
Abstract

Currently, two broad types of approach for predicting the impact of
climate change on vector-borne diseases can be distinguished: i)
empirical-statistical (correlative) approaches that use statistical mod-
els of relationships between vector and/or pathogen presence and
environmental factors; and ii) process-based (mechanistic) approach-
es that seek to simulate detailed biological or epidemiological process-
es that explicitly describe system behavior. Both have advantages and
disadvantages, but it is generally acknowledged that both approaches
have value in assessing the response of species in general to climate

change. Here, we combine a previously developed dynamic, agent-
based model of the temperature-sensitive stages of the Schistosoma
mansoni and intermediate host snail lifecycles, with a statistical model
of snail habitat suitability for eastern Africa. Baseline model output
compared to empirical prevalence data suggest that the combined
model performs better than a temperature-driven model alone, and
highlights the importance of including snail habitat suitability when
modeling schistosomiasis risk. There was general agreement among
models in predicting changes in risk, with 24-36% of the eastern Africa
region predicted to experience an increase in risk of up-to 20% as a
result of increasing temperatures over the next 50 years. Vice versa
the models predicted a general decrease in risk in 30-37% of the study
area. The snail habitat suitability models also suggest that anthro-
pogenically altered habitat play a vital role for the current distribution
of the intermediate snail host, and hence we stress the importance of
accounting for land use changes in models of future changes in schis-
tosomiasis risk.

Introduction

Climate change is ongoing with average global surface tempera-
tures projected to be 1.4 to 3.1°C for 2081-2100 relative to 1986-2005
given moderate climate change scenarios (IPCC, 2013). This warming
will be accompanied by perturbations in the global hydrologic cycle and
patterns of precipitation (IPCC, 2013). These changes are expected to
impact the transmission potential of a number of vector-borne dis-
eases and diseases with invertebrate intermediate hosts (Parham et
al., 2015b), as transmission potential in any given location is partly
dependent on abiotic factors affecting either free-living life stages
and/or those which occur in the poikilothermic vector/intermediate
host organisms such as snails and mosquitoes. Additionally, the geo-
graphical distribution and magnitude of disease are likely to be gov-
erned by a multitude of transmission-related non-climatic factors,
including epidemiological, environmental, social, economic and demo-
graphic factors (Parham et al., 2015a).
Schistosomiasis, caused by species of the genus Schistosoma spp.,

will also inevitably be influenced by changing climate as both the
schistosome parasite and its intermediate host snails are highly sen-
sitive to changes in water temperature (Foster, 1964; Appleton, 1978;
Pfluger, 1980). New areas may become suitable for schistosomiasis
transmission, and currently endemic areas may experience changed
incidence, which will impact on the feasibility of schistosomiasis con-
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trol and elimination goals in the medium to long-term. As such, predic-
tions about changes in geographical distribution and transmission risk
are imperative in order to identify appropriate mitigation, control and
adaption strategies. However, only a few attempts have been made to
predict changes in schistosomiasis transmission due to global warm-
ing, and results have been conflicting. While some models forecast an
expansion into cooler areas and a potential for increased transmission
(Martens et al., 1995; Zhou et al., 2008; McCreesh et al., 2015), others
point to an overall reduction, or a geographical range shift as a conse-
quence of warming (Martens et al., 1997; Stensgaard et al., 2013),
highlighting that the relationship between temperature and disease
risk is not a straightforward one (Mangal et al., 2008). Two broad types
of approach for predicting the impact of climate change on schistoso-
miasis (and vector-borne diseases in general) can be distinguished: i)
an empirical-statistical (correlative) approach that use statistical mod-
els of relationships between snail and/or parasite presence and envi-
ronmental factors (Pedersen et al., 2014; Stensgaard et al., 2013); and
ii) a process-based (mechanistic) approach based on experimentally
obtained data on the functional, non-linear, relationship between para-
site and temperature (e.g., McCreesh et al., 2015).
Both have advantages and disadvantages: geostatistical models of

schistosomiasis risk, although often incorporating temperature, are
limited by often imperfect empirical data and the complex, non-linear
relationship between water temperature and infection risk (McCreesh
and Booth, 2013), which mean they are unlikely to capture the full con-
tribution of temperature. On the other hand, mathematical models that
focus solely on the effect of temperature run the risk of over-simplifi-
cation as the occurrence of schistosome parasites and intermediate
host snails is not solely determined by temperature. Hence, the exclu-
sion of other important (non-climatic) variables, particularly those rel-
evant for the habitat suitability for the intermediate host snails (e.g.,
land cover type, soil properties) may lead to unrealistic predictions.
Here, we embrace both approaches, and combine a previously devel-

oped dynamic, temperature-driven model (agent-based) of the temper-
ature-sensitive stages of the Schistosoma (S.) mansoni and intermedi-
ate host snail lifecycles (McCreesh et al., 2015), with an empirical-sta-
tistical model of snail habitat suitability, to improve predictions of cli-
mate change impacts for intestinal schistosomiasis risk in the eastern
Africa region. This approach is novel in the context of climate change-
disease modelling, and has the potential to greatly improve predictions
of the impact of climate change on schistosomiasis and vector-borne
diseases in general.

Materials and Methods

Baseline (current conditions) models

Snail habitat suitability modelling
The empirical-statistical models of species geographical distribu-

tions – often referred to collectively as species distribution models
(SDMs), share a common generic approach (Hirzel et al., 2006).
Known species’ presence localities are used as the dependent variable
and a series of environmental variables (e.g. temperature, precipitation
and land use) across the study area, are used as predictor variables.
The suitability of each unit in the study-area is defined as a function of
these environmental variables, and can also be estimated under
changed climatic conditions (Pearson and Dawson, 2003).
Several different algorithms have been applied for SDM (Elith et al.,

2006). Here we use the MaxEnt approach proposed by Phillips et al.
(Phillips et al., 2006), which has been shown to perform well compared
to other predictive algorithms (Elith et al., 2006), and recently also
applied to vector-borne diseases (Mwase et al., 2014; Signorini et al.,
2014). 
MaxEnt estimates species distribution by finding the maximum

entropy (largest spread) in a dataset of species geographic presences
in relation to a set of background environmental variables (Phillips et
al., 2006). Complex relationships to the environmental data can be fit-
ted (i.e. threshold and hinge features interactions), but since these
relationships can be difficult to specify a priory, only linear, quadratic
and product relationships were fitted for the snail models. The output
from MaxEnt can be interpreted as an estimate of relative habitat suit-
ability for the species being modelled, and varies from 0 (lowest) to1
(highest).
The models were parametrised with Biomphalaria (B.) pfeifferi

occurrence data compiled from two main sources: the Mandahl-Barth
mollusc collection maintained at the Natural History Museum,
University of Copenhagen, Denmark, and Brown’s collection main-
tained at the Natural History Museum (London, UK). The data were
supplemented with more recent field data collected during the 4 year-
long EU Framework project, CONTRAST (Utzinger et al., 2013). A more
detailed description of the data is given in Stensgaard et al. (2013). For
the eastern Africa region, a total of 392 geocoded data points were
available for snail habitat suitability modelling.
A range of environmental predictor variables were selected based on

their perceived biological relevance for intermediate host snail distri-

                                                                                                                                Article

                                                                          [Geospatial Health 2016; 11(s1):406]                                                         [page 95]

Table 1. Data sources and properties of the remotely sensed and other non-climatic environmental predictors used to model the snail
habitat suitability for Biomphalaria pfeifferi in eastern Africa.

Data type                                                     Spatial resolution                        Time period                                                        Source

Land cover                                                                              300 x 300 m                                                 2009                                                                                GlobCover
Soil moisture                                                                         300 x 300 m                                            2006-2012                                                                             ESA CCI
NDVI (seasonal averages)                                                     1 x 1 km                                               2000-2012                                                                        MODIS/Terra
Water bodies (lakes and wetlands)                                    1 x 1 km                                                    2005                                                                               GLCN/FAO
Dams (distance-grid)                                                             1 x 1 km                                                    2005                                                                               GLCN/FAO
HII                                                                                                1 x 1 km                                               1995-2004                                                                              SEDAC
Soil pH (topsoil)                                                                      1 x 1 km                                                        -                                                                                        ISRIC
GlobCover, Global Cover Portal (http://due.esrin.esa.int/page_globcover.php); ESA CCI, European Space Agency Climate Change Initiative (http://www.esa-soilmoisture-cci.org/); NDVI, normalised difference vegetation
index; MODIS Terra, Moderate Resolution Imaging Spectroradiometer Terra (http://terra.nasa.gov/about/terra-instruments/modis); GLCN/FAO, Global Land Cover Network/Food and Agriculture Organization
(http://www.fao.org/geonetwork/srv/en/main.home); HII, human influence index; SEDAC, Socioeconomic Data and Applications Center (http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-influence-index-
geographic); ISRIC, International Soil Reference and Information Centre (http://www.isric.org/content/data). All data accessed: 10-13th March 2015. 
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butions (Table 1) and commonly used freshwater snail distribution
models (Simoonga et al., 2009; Stensgaard et al., 2005, 2006).
Temperature was not included as this is represented in the dynamical
model (see below). 
The measure of fit implemented by MaxEnt is the area under the

curve (AUC) of a receiver operating characteristic (ROC) plot (ranging
from 0.5 = random to 1= perfect discrimination). The performance of
the MaxEnt model was evaluated by a 10-fold cross-validation proce-
dure where data are divided into 10 mutually exclusive subsets; where
10-1 are used for model training, and 1 for model testing (prediction).
The AUC values produced from the 10-fold cross-validation were then
averaged to indicate the performance of the MaxEnt model.
Additionally, we tested the relative importance of the environmental
variables as predictors, through a heuristic jackknife procedure imple-
mented in MaxEnt (Phillips et al., 2006).

The dynamical model
The dynamical model used was an agent-based model of snail popu-

lation dynamics and parasite development and transmission. The
model was parameterised using data from experimental and field stud-
ies on the effects of water temperature on B. pfeifferi reproduction,
development, and mortality; and on S. mansoni transmission, develop-
ment and mortality. The main output of the model is referred to as
infection risk, and is a measure of the number and relative infectious-
ness of cercariae in the model. Eight model scenarios were simulated,
consisting of four temperature variations combined with two snail mor-
tality rate variations (high and low). Four temperature variations were
simulated as the relationship between air and water temperature
varies between different types of water body, and at different water
depths (McCreesh and Booth, 2013). The temperature variations were:
i) water temperatures equal to air temperature, ii) water temperatures
2°C higher than air temperatures, iii) water temperatures 2°C lower
than air temperatures, and iv) daily maximum water temperatures 2°C
lower than daily maximum air temperatures and daily minimum water
temperatures 2°C higher than daily minimum air temperatures.
Finally, the mean risk across model scenarios was calculated. Full
details of the dynamical model are given in (McCreesh and Booth,
2014a) and McCreesh et al. (2015).

Combined models
The dynamical model and the snail habitat suitability models were

combined using two different approaches for comparison: i) the
dynamical model output was weighted by the continuous output from
the snail models (by multiplication); and ii) by masking the dynamical
model output map by the thresholded snail habitat suitability map,
excluding areas that according to the snail habitat suitability model
was not suitable B. pfeifferi. 

Baseline model evaluation and validation
All baseline models were compared to empirical data on intestinal

schistosomiasis prevalence in the human population. These data were
extracted from open-access Global Neglected Tropical Disease (GNTD)
database (Hurlimann et al., 2011), an open access database containing
historical and contemporary survey data on schistosomiasis (and other
neglected tropical diseases), and the data have been widely used in sta-
tistical models of disease prevalence (e.g., Karagiannis-Voules et al.,
2015; Schur et al., 2013). The models were compared with all empirical
data that were extracted for the study area, and with a subset of data
selected data, which excluded the data which were considered to be
least suitable for comparison purposes (data not exclusively from chil-
dren, collected before 2003, or fewer than 10 observations). The per-

formance of the combined and single- models (baseline, current condi-
tions) was then evaluated by calculating the area under the receiver
operating characteristic curve (AUC) for the ability of the model to pre-
dict observed S. mansoni prevalence in humans of above 0, 10, 20 and
50%, and by Spearman’s rank correlation coefficient. Full details of the
empirical data used are given in McCreesh et al. (2015).

Climate projections and future risk scenarios
For future projections of temperature as input for the dynamical

model and precipitation (used as predictor in the statistical snail
model) results from the African branch of the Coordinated Regional
Downscaling Experiment (CORDEX) were used to provide projected
daily data for the eastern Africa study region. Only one Regional
Climate Model (RCM) simulation from the CORDEX-Africa matrix was
selected as an example for the study. The simulation has been per-
formed at the Swedish Meteorological and Hydrological Institute
(SMHI) with the Rossby Centre RCM - SMHI-RCA4 (Nikulin et al.,
2012) under the moderate Representative Concentration Pathway
(RCP) scenario, RCP4.5. The simulated temperature and precipitation
have been bias corrected by the Distribution Based Scaling method
(Yang et al., 2010) using the WATCH WFDEI gridded product (Weedon
et al., 2014) for the 1981-2010 period as a reference quasi-observation-
al dataset. The CORDEX-Africa experiment covers the whole African
continent at about a 50 km (0.44°) resolution and a smaller sub-
domain in eastern Africa was selected for the study and has size of 1470
(35 x 42) grid boxes. For precipitation, three bioclimatic averages of
seasonal variation (annual average, precipitation seasonality (coeffi-
cient of variation) and precipitation of the driest quarter), were used
as indirect measures of the availability of suitable temporary water
bodies that Biomphalaria snails are known to inhabit. 
Daily minimum and maximum 2m air temperature data, from the cli-

mate projections, were used to drive the dynamical model, and the
model was run between 2006-2065 for each of the 35 x 42 grid boxes
covering the study area. For each future climate projection and stand-
alone/combined risk model, the median predicted changes in risk
(across the 8 model scenarios) were calculated to give a central esti-
mate of the magnitude of changes that may occur. The differences in
predicted future change between stand-alone and combined models
were evaluated by visually inspection of the output maps and by com-
paring the percentage of area (pixels) that are predicted to experience
increase, decrease or status quo over the next 50 years.

Results

Single- and combined model outputs under current
conditions (baseline) 
The current condition distribution of B. pfeifferi as modelled by

MaxEnt, is shown in Figure 1. The model output can be interpreted as
the relative suitability of a given pixel in the map to sustain snail pop-
ulations under baseline conditions. Overall snail habitat model per-
formance based on AUC was very good (0.911, standard devia-
tion=0.028). The contributions to model training gain of each environ-
mental predictor (Table 2), revealed that predictors related to human
modification of the environment [human influence index (HII) and
distance to dams], were among the top explanatory factors for B. pfeif-
feri current distribution in eastern Africa.  Figure 2 shows the dynami-
cal model output at baseline, averaged over the 10 year period and
across the eight scenarios. The figure can be interpreted as an indica-
tion of the relative suitability of temperatures for Schistosoma mansoni

                   Article

gh-2016_1S.qxp_Hrev_master  31/03/16  11:39  Pagina 96

Non
 co

mmerc
ial

 us
e o

nly



transmission. Full results for the dynamical model are given in
McCreesh et al. (2015). The results of combing the dynamical and snail
habitat suitability models (weighted by multiplication and by masking)
are shown in Figure 3.

Comparison of single- and combined models with
empirical data
Comparison of model output infection risk at baseline (2006-2015)

with empirical prevalence estimates (0, 10, 20 and 50% prevalence cut-
off thresholds), showed that the combined model almost always per-
formed slightly better than the dynamical model, as evaluated by AUC,
and the weighted combined model performed marginally better than
the masked combined model (Table 3). This picture was reinforced by
the Spearman rank correlation test between modelled infection risk
and empirical prevalence estimates, with the combined model (weight-
ed) having a Spearman rank correlation coefficient of 0.41 (P<0.0001),
compared to 0.14 (P<0.02) for the dynamical model alone (Table 3).

Predicted changes in risk
Figure 4 illustrates the median predicted change in S. mansoni infec-

tion risk (across the 8 described scenarios), over the next 50 years
under the moderate (RCP4.5) climate change scenario for the dynami-
cal model alone and the combined (weighted) model, respectively.
There was general agreement between models in predicting changes in
risk, ranging from 61.9-70.5% of the total eastern Africa area predicted
to experience a general increase in risk over the next 50 years. The
highest proportional area with increased risk was predicted by the com-
bined (masked) model. The dynamical model predicted the highest pro-
portional area to experience up-to 20% increase in risk (36%), com-

pared to 24% of the total area for the combined (weighted) model. Vice
versa the models predicted a general decrease in risk in 30-37% of the
study area. The biggest difference between the two maps in Figure 4 is
the higher predicted increase in infection risk in central and northern
Kenya by the combined model relative to the stand-alone dynamical
model.

Discussion

Climate change will inevitably have an impact on schistosomiasis
control and elimination programme outcomes, and thus there is a
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Figure 1. Habitat suitability map for Biomphalaria pfeifferi in
eastern Africa (current conditions). Blue to red indicates increas-
ing relative suitability. 

Figure 2. Baseline risk map from the dynamical model. Background
colour shows model output infection risk, averaged across scenarios,
and translated into proportion of maximum risk.

Table 2. Estimates of relative contributions of the environmental
variables to the snail habitat suitability model.

Variable                                                               Contribution (%)

HII                                                                                                            48.3
Distance to dams                                                                                  19.7
Distance to surface water bodies                                                     12
Precipitation of driest quarter                                                           7.2
NDVI (rainy season)                                                                               6
Annual precipitation                                                                              2.6
Land cover                                                                                               2.5
Precipitation seasonality (coefficient of variation)                      1.3
Soil pH (topsoil)                                                                                    0.5

gh-2016_1S.qxp_Hrev_master  31/03/16  11:39  Pagina 97

Non
 co

mmerc
ial

 us
e o

nly



[page 98]                                                           [Geospatial Health 2016; 11(s1):406]                                       

                   Article

Figure 3. Combined models, current conditions. A) Output of combined model, where the dynamical model output is weighted by the
snail habitat suitability model output; and B) output of models combined by masking the dynamical model with threshold (presence-
absence) snail habitat suitability model layer.

Figure 4. Predicted changes in risk. A) Dynamical model only; B) combined snail habitat statistical model and dynamical model
(weighted). Results are for 2056-2065 relative to 2006-2015 (baseline), and median is calculated across eight model scenarios for each
map. Cells with value <1 or >1 indicate future decrease or increase in infection risk, respectively.
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pressing need to improve model-based predictions about climate
change impacts on the full parasite-snail system. Here, using inde-
pendent, empirical schistosomiasis survey data to validate our models,
we demonstrate that a combined-model approach is better able to cap-
ture the current (baseline) distribution of schistosomiasis than a
dynamical approach (Table 3). The statistical model added information
about the geographical distribution and habitat suitability for B. pfeif-
feri, which improved baseline predictions considerably. At the same
time, the dynamical model allows the complex, non-linear relationship
between temperature and schistosomiasis risk to be accurately cap-
tured, potentially greatly increasing the accuracy of future predictions.
Overall, the combined model predicted that more areas in eastern

Africa are likely to experience an increase in risk (63% of total area)
than a decrease or status quo (37% of total area). This is very similar
to the predictions made by the original, dynamical model by McCreesh
et al. (2015). On the other hand, the combined model estimated that a
somewhat lower proportion of study area would experience an increase
in of up-to 20% in risk (24 vs 36%). The main reason for this difference
is that some areas where the dynamical model predicts increased risk
(particularly in southern and central parts of Tanzania), are considered
by the statistical model to have very low suitability for snail existence.
In areas that are predicted to experience a relative decrease in risk,
decreases are due mainly to projected temperature regimes becoming
increasingly unsuitable (i.e. too hot) to sustain snail populations.
It should however be noted that only one set of climate projections

was used in this study, and caution is thus warranted with regards to
making strong conclusions about the future distribution of schistoso-
miasis based on these projections. Repeating the analysis using multi-
ple climate projections from difference sources would allow us to devel-
op estimates of the level of uncertainty in our predictions, and high-
light areas where current knowledge does not allow accurate predic-
tions to be made. The main purpose of this study however, was to
explore the potential benefits of combining a spatially-stratified empir-
ical-statistical model of snail suitability with a dynamical model of S.
mansoni infection in snails that used temperature as the only explana-
tory factor of spatial variation, and in terms of fitting the model output
to existing prevalence data, the benefits are clear. 
Another limitation to keep in mind when interpreting the results is

the absence of the human element, which is central to the actual distri-
bution of infection within and between populations. Incorporating the

complex milieu of potentially confounding and modifying epidemiolog-
ical, social, economic and demographic factors that add to the variation
in the distribution and intensity of schistosomiasis, is perhaps one of
the biggest challenges in modelling future transmission of schistoso-
miasis, and vector-borne diseases in general (Parham et al., 2015a). 
Nevertheless, our results are consistent with earlier studies. A pure-

ly empirical-statistical snail model for the entire African continent
(Stensgaard et al., 2013) predicted a general decrease of suitable habi-
tat for B. pfeifferi, with a reduction in the total suitable are of up to 43%.
However, this was mainly due to conditions becoming unsuitable in
many places in western Africa. In line with the findings of the present
study, B. pfeifferi was predicted to expand its current distribution in
areas of eastern and southern Africa. Our findings are also in line with
the (to-date) only published empirical study of schistosomiasis and cli-
mate changes, which suggested that schistosome transmission poten-
tial is increasing as a result of warming in high altitude areas in
Uganda (John et al., 2008). More generally, our results underscore the
importance of combining knowledge of the biology and ecology of both
parasites and intermediate host snails. Suitable snail habitats are a
prerequisite for transmission, and it is essential to take the distribu-
tion of the intermediate host snail explicitly into account. However, the
impact of environmental/climatic factors on different species interme-
diate host snails is diverse and specific to individual snail-parasite
combination. This specificity requires tailored parameters for individ-
ual snail-parasite systems to more accurately project the impact of cli-
matic changes on transmission, but such data are often unavailable
(McCreesh and Booth, 2013). In the present study for instance, all mod-
els were parameterised to B. pfeifferi only due to lack of empirical data
on other snail species. B. pfeifferi is the most widespread S. mansoni
intermediate host in the region, but some of the prevalence data will
come from sites with other snails, limiting model performance. Effects
of temperature on infection risk can vary greatly depending on the
snail species (McCreesh and Booth, 2014b), and while the range of B.
pfeifferi is expected to decrease, the range of B. sudanica (another host
species) is predicted to increase under global warming scenarios
(Stensgaard et al., 2013). 
Most importantly perhaps, this study (and others), suggest that non-

climatic factors - in particular anthropogenically altered habitat, such
as dam developments - potentially play a more important role than cli-
matic factors in determining the current distribution of the intermedi-
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Table 3. Comparison of model output infection risk at baseline (2006-2015) with empirical prevalence thresholds (mean across 8 tem-
perature scenarios) for the dynamical (agent-based) model, the statistical snail habitat suitability model, and the combined models.

                                                  All data                                                           Selected data
AUC                   Dynamic             Statistical        Combined    Combined       Dynamic         Statistical         Combined            Combined
                            model                   model           (weighted)    (masked)          model              model                                        (masked)

0%                                   0.59                               0.69                          0.68                     0.64                        0.57                         0.72                          0.71                              0.69
                                 (0.51-0.66)                  (0.62-0.77)              (0.61-0.76)        (0.56-0.71)            0.45-0.69)             (0.61-0.83)             (0.60-0.82)                  (0.58-0.80)
10%                                 0.59                               0.72                          0.73                     0.69                        0.63                         0.81                          0.78                              0.76
                                 (0.52-0.66)                  (0.66-0.79)              (0.67-0.80)        (0.63-0.76)            0.48-0.79)             (0.70-0.93)             (0.66-0.91)                  (0.64-0.87)
20%                                 0.60                               0.69                          0.71                     0.69                        0.75                         0.83                          0.82                              0.79
                                 (0.51-0.68)                  (0.61-0.76)              (0.63-0.79)        (0.61-0.77)           (0.56-0.94)            (0.70-0.95)             (0.70-0.94)                  (0.65-0.93)
50%                                 0.55                               0.73                          0.73                     0.73                        0.85                         0.89                          0.91                              0.90
                                 (0.42-0.69)                  (0.61-0.84)              (0.62-0.84)        (0.62-0.84)           (0.67-1.00)            (0.73-1.00)             (0.78-1.00)                  (0.78-1.00)
Spearman’s                  0.14                               0.42                          0.41                     0.34                       -0.04                        0.48                          0.45                              0.43
correlation                 (0.02)                       (<0.0001)               (<0.0001)          (<0.0001)                 (0.7)                  (<0.0001)               (<0.0001)                   (<0.0001)
coefficient 
(P value)                                                                 
AUC, area under the curve.                                                                                                                                                                                                                                                                                                                               

gh-2016_1S.qxp_Hrev_master  31/03/16  11:39  Pagina 99

Non
 co

mmerc
ial

 us
e o

nly



[page 100]                                                         [Geospatial Health 2016; 11(s1):406]                                       

ate snail host at regional scales. This means that we face an enormous
challenge, as reliable future projections for changes in, for example,
land use and land cover are not available. Currently, we have little
choice but to treat these variables as static, and adopt a no change-
assumption, that is not very realistic, although it is better than exclud-
ing them altogether (Stanton et al., 2012). However, we are not alone
facing this challenge. Conservation scientists, to give one example, are
also exploring new avenues (de Chazal and Rounsevell, 2009; Riordan
and Rundel, 2014), and a combined effort here could perhaps lead to
new ways to address this challenge.

Conclusions

In conclusion, we suggest that ways to combine, hybridise or couple
statistical-empirical distribution modelling with process-based models
of snail lifecycles and parasite development, underpinned by a solid
knowledge of snail ecology, be further explored. One approach is not
intrinsically superior to the other (Dormann et al., 2012), and by com-
bining them, the knowledge and insight that can be gained from avail-
able data, experimental and/or empirical, is maximised. 
This approach, however, can only be fully exploited, if the current

paucity of biological data needed to parameterise the different models
to single species’ responses to changes in abiotic conditions is
addressed (McCreesh et al., 2013). Combining a full set of such
species-specific details with knowledge of the complex ecological, evo-
lutionary and societal aspects that determine the variation in the dis-
tribution and intensity of disease may be the most promising way for-
ward in the challenging field of predicting the impacts of climate
change on schistosomiasis, and vector-borne diseases in general.
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