictors to produce high resolution mod-
elling maps of PR for the 2 to 10 year age range using a Bayesian mod-
elling framework (Figure 3). This dataset is based on malaria observa-
tions; however this is still a statistical model output, and it is only used
as an external data source to compare with our malaria model outputs.
Both VECTRI and LMM tend to overestimate malaria endemicity over
central Africa, Ethiopia, the southern coasts of Kenya and the south-
eastern coasts of Somalia. This overestimation appears stronger in
VECTRI compared to the LMM. Part of the overestimation is due to the
lack of certain processes in the malaria models, which are further
detailed in the discussion, in addition to the fact that malaria interven-
tions are not accounted for.
The multi-model spread (uncertainty) in prevalence is generally

highest near the epidemic fringes of the distribution, for low preva-
lence values. The local maximum over southern Tanzania is better
reproduced by VECTRI with, however, a large overestimation in magni-
tude. The northern fringe of the malaria distribution is also better
reproduced by VECTRI over northern Sudan (not shown). Generally,
LMM shows a better agreement with MAP2010 in terms of magnitude. It
should be noted that the signal provided by the CORDEX climate model
stream is translated into more realistic prevalence values by the dis-
ease models when compared to MAP2010. Simulated LTS values are
shown for comparison between LMM, VECTRI and the Mapping Malaria
Risk in Africa (MARA) distribution model (Tanser et al., 2003) driven
by CRUTS3.1 observed climate data (Harris et al., 2014) (Figure 4).
VECTRI generally overestimates LTS, particularly at the eastern coast-
line, while LMM simulates shorter transmission seasons than those
predicted by MARA in the Congo. The CORDEX climate model provides
the best signal in terms of capturing the LTS quantities in this region
for VECTRI, while it is the ISI-MIP stream that yields the best output for
LMM. Switching between different climate model streams can have dif-
ferent effects on the scale and direction of change in LTS depending on
the disease model used. Whereas with historical prevalence the SOM
climate stream generally provided the largest signals for LMM and VEC-
TRI (Figure 3), when SOM signals are used to produce LTS values VEC-
TRI simulates seasons longer than those associated with any other cli-
mate and LMM simulates its shortest (Figure 4). This relationship
hints at an effect of climate on EIR and the arbitrary threshold used to
determine LTS. 
The impact of future climate change on the simulated length of the

malaria transmission season is shown for LMM-VECTRI (Figure 5),
LMM (Figure 6) and VECTRI (Figure 7). This is carried out based on
the super climate ensemble of all climate models for two scenarios
(RCP4.5 and RCP8.5) and for different time slices (2020s, 2050s,
2080s). The results (Figure 5) generally agree with previous research
(Alonso et al., 2011; Omumbo et al., 2011) and the recent multi-model
ensemble results of Caminade et al. (2014) regarding the spatial shift
of malaria to the highlands. The climate becomes increasingly suitable
for malaria transmission over the highlands of eastern Africa, namely

the plateaux of Ethiopia, western Kenya, southern Uganda, Rwanda,
Burundi and across the centre of Tanzania (Figure 5). The LMM
(Figure 6) and VECTRI (Figure 7) results separately show similar
dynamic trends but at different scales, with LMM changes smaller in
magnitude compared with VECTRI. This is also consistent with the
stronger overestimation of malaria prevalence by VECTRI during the
historical period. Climatic suitability increases over a large part of the
Ethiopian highlands based on LMM, while according to VECTRI this is
more restricted to the edges of the highlands (Figure 7). A clear
decrease in the simulated length of the transmission season is also
shown over South Sudan, particularly for VECTRI driven by the RCP8.5
emission scenario, due to the projected increases in average tempera-
ture. This simulated decrease over the northern marginal fringes of
malaria transmission is consistent with the estimates of former stud-
ies (Ermert et al., 2012; Caminade et al., 2014).

Discussion

Climate-driven models of malaria provide a quantitative method of
considering the impact of climate on malaria transmission solely. The
HEALTHY FUTURES project used the largest and most varied collection
of global and regional climate projections to drive two disease models
and evaluate the impact of climate change on malaria transmission for
the EAC region. This study has helped to establish and develop a plat-
form for major impact modelling intercomparison exercises, alongside
other recent work in the field (Kienberger and Hagenlocher, 2014;
Warszawski et al., 2014; Hagenlocher and Castro, 2015). This platform
allows for the integration of long-term projections of climate under var-
ious future scenarios with dynamic epidemiological models to provide
a large ensemble of predictive climate-related malaria hazard in east-
ern Africa over the next century. This research employed two estab-
lished malaria models (LMM and VECTRI), two of the common RCPs
(4.5 and 8.5), and three separate streams of future climate projections
comprising a total of 23 climate model experiments. This allowed the
investigation of uncertainties related to different disease modelling
approaches, different concentration scenarios, different global climate
models and different downscaling methodologies (dynamical and sta-
tistical).
Dynamic malaria models tend to overestimate malaria prevalence

values generated by the MAP2010 model over the EAC region with respect
to other estimates when the epidemiology is driven solely by climatic
factors. For example, in highly endemic areas of central Africa, immu-
nity is already partly established in the 2 to 10 year age range, while the
models both presently neglect immunity. It should also be recalled that
many areas in the East African Community (EAC) region have been
subject to a significant scaling up of interventions in the recent period,
some of which started prior to 2010. For example, Tompkins and Ermert
(2013) highlighted the east coast of Kenya where the field studies in
the 1980s and 1990s show typical malaria prevalence ranging from 0.3
to 0.8 (Mbogo et al., 2003), while a concerted campaign of insecticide-
treated net (ITN) distribution has greatly reduced transmission more
recently (Okiro et al., 2007; O’Meara et al., 2008), with the result that
MAP2010  diagnoses a prevalence of around 0 to 20%. The malaria models
only account for climate and therefore simulate prevalence values
much closer to the pre-intervention period. This highlights the impor-
tance of understanding the modelling approaches taken when compar-
ing disease models, which are generally derived from the particular
questions under investigation (Johnson et al., 2014).
Projections of the impact of climate on malaria dynamics reveal
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more consistency between different ensemble members and models for
the higher emissions scenarios towards the end of the timescale, i.e.
where climate change (particularly temperature increase) is predicted
to be the most severe. The chief contribution to uncertainty between
simulations appears to be the different methodologies and assump-
tions made within the disease models themselves, particularly with
respect to the effects of temperature on vectors. Mordecai et al. (2013)
showed that optimal temperatures for malaria transmission could
potentially be lower than previously published estimates, although the
result is likely to be sensitive to the particular datasets used to fit each
of the temperature-sensitive processes of the vector and larvae lifecy-
cles, which are highly uncertain. For example, the VECTRI model has a
higher peak transmission range of 27 to 32°C when compared to
Mordecai et al. (2013) despite accounting for the identical set of larvae,
parasite and adult vector temperature-sensitive processes (with the
exception of female fecundity). Transmission falls to zero at approxi-
mately 39°C in VECTRI, rather than the 34°C value reported by
Mordecai et al. (2013), even though the capping process of larvae mor-
tality is identical in both models, further highlighting the large uncer-
tainties involved in these parameterisation schemes. Examples can be
found of transmission occurring at temperatures exceeding the limit of
both models (Searle, 1920). 
The largest differences between VECTRI, LMM and the model of

Mordecai et al. (2013) are expected where temperature is projected to
exceed 35°C, since the latter model does not sustain transmission at
these temperatures. This is especially found in the northern part of the
EAC region. The temperature-dependent mortality of adult mosquitoes
as reported by Martens et al. (1995a) was used in the survival probabil-
ity function for LMM (Jones and Morse, 2010). This survival scheme
appears even less permissive than the Mordecai estimates (at 35°C,
survival probability drops to 40% in LMM while the Mordecai estimates
show 40% surviving at 42°C). If we consider the final vectorial capacity
estimate (Mordecai et al., 2013), which merges all epidemiological
parameters relying on temperature, it is relatively close to the Martens
scheme, which generally drives the final simulated LMM incidence
decrease over the warmest regions. However, the Mordecai scheme is
less permissive, e.g. vector competence drops to almost 0 at approxi-
mately 35°C, while a threshold of about 40°C will have to be reached
within LMM to produce similar effects. The importance of temperature-
dependent vector survival probability previously motivated the analysis
of multiple schemes and their relative sensitivity during development
of LMM (Ermert et al., 2011) and VECTRI (Tompkins and Ermert,
2013). 
All modelling combinations in the present study generally agree on

the increase in climate suitability for malaria transmission over the
eastern African highlands of the Rift Valley and Ethiopia in the future.
This supports other findings in previous research depicting the spatial
impact of climate change on malaria (Caminade et al., 2014; Dhimal et
al., 2014a; Siraj et al., 2014). The supporting results of Caminade et al.
(2014) were based on a greater malaria model ensemble (including
MARA, MIASMA and UMEA) using fewer climate model inputs as driv-
ers (five GCMs were used whereas here we combined different GCMs,
one regional climate model and one empirical-statistical downscaling
method). There also appears to be general agreement between models
in projecting a southward shift of the epidemic fringe that lies over the
northern fringe of the Sudano-Sahelian region. 
Despite differences in the modelling methodologies and climate sig-

nals used to drive each numerical simulation, some overarching con-
clusions can still be made. Common aspects of the modelling results
emerging from this research are the significant impact that climate
drivers have on transmission dynamics and crucially, the noticeable

effect of climate change on future disease hazard dynamics. These
models have predicted long-term shifts in spatial hazard dynamics for
malaria when changes in local environmental conditions are applied
leading to the emergence of vector niches in previously unaffected and
immunologically naive regions. However, this warning should be
viewed in the appropriate context of the original research questions
posed. Generally, these models consider the impact climate has on
shaping the spatial variation in disease susceptibility while neglecting
other external factors important in determining whether or not a par-
ticular disease is capable of thriving and driving epidemic or endemic
behaviour. Therefore these results provide a method to estimate pro-
jected hazard (climate-related disease susceptibility) while other vul-
nerability factors (e.g. surface hydrology, socio-economic factors, land-
use changes, etc.) are required in order to gain a more complete pic-
ture of the overall projected malaria risk across eastern Africa
(Kienberger and Hagenlocher, 2014). 
Climate data provide the fundamental forcing signal that drives the

epidemiological dynamics of the disease models. Data provided by cli-
mate models inevitably varies across the different models due to uncer-
tainty in the representation of atmospheric and other physical process-
es in the earth system models. These inter-modelling system variations
that lead to a spread in climate projection data are subsequently added
to by uncertainties associated with downscaling methodologies and
bias correction techniques. Combined with uncertainties in the
impacts model used for malaria transmission, the result is a cascade of
uncertainty. For example, in contrast to the recent drying trend
observed in the region (Williams and Funk, 2011; Diem et al., 2014),
most of the climate models used in this study project an increase in
precipitation in large areas (Figure 1) highlighting the importance in
communicating potential differences between short-term variability
and simulated longer term trends to decision makers. Climate model
uncertainty is evident in this study where we use a wide ensemble of
climate data collected from various global climate models and regional
downscaling techniques in acknowledgment of this issue. This ensem-
ble intercomparison method currently offers the best means of provid-
ing a comprehensive projection of climate-based scenarios but repre-
sents a crude assessment of uncertainty since, in contrast to numerical
weather prediction where ensemble predictions can be evaluated
against observations over many integrations, for climate projections
there is no known way of assessing whether the ensembles generated
are under or over confident. For example, uncertainty due to processes
neglected in the present study is not accounted for, such as uncertainty
due to future potential land use change (Tompkins and Caporaso,
2016), population movement and changes, economic growth or other
socioeconomic conditions that will be critical for the African continent.
The predictive value of studying the impact of climate in isolation on
disease transmission and drawing associated conclusions about its
relationship with non-climatic factors separately is debatable. A com-
bined modelling study is certainly a way forward for more predictive
modelling. However, our dynamical model framework requires esti-
mates of the driving data for both the recent context and the future.
Population changes were considered in Caminade et al. (2014) using
the Shared Socioeconomic Pathway 2 population scenario provided by
the International Institute for Applied Systems Analysis. 

Conclusions

Future estimates of vector control measures and new technologies,
e.g. vaccines, are impossible to predict. All indirect effects of climate
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change on population migration will also play a role, however these will
be highly hypothetical and very difficult to model and anticipate pre-
cisely. Note that recent work carried out by the World Bank combined
results from Caminade et al. (2014) with economic projections to
assess future malaria risks (Hallegatte et al., 2016). Béguin et al.
(2011) also show that socio-economic development might counteract
the expected negative effects of climate change on malaria. Future
improvements in modelling techniques to include such effects in a cou-
pled modelling system should ultimately lead to more accurate assess-
ments of potential future malaria risk. However, these scenarios will
still be undermined by the possibility of bio-technological break-
throughs (e.g. the development of cost-efficient vaccines and novel con-
trol techniques) that might occur during the following decades. 
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