
Abstract

One year of mobile phone location data from Senegal is analysed to
determine the characteristics of journeys that result in an overnight
stay, and are thus relevant for malaria transmission. Defining the
home location of each person as the place of most frequent calls, it is
found that approximately 60% of people who spend nights away from
home have regular destinations that are repeatedly visited, although
only 10% have 3 or more regular destinations. The number of journeys
involving overnight stays peaks at a distance of 50 km, although rough-
ly half of such journeys exceed 100 km. Most visits only involve a stay
of one or two nights away from home, with just 4% exceeding one
week. A new agent-based migration model is introduced, based on a
gravity model adapted to represent overnight journeys. Each agent
makes journeys involving overnight stays to either regular or random
locations, with journey and destination probabilities taken from the
mobile phone dataset. Preliminary simulations show that the agent-

based model can approximately reproduce the patterns of migration
involving overnight stays. 

Introduction

It has long been appreciated that population movements drive the
transmission patterns and intensity of many communicable diseases
(Garnham, 1945; Findlay, 1946; Prothero, 1961; Marques, 1987). Health
reports during the early 20th century from the Uganda protectorate
often attributed malaria anomalies to population movements that were
either sub-national or trans-boundary in nature (Tompkins et al.,
2015). In locations where endemicity is spatially heterogeneous, pop-
ulation mobility can also act to transport malaria parasites, and may
lead to outbreaks in epidemic zones (Martens and Hall, 2000;
Wesolowski et al., 2012b). For example, the success of early efforts to
control malaria in northern Uganda was hindered by the reintroduc-
tion of the parasite through population movements (De Zulueta et al.,
1961; Talisuna et al., 2015). A number of studies have attempted to
determine the role of migration in malaria transmission (Torres-
Sorando and Rodrıguez, 1997; Tatem and Smith, 2010; Lynch and
Roper, 2011; Pindolia et al., 2013).
National (internal) population mobility can be classified according

to the relevant time-scale: permanent, such as urbanisation trends;
long term in response to environmental stress or seasonal work; or
regular and cyclic in nature due to economic, social or pastoral reasons
(e.g. Todaro, 1969; Findley, 1994). It is the latter regular mobility of
populations on daily to monthly time-scales that is the focus of the
present work. Information concerning national migration is limited
and subject to considerable uncertainties. Some estimates can never-
theless be obtained from household surveys (Watkins and Fleisher,
2002), census reports (Wesolowski et al., 2013), satellite imagery
(Bharti et al., 2011), and air and ground transport records (e.g.
Griffitts, 1933; Tatem et al., 2006). Pindolia et al. (2012) and Tatem
(2014) review these data sources and highlight the potential of mobile
phone data to supplement their information on national scales. Mobile
phone data have been used to assess population cyclic and internation-
al mobility in a number of African countries (Tatem et al., 2009;
Bengtsson et al., 2011; Blumenstock, 2012; Buckee et al., 2013).
Gething and Tatem (2011) and Wesolowski et al. (2014) discuss their
potential in disaster response situations.
While previous analysis of mobility has shed much light on potential

impacts for malaria (Wesolowski et al., 2012b), the analyses are often
conducted in terms of total population fluxes between districts, which
are then represented by simple diffusion models. In order to be able
incorporate information concerning mobility into spatial dynamical
malaria modelling frameworks (e.g. Hoshen and Morse, 2004; Jones
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and Morse, 2010; Tompkins and Ermert, 2013; Tompkins and Di
Giuseppe, 2015), additional transmission-relevant statistics concern-
ing the journeys are  required, in particular whether journeys involve
overnight stays.
Key malaria vectors in Africa bite predominantly between the hours

of 9 pm and 6 am (Braack et al., 1994; Pates and Curtis, 2005). Short,
local journeys that result in no overnight stay are thus unlikely to result
in transmission, even if malaria risk can vary rapidly over small spatial
scales (Carter et al., 2000; Bousema et al., 2012). The more nights that
are spent away, the higher the probability of parasite transport. If a
journey is made from a low transmission area to an endemic zone,
where the probability of receiving an inoculation per night is β, the
probability of that person receiving an inoculation during N nights is
simply 1 – (1– β)N. The effect is nonlinear; N people visiting a location
for one night are more likely to transport parasites back to the origin
than a single person spending N nights [assuming for simplicity that β
is equal for all, which Lindsay et al. (1993), Knols et al. (1995), and
Mukabana et al. (2002) show is not the case], since in the former case
Nβ people become infected, which always exceeds 1 – (1– β)N for  N≥2.
These arguments also apply to the probability of transporting parasites
from an endemic area to a low transmission zone. A map of journey
densities does not reflect the probability of a particular journey being
made by an individual, as it has been previously demonstrated that
most individuals will regularly visit only a small number of locations.
Urban dwellers may regularly return to their rural origin to visit family,
for example. Calculations using diffusive models based on journey den-
sity maps will thus overestimate the transport of parasites between low
and high endemicity settings.
The first aim of this paper is to conduct an analysis of mobile phone

record data for Senegal to determine these transmission-relevant sta-
tistics. The strong gradient in malaria transmission intensity in
Senegal implies that human mobility may have a significant role in
transporting malaria parasites to the northern epidemic-prone dis-
tricts. Previous studies of the impact of human mobility on malaria
have used statistical techniques such as diffusion models (Wesolowski
et al., 2012b), or internal migration mapped with gravity models
(Garcia et al., 2014). Agent-based models have also been developed for
human mobility (Kniveton et al., 2011, 2012; Augustijn-Beckers et al.,
2011; Parker and Epstein, 2011) and these have the advantage that they
permit a specific memory of the history of each agent. The second aim
of the research was to develop an agent-based model of population
movements, using the mobile phone statistics to set up distributions of
regular and random destinations for each agent. The intention is that
in the future the population movement model will be coupled to the vec-
tor borne disease community model of ICTP (VECTRI) dynamical
malaria model (Tompkins and Ermert, 2013), to allow the latter to
account for the effect of population mobility more accurately. After
analysing the malaria-relevant statistics of the phone data, a prelimi-
nary simulation is made with the agent-based model to assess its abil-
ity to reproduce general patterns of population mobility.

Materials and Methods

Mobile phone data analysis
The statistics regarding population mobility are derived from a

dataset of Orange mobile phone use provided in the 2nd phase of the
data for development (D4D) challenge project (de Montjoye et al.,
2014). Earlier research by the data providers has shown that anonymis-
ing mobile data is inadequate to protect identity if records are provided

at high spatial resolution or for long periods (de Montjoye et al., 2013).
Thus to ensure user privacy, the project provided anomymised data
with either short temporally coherent records limited to a 14 day period
per individual user tracked, or with a strongly degraded spatial resolu-
tion. As an extra safeguard, all selected projects that received D4D data,
including the present work, were required to subject their resulting
analysis for clearance by the D4D ethical committee.
The degraded spatial resolution dataset that provided continuous

tracking information for an entire year for each user at the coarse-
scale arrondissement level was used. This dataset was employed in
order to be able to identify the arrondissement in which a user’s home
was located, multi-day journeys and regular destinations of users. One
caveat of the analysis is that journeys that occur within an arrondisse-
ment are not resolvable, although it is assumed that most of these jour-
neys would not result in an overnight stay, which is the subject of the
present analysis, and thus the impact of the degraded spatial resolution
is considered minor.
In this analysis, the first 18,384 entries were used to summarise

journeys that result in an overnight stay. The first step of the analysis
was to assign home locations to each individual. This was defined as
the place from which a call was made on the greatest number of days.
People who lived in or visited locations on the border between
arrondissements presented problems for the analysis, as it was difficult
to determine where these people lived, and where they spent each
night. Locations were therefore recoded, with all observations in loca-
tions adjacent to an individual’s home location considered to occur in
their home location. Each individual’s second most commonly visited
arrondissement was then identified, and locations adjacent to that
recoded. This was then repeated for their third, fourth, etc., most com-
monly visiting locations. We then attempted to determine where each
individual spent each night. Four rules were used. In order of priority,
they were as follows. 
First, if the last call by an individual on day n, and any call on day n+1,

were from location x, then the individual spent night n in location x.
Second, if the last call by an individual on any day, and the next call

on any day, were from the same location, and there were not more than
60 hours between the two calls, then the individual was considered to
have spent any nights between the calls in that location.
Third, if the last call on a day occurred after 7 pm, then the individual

spent the night in the location from which that call was made.
Fourth, if the first call on a day occurred before 7 am, then the indi-

vidual spent the preceding night in the location from which that call
was made.
The number and destinations of all trips made by each individual

were then identified. Each trip was considered to start when an indi-
vidual made a call from a location other than their home location, and
to end when they next made a call from their home location. The desti-
nation of the trip was considered to be the location from which a call
was made that was located the furthest distance from the individual’s
home location. Distances were measured as the Euclidean distance
between the centre points of two locations, i.e. measured as the crow
flies, neglecting the road network in this preliminary analysis (e.g.
Shahabi et al., 2003).
The proportion of trips that involved a night away was then calculat-

ed. A trip was considered to involve a night away if either the night
before or the night of the first day of a trip was considered to have
occurred at a location other than the individual’s home location. If the
location in which an individual spent the night before or the night of
the first day of a trip was not known, then that trip was excluded from
the analysis.
A number of assumptions were made in the analysis. The ten
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arrondissements covering the Dakar area were considered to be one
location for the purposes of the analysis. In addition, two other small,
adjacent arrondissements were considered to be one location. The
dataset contained a considerable number of erroneous observations
that required removing to avoid biasing the statistics. These included
events such as two calls by the same individual from different, non-
adjacent arrondissements a short time apart. Implausible calls or
groups of calls were removed if they would have required a travel speed
of greater than 50 km h–1, with distance measured as the crow flies
between the closet points of the arrondissements. This may have
resulted in some genuine calls being removed if individuals traveled by
plane, however the low volume of domestic air travel in Senegal means
that the effects of this are likely to have been negligible.

Agent-based mobility model
An agent based model for cyclic and permanent migration within

developing countries has been constructed. The model presently
divides a square domain that includes all Senegal into a regular grid-
mesh using a 5 km resolution. The population density in each cell is
given by the AfriPop dataset (Linard et al., 2012). The model is ini-
tialised using 1000 agents in each 5-km2 cell, which is also assigned as
the home location for the agent. Discounting ocean cells in the simula-
tion domain, the simulation includes a total of 2,856,000 agents. Each
agent thus represents a different number of individuals according to
the location. For example, in an urban location with a population den-
sity of 2000 km2, each agent represents 50 people, while in a sparsely
populated rural location of 20 km2, each agent represents half an indi-
vidual. This highlights the fact that individuals per agent is a member
of the real set and can take non-integer values. Birth and death of indi-
viduals is not accounted for in these simulations, which are of one year
in duration.
In addition to its home location, each agent is assigned N regular

destination locations at the start of the simulation. The analysis of the
D4D dataset indicated that most individuals that regularly travelled to
one or more location had just one regular destination, with smaller
numbers having two or three regular destinations. The proportion with
four or more regular destinations was negligible. Thus, each agent is
assigned three regular locations, with a different probability weighting
assigned to each regular location to match the mean probabilities
derived from the data. Thus a migration event is far more likely to
result in a journey taken to regular location 1, with locations 2 and 3
increasingly less likely. In these preliminary tests, all agents have equal
probabilities of visiting their regular locations. The number of agents
that make n trips to regular locations, and the number of identifiable
regular locations per agent per year of simulation, will therefore be
Poisson distributed, and under dispersive relative to the phone data.
Each agent is assigned a probability to migrate per day, which is set

to give the same mean number of journeys per individual in a year as
observed in the D4D dataset (approximately 6.2). In each timestep, a
random number is chosen for each agent and used to decide if it will
make a journey that will involve an overnight stay. The full decision
tree of the model is shown schematically in Figure 1. For each migra-
tion event, a stochastic decision is taken to move to one of the agent’s
regular locations (assuming N≥1 for the agent in question), or to a ran-
dom location. If an agent is in a location away from home, the agent
may decide to return to the home location. The probability of returning
home phome greatly exceeds that of making a journey (phome=0.38) to
ensure that journeys have durations similar to those observed in the
phone dataset. Thus the probability of a journey lasting n or more
nights is equivalent to (1 – phome)n. Only approximately 4% of journeys
involving an overnight stay have duration of a week or more.

In order to select the location of the regular and random destinations
a probability map is required that specifies the likelihood of migrating
from point i to point j, denoted pij. Simini et al. (2012) recently suggest-
ed a modification to the gravity model, to give this probability in terms
of the population in the origin and destination location (mj and mj) and
the total population in a sphere of radiation equal to the distance
between the two points (rij) centred at i and denoted m̂ij:

K is the mean migration rate per individual per unit time. While Simini
et al. (2012) show how the radiation model addresses some short-com-
ings of the gravity model, initial investigation demonstrated that the
standard radiation model gave a poor fit to the data since the  m̂2 term
in the denominator gives a very strong 0 (r–4) dependency of the migra-
tion probability. Indeed, Simini et al. (2012) also pointed out that for
the special case of uniform population density, the radiation model
reduces to a gravity model with r–4 dependency. It is also noted that the
comparison of the radiation and gravity models in Simini et al. (2012)
does not state how the gravity model was fitted or which power depend-
ency was used for the distance function.
In this first preliminary investigation, we therefore use the gravity

model as in Garcia et al. (2014), while noting that the flexibility of the
agent-based model easily allows other mobility laws to be substituted
later. The gravity law defines the probability pij of a journey from points
i to point j as a function of the population density in each location mj

and mj and the distance between them:

                                                                                                                                Article
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Figure 1. Key decision tree for the v1 beta release version of the
agent-based welfare indexed societal demographic migration
model. The dashed lines for the option of the agent returning
home are to emphasise that this option is only possible if the
agent is away from home when the movement decision is taken. 

gh-2016_1S.qxp_Hrev_master  31/03/16  11:38  Pagina 51

Non
 co

mmerc
ial

 us
e o

nly



[page 52]                                                           [Geospatial Health 2016; 11(s1):408]                                       

Here the exponent γ is set to 2 in a preliminary simulation, and η is
the normalisation factor to ensure that the mean probability of a trip is
equal to K, which is set to 0.017 day–1 from the phone dataset. The addi-

tional exponential term in brackets accounts for the fact
that short journeys do not result in an overnight stay (see results sec-
tion), with the decay scale τovernight fitted using the D4D phone dataset.
In this preliminary version of the model, the distance between points

is simply calculated as the point-to-point direct distance and does not
account for the road network or national boundaries. For example, over-
land travel between key locations in Casamance such as Ziguinchor
and Dakar involves transit through The Gambia, although this is obvi-
ously not the case for flights or ferry travel. Also, presently the model
does not distinguish The Gambia from Senegal and allows journeys
between the two countries, although these are not presented in the
analysis.

Results

The probability density function of the number of regular migration
destinations that individuals visit within the year of data is given in
Figure 2. Approximately 40% of individuals do not make a repeated
journey involving an overnight stay within the year. The other 60% of
individuals do regularly visit a location away from home, but most only
have one or two regular locations. Fewer than 10% of individuals have
3 or more regular locations.
The probability of a journey occurring per day between two points,

considering all journeys made irrespective of whether they involve an
overnight stay, reduces with increasing distance as expected (Figure
3A), and very few journeys exceed a distance of 200 km. The proportion
of these journeys that involve an overnight stay is also shown (Figure
3B), and highlights that over 80% of journeys that exceed 150 km
involve an overnight stay. The fact that not all journeys at distances
exceeding 300 km involve a night away is likely to be due to data incon-
sistencies that were not removed by the quality control algorithm.
Combining these two relationships gives the probability of a trip

being made that results in an overnight stay. We applied a best-fit expo-
nential function to both of these data (Figure 3C) which shows that the

overnight proportion increases with an e-folding distance of τovernight=62
km. The resulting relationship shows that the trip distance for which
the number of journeys involving an overnight stay is maximum is
approximately 56 km. The probability density function (PDF) is wide
and positively skewed, and half of journeys involving an overnight stay
are for a distance of approximately 100 km or more. It is recalled that
these are mean statistics for all origins, and these relationships are
likely to be spatially highly heterogeneous depending on the population

                   Article

Figure 2. Proportional of individuals that have n regular cyclic
migration locations, where n is given on the x axis. 

Figure 3. A) Probability of a trip as a function of distance with an
exponential fit shown with the solid line; B) probability that a
trip includes a night away; and C) graph of best fit relationship
to overnight stays (right axis), journey probability as a function
of distance (left axis), and combined probability of a trip being
made that involves an overnight stay. 
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density (Simini et al., 2012).
The number of journeys made from each arrondissement in Senegal

that involve overnight stays, with categories divided into 10% per-
centiles, is shown in Figure 4. This map shows that the journey number
in general follows the population density, with the exception of the
northern-most arrondissements within Saint-Louis that border
Mauritania. For these the journey number considerably exceeds those
made from other arrondissements of a similar population density and
distance from the capital Dakar. Possible reasons for this are outlined
in the model discussion below.
Preliminary results of the agent-based model in terms of the number

of individuals arriving in a location per square km per day are shown,
with categories divided into 10% percentiles (Figure 5). The model pre-
dicts the highest journey flux to/from Dakar as expected, but also iden-
tifies the high flux from the western, more highly populated
arrondissements in the vicinity of Dakar, as well as parts of
Casamance.

Discussion

In this study, we have used African mobile phone data to gain a bet-
ter understanding of short-term population movements relevant to
malaria transmission. As most transmission in the region is believed
to involve vector species that predominantly bite in the evening/night-
time, we focused on journeys that involved overnight stays. We show
that the probability of a journey occurring, which involves an
overnight stay, is highest at distances of 56 km in Senegal. At higher
distances, journeys with or without overnight stays are less frequent,
nevertheless but over half the journeys exceed 100 km in range. The
analysis also revealed that journeys are often made to regular destina-
tions, but most people have only one or two identifiable regular loca-
tions within the year.
One limitation of the data is that phone ownership and financial

means to make calls are likely to be higher in people of higher socio-
economic status. This means that the assessment of population mobil-
ity may have been biased upwards. On the other hand, we will not have
detected journeys on which no calls were made, biasing the assess-

ment downwards. These limitations of using mobile phone data are
adequately described in literature (e.g. Tatem, 2014), and are not dis-
cussed in detail here.
Implicit in the analysis is the assumption that phones sharing prac-

tices do not overly affect the statistics or their implications for malaria
parasite transport. Recently, surveys have been conducted addressing
the lack of information concerning phone usage (James and Versteeg,
2007), for example in Rwanda (Blumenstock and Eagle, 2012) and
Kenya (Wesolowski et al., 2012a). Assuming these surveys are repre-
sentative of the continent, they reveal that phone sharing can be com-
mon in Africa. They found that 42% of respondents reported that some-
one else had used their phone in the last day, while 78% reported that
someone had used the phone in the last week. Similar sharing rates
in Kenya were reported, with strong variability from region to region.
To consider how phone sharing might affect the analysis, a distinction
needs to be made between household and non-household sharing.
Velghe (2012) state that phone sharing is often not a result of handset
shortage, but a consequence of inability to purchase credit. Non-
household sharing tends to be ad hoc in nature, loaning a handset to
neighbours or friends for a single call. As such, sharing does not
involve travel (the handset is generally returned to the owner after the
call is made), and this form of sharing will not affect the statistics.
Household-level sharing, where a single handset may also be used by
a spouse, children or extended family members, is more complex. One
might reasonably assume that in most cases, travel away from the
home involving overnight stays may be mainly conducted by a key fam-
ily member, or by the family unit as a whole. However, even if different
family members make separate journeys taking the mobile device with
them, the implication for the analysis presented here is limited, since
they return to the same home location. In summary, while phone shar-
ing is a caveat, its impact on the present analysis is likely weak due to
the focus on physical movements with the phone involving longer trips
with overnight stays.
A district map showing the number of journeys involving overnight

stays reveals a rich spatial texture. Journeys are highest where the
population density is highest, as expected, with the peak journey den-
sity being into and out of the capital, Dakar. There are some depar-
tures from expected numbers of journeys, however. For example, the
number of journeys made to the northern districts of Dagana and
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Figure 4. Map of total journeys made from each arrondissement
divided into ten categories of approximate 10% percentiles. 

Figure 5. Preliminary results of the welfare indexed societal
demographic migration model simulations. Units are individuals
per km2 arriving per month at each location divided into approx-
imate 10% percentile categories.
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Podor is higher than expected from the population densities there.
Although geographically far from Dakar, the northern districts are con-
nected by the recently improved N2 highway that runs through this
region. In addition to many of the western counties, the region close
to the northern border of Senegal is predominately Wolof, the major
ethnic group politically and numerically within Senegal. Thus one may
expect enhanced migration to/from these regions relative to other
Eastern counties as many Wolof based in the capital or nearby
arrondissements may have family ties in the region. In contrast to the
north, journeys to the southern region of Casamance, including the
districts of Bignona and Sedhiou, are lower than expected from the
population density. This is likely to be due partly to the separation of
this region from the capital by the Gambia river, increasing effective
journey times, while the ongoing conflict in the region until 2014 may
also have acted to reduce population mobility.
In terms of the implications for malaria transmission, Senegal is a

country with a marked north-south gradient in transmission.
Interventions in the north of the country have reduced parasite preva-
lences to under 5%, while transmission in the south is more intense,
with parasite prevalences of around 25%. The National Malaria Control
Programme (Programme National de Lutte Contre le Paludisme)
presently aims to eliminate transmission in the north over the medium
term (e.g. Roll Back Malaria Progress & Impact Series, Focus on
Senegal), a goal that could be rendered more challenging by significant
and increasing population movements into the region. While a large
number of the journeys are likely to originate from the capital, which
has a low malaria burden (Henry et al., 2006), a proportion will origi-
nate from higher malaria areas.
This work also introduced a new agent-based migration model that

uses parameter settings derived from the phone dataset. Agent-based
models allow individual-level characteristics to be assigned, such as
socio-economic attributes that determine the agent’s vulnerability to
malaria transmission, co-infections, or in this case, information con-
cerning the agents’ habitual destinations away from a set home loca-
tion. The model modifies the probability matrix of destinations in order
to include only those journeys likely to result in an overnight stay. A
novel aspect of the model is its definition of destinations for each agent
as regular or random. This means that, in addition to modelling the
overall journey numbers, the model also has the potential to represent
the number of destinations per agent, more accurately capturing pat-
terns of population movements.Preliminary tests of the model show
that, despite its present simplicity, it is able to reproduce the overall
distribution of journeys. That said, the model tends to underestimate
the journeys made to distant destinations. In particular, it underesti-
mates population movements in the northern counties, which have a
low rural population density. This highlights the need to incorporate
ethnic background into the agent based characteristic matrix, in
addition to accounting for the transport network. The advantage of
the agent-based approach is that the addition of such characteristics
is easily accomplished and is memory efficient.

Conclusions

Future developments will include incorporating the transport net-
work in the distance weightings using Dijkstra’s algorithm, differenti-
ating major and minor highway routes, and accounting for air-travel
possibilities and coastal ferry connections between Dakar and
Casamance. The model should also allow variation in the number of
destinations, random or regular, visited by agents. The model’s agent-

based approach will permit developments to account for ethnicity and
socio-economic status in the agent characteristics and the mobility
probability network. Grid refinements would allow improved resolution
of population characteristics by agents in urban areas. Developments
are currently underway to incorporate personal wealth and welfare into
the decision-process regarding both cyclic and permanent movements;
hence the model is referred to as the welfare indexed societal demo-
graphic migration model (WISDOM). The overall goal is then to couple
WISDOM to the spatially-explicit, climate driven malaria model VECTRI
(Tompkins and Ermert, 2013), to allow the impact of cyclic population
migration on malaria transmission to be assessed in a fully dynamical
coupled framework.
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