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Abstract

In parasitological surveillance of livestock, prevalence surveys are con-
ducted on a sample of farms using several sampling designs. For exam-
ple, opportunistic surveys or informative sampling designs are very com-
mon. Preferential sampling refers to any situation in which the spatial
process and the sampling locations are not independent. Most examples
of preferential sampling in the spatial statistics literature are in environ-
mental statistics with focus on pollutant monitors, and it has been shown
that, if preferential sampling is present and is not accounted for in the
statistical modelling and data analysis, statistical inference can be mis-
leading. In this paper, working in the context of veterinary parasitology,
we propose and use geostatistical models to predict the continuous and
spatially-varying risk of a parasite infection. Specifically, breaking with
the common practice in veterinary parasitological surveillance to ignore
preferential sampling even though informative or opportunistic samples
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are very common, we specify a two-stage hierarchical Bayesian model
that adjusts for preferential sampling and we apply it to data on Fasciola
hepatica infection in sheep farms in Campania region (Southern Italy)
in the years 2013-2014.

Introduction

In parasitological surveillance of livestock, prevalence surveys are
conducted on a sample of farms using several sampling designs. While
systematic sampling or spatial sampling designs are optimal, often
their requirements in terms of confidentiality or list coverage are not
fulfilled. On the other hand, informative sampling strategies, which
use information from previous surveys conducted on a regular grid,
can offer advantages for specific epidemiologic aims (Musella et al.,
2014). In analysing the data arising from such surveys, we must take
into account the preferential sampling nature of the data (Diggle et al.,
2010). Geostatistics refers to the collection of statistical methods used
to model and analyse point-referenced spatial data (Cressie, 1991).
Typically, this type of data is obtained by sampling a spatially continu-
ous phenomenon at a discrete set of locations in a region of interest.
If the sampling locations are considered fixed by design or if they can
be considered to be stochastically independent of the spatial process
sampled, traditional geostatistical methods are appropriate. However,
these methods are not appropriate if either condition is not satisfied.
Preferential sampling refers to any situation in which the spatial
process and the sampling locations are not independent. Examples of
non-preferential designs include completely random samples, and reg-
ular lattice designs, while examples of preferential sampling are
opportunistic samples in which the sampling locations (location of pol-
lutant monitors, location of sampled animals or trees, residence of
asthma patients, to name a few) are concentrated in sub-regions
where the underlying values of the spatial process are larger or smaller
than average.

Even though it can arise in several situations, preferential sampling
has been ignored for many years in the analysis of spatial data. Diggle
et al. (2010) showed that if one ignores the fact that the data are pref-
erentially sampled, statistical inference could be misleading. To
address this issue, they proposed a model, which postulated a shared
spatial latent process driving both the sampling process and the under-
lying spatial process. For parameter estimation, the authors proposed
maximum likelihood estimation using a Monte Carlo approach. Diggle
et al. (2013) presented a more general way to handle preferential sam-
pling using an inhomogeneous spatial point process and suggested the
use of log Gaussian Cox processes to model the spatial point process
of the sampling locations.
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In our study, we consider a finite number of sampling points - those
corresponding to the farm locations in the region of interest — with only
a subgroup of this having been sampled. When the inclusion probability
—e.g. the probability to be sampled — varies among sampling locations,
a correction, following the Horvitz-Thompson approach, can be used in
the geostatistical model. Specifically, we propose to use the inverse
inclusion probabilities as observation weights. If not known by design,
a statistical model (possibly spatially structured) can be specified to
derive these probabilities. Shaddick and Zidek (2014) used a similar
approach in the context of environmental epidemiology.

Differently from these authors, we specify two hierarchical Bayesian
models: one for the georeferenced data and one for the selection prob-
abilities. Since we use a fwo-step model a matter of propagation of
uncertainty arises. We address this by repeatedly sampling from the
posterior distributions of sampling intensities.

In the statistical literature, most examples of preferential sampling are
in environmental statistics, and are related to the placement of pollutant
monitors (Diggle et al., 2010, 2013; Shaddick and Zidek, 2014). Few exam-
ples (Zouré et al., 2014; Rinaldi et al., 2015a) are present in the context of
veterinary surveillance, where informative or opportunistic sampling is very
common. In this paper, we tackle the problem of preferential sampling in
parasitological veterinary surveillance and we specify a two-stage hierarchi-
cal Bayesian model to adjust for the preferential sampling nature of the
data. We apply this model to data on parasitic infections in sheep farms in
the Campania region, located in southern Italy.

The paper is organised as follows: in Materials and Methods we intro-
duce the data and the information on the environmental covariates that
we use to better explain the spatial pattern of the infection probability.
In the same section we also introduce the Bayesian models for the
inclusion probabilities and the geostatistical process. We compare the
various models and we evaluate the underestimation of uncertainty
due to the two-step approach using the Kullback-Leibler measure
(McCulloch, 1989) and the variance inflation factor (VIF), respectively.
Finally, we present the Results, followed by a Discussion and
Conclusions.

Materials and Methods

Data collection

The data arise from two surveys, both instances of preferential sam-
pling: a survey based on an informative sampling design, and an oppor-
tunistic survey.

In the first survey — the informative sampling design — we use pre-
liminary data from a survey originally planned to visit 150 farms and
sample farms according to the posterior predicted probabilities of
infection. Specifically, using the Bayesian geostatistical model pro-
posed by Musella ef al. (2014) to predict the probability of several par-
asitic infections for all sheep farms in the Campania region (Italy), we
derive an informative sampling design based on the posterior predic-
tive distribution of infection.

The second survey is an opportunistic survey of routine diagnosis
performed at the regional center for monitoring of parasitic infections
(CREMOPAR, Campania region; Cringoli et al., 2015). This survey con-
sists of local veterinarians or farmers who spontaneously bring sam-
ples for parasitological examinations of livestock.

Altogether, the two surveys provide information and data from a total
of 89 farms: 50 farms coming from the first aforementioned on-going
survey with data collected in 2013, and 39 farms coming from the sec-
ond survey with data collected in 2014 (Rinaldi et a/., 2015a).
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Study outcome

Our interest is on Fasciola hepatica, partly because of the impact of
liver fluke upon animal health, welfare and productivity (Rinaldi et a/.,
2015b) and partly because of the recent outbreaks of fasciolosis in
sheep farms in the Campania region, considered to be a possible con-
sequence of climate change (Bosco et al., 2015).

Pooled faecal samples (Rinaldi et al., 2015a) were collected for bio-
logical examinations and faecal egg counts (FEC) were determined
using the FLOTAC dual technique (Cringoli et al., 2010; Rinaldi et al.,
2015a), which has an analytic sensitivity of 6 eggs per gram of faeces
(EPG). To detect and count the number F hepatica eggs, we used a zinc
sulphate-based flotation solution (ZnS04 specific gravity=1.350).

Covariates

Using GIS, we derived 19 bioclimatic layers and 30 Moderate-resolu-
tion Imaging Spectroradiometer (MODIS) variables that can be used to
explain the spatial pattern of the infection (Rinaldi ef al., 2015a). To
assign a covariate value to each farm, we overimposed a 10x10 km grid
on the Campania region, and we identified buffer zones of 3 km around
each sampled farm using the geographic information system (GIS). In
the Appendix we report the list of covariates for both types of variables.

Due to the high number of covariates (P=49) compared to the slight-
ly larger number of observations (n=89), we reduce the covariates’
dimensionality by performing a factor analysis within the Bayesian
geostatistical approach adopted. In particular, we summarise the
covariate information with 3 latent factors that are introduced as
explanatory variables in the linear predictor term of the Bayesian geo-
statistical model (see below). We fixed the number of factors a priori
and set it equal to three and we specified which variable belongs to
each factor (see Appendix for the definition of the three latent factors).
The first factor summarised those covariates that refer to position
indexes: mean, maximum and minimum (e.g annual mean tempera-
ture). The second factor included those covariates that refer to variabil-
ity: range and coefficient of variation (e.g. mean diurnal range), while
the third factor includes covariates that represent seasonality: ampli-
tude or phase of cycle (e.g. amplitude of annual cycle-middle infra-red).
We call these factors position, variability and periodicity respectively.

Statistical modelling

Bayesian modelling of sampling probabilities

Using GIS we were able to georeference all the farms in the
Campania region. We overimposed a 10x10 km grid on the region for a
total of 184 cells. We obtained the number of sampled farms over the
total number of farms contained in each cell (observed sampling frac-
tions). We then specify a Bayesian hierarchical model to the observed
sampling fractions with a log linear predictor expressed as a function
of both spatially structured and unstructured random terms (Besag et
al., 1991).

More specifically, let n; be the number of farms population belonging
to the j-th cell (j=1,...,184) of the grid and ;be the number of sampled
farm in the j-th cell. We assume that:

K; o Binomial(p;, n;)

zi=logit (p) = K+ v+ v

where p; is the sampling probability for a farm in the j-th cell, x is the
intercept term in the model for the spatially-varying log-odds, v is a
spatially unstructured random term provided with as N(0,0.001) prior
and vy is a spatially structured random term provided with an improper
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conditional autoregressive (ICAR) prior (Besag et al., 1991). That is,
conditionally on v,.;terms, where _; indicates cells adjacent to j-th one,

(j=1,...,184), we assume that v is distributed as, where

— u

=3, n_: and T, is the precision. A priori we assume that 7, is distributed
as Gamma(0.5,0.0005) while for the intercept term k, we specify a flat
prior. Using the model above, we are able to estimate, for each of the
89 georeferenced sampled farms, the posterior probability p; that a
farm in the j-th cell is sampled. We then use the posterior estimates p;
of p;as covariate in the geostatistical model for the risk of infection.

Second step: geostatistical modelling of infection risk

Let ¥; be a binary random variable (1/0) that indicates the
presence/absence of a parasitic infection in the i-th farm (i=1,...,89).
We model Y; as a Bernoulli random variable with parameter ;; denot-
ing the probability of infection. More clearly:

Y; « Binomial(s;)

3
Z, =logit(m,) =y +s, + 2/31/1;/ +B, D,

where y is the intercept term, p; is the posterior sampling probability of
each farm derived in the previous step, A; are the three latent factors
described in Materials and Methods related to the GIS covariates.
Finally, s;is the component of a multivariate Gaussian vector with mean
zero and variance-covariance matrix X at the location of the i-th farm.
In turn, the matrix X is constructed so that its (i,k)-th element is equal
to o2 exp(-¢ ;) where o represents the marginal variance of the mul-
tivariate Gaussian vector, d;, denotes the Euclidean distance between
farms / and %, and ¢ is the parameter that controls the decay of the cor-
relation among farms at distance d. The decay parameter ¢ was chosen
such that the correlation between two sampled farms is equal to 0.97 at
the minimum inter-farm distance (¢=1.42 km) and equal to 0.017 at

A

1
l.

F

& N

the maximum inter-farm distance (d=202.23 km) (Banerjee et al.,
2014). We complete the specification of the model by providing priors
to the model parameters: for the intercept term y we specify a flat prior,
on ¢ we place a Gamma(0.05,0.005) prior distribution, while on the
P’s coefficients we place weakly informative normal prior distributions
N(0.01,0.001). For the factor analysis, we followed the specification of
Congdon (2003). Let the matrix X denote the n by p covariates matrix,
we assume:

2
X« N(’?;k(/)orz,ku))

where k=1,...,p indexes the covariates in the /-th farm (i=1,...,89),
and /=1,2,3 represents the latent factor. In turn, we assume that the
expected value 7, for the /-th latent factor is defined as:

Ny = O Aig +

where ¥y indicates the loading coefficient of covariate k in the factor
analysis, A;;is the common factor to be used as covariate in the full
response model and oy is a residual error. The prior distribution of
the common factor A;; is taken to be N(0,1), while we specify non
informative N(0,0.00001) prior distributions on c) and 9y (Musella
etal.,2011).

We fit the Bayesian factor analysis and the geostatistical model for
the presence/absence of infection jointly and we use it to predict the
probability of infection in the centroids of the 184 cells in the 10x10 km
grid.

Model criticism

To evaluate the effect of not taking into account preferential sam-
pling, we compare the results obtained from fitting a model that
accounts for preferential sampling with the results obtained from a
geostatistical model for the absence/presence of that does not intro-
duce the sampling weights p.

For the comparison between the two models, we consider an influ-
ence measure that quantifies locally — at each grid cell — the effect of

(100.250)
(50,1001
(2550]
(10.25]

10.10]

Figure 1. Spatial distribution of presence (black dots: negative farms; red dots: positive farms) of Fasciola hepatica observed infection
on sampled farms (A); and density — 7.e., number of farms in each cell — of farm population (B) in Campania region, Southern Italy

(2013-2014).
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accounting for preferential sampling. Specifically, as influence meas-
ure, we use the calibrated Kullback-Leibler divergence (KL)
(McCulloch, 1989), which focuses on how different our inferences
would be under alternative models. This discrepancy measure can be
expressed as the difference in the expected utilities between the
unperturbed and perturbed posteriors, where the model for the actual
belief is predefined. In more detail, let M, be the model accounting for
the sampling intensities — our actual belief — and let M, be the alterna-
tive model without sampling weights. The loss in utility when preferen-
tial sampling is not considered, due to the approximation of model #,
with model M, is expressed by the KL divergence, which we calculate
separately for each j-th cell via the following equation:

p(zjlY’MO)

pz]|Y,M1 p(zj|Y,M0)dz/

KL, =flog

where p(z1Y,M,) is the posterior marginal distribution of the logit of
the probability of infection in the j-th cell given the data and the model.
If the posterior distributions of z;,j=1,...,184, under M, and M, can be
approximated by a Gaussian distributions, then the KL divergence
between the distributions resulting from model M, and M, can be
approximated by the KL divergence between two Gaussian distribution
with mean m, and m;,, respectively, and variances s and s (the j suf-
fix was omitted for simplicity), respectively. This implies that

Kol v, Ll e, )& @—(—H

2
Kh s 5

In order to better understand this measure, McCulloch (1989) sug-
gested calibrating Kullback-Leibler divergences in terms of the dis-
tance between two Bernoulli distributions. Let ¢ be the distance
between two distributions, the calibrated Kullback-Leibler divergence
is the value p(c), parameter of a Bernoulli distribution B, such that
KL[B(0.5),B(p(c))]=c. The value p(c) can be calculated directly as

p(e)=l+3T=e™ )2 (McCulloch, 1989).

Uncertainty propagation

One limitation of the two-step model is that it does not allow propa-
gating the uncertainty throughout every step of the model properly. In
particular, since in the second step the posterior sampling probabilities
estimates p; are introduced in the model as numerical values, the
uncertainty in their estimates is not taken into account in the second
step. To quantify the effect of neglecting this source of uncertainty, we
sample five random values p;, pz, p3j, P4j, P5; from the posterior distri-
butions of the sampling probabilities (p;). For each vector of posterior
sampling probabilities, we fit the geostatistical model and obtain the
posterior infection probability distributions. In order to evaluate the
underestimation of variance due to uncertainty in the sampling proba-
bilities we consider the VIF, defined for each grid cell , as

1+l)w2 +0°?
Pl J
VIF, -

J

where wf is the square of the range of the r=5 sampled values p,;, pz;,
Dsj» P4j» Ps; of the posterior infection probabilities for the j-th cell while
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6}? is the variance of the posterior infection probability 7z in the refer-
ence model (Little and Rubin, 2014). High values of VIF indicate a sub-
stantial underestimation of uncertainty in the predicted probabilities of
infection, due to the two-stage approach.

Computational details

Inference for all the models are carried out using Markov Chain
Monte Carlo methods that we implement using the WinBugs software
(Lunn et al., 2000). For each model, we run two independent chains
and we evaluate convergence of the algorithm following the sugges-
tions of Gelman and Rubin (1992). We discard the first 30,000 itera-
tions for burn-in and store and use the following 10,000 iterations for
estimation.

Results

Figure 1 (A) shows the spatial distribution of the 89 sampled farms
with different colors to indicate presence/absence of F hepatica infec-
tion: specifically, blue points represent negative farms while red points
are used for positive farms. Overall, the prevalence of the parasite is
low [7.9%, 90% confidence interval (CI) 3.7; 14.3] consistently with the
climatic characteristics of the region. Indeed, F hepatica intermediate
host is a water-snail and therefore wet climate and wetlands are asso-
ciated with higher prevalence. The density of the farm population is
presented in Figure 1 (B). As we have overimposed a 10x10 km grid on
the Campania region for a total of 184 cells, Figure 1 shows the number
of farms in each 10x10 km cell.

Figure 2 presents the posterior mean of the sampling inclusion prob-
abilities p;. The sampling probabilities range from 0.2 to 19.5% with
areas of low sampling coverage being geographically clustered in the
mountain areas of the eastern part of the Campania region as well as
the wilder southern area of the region.

Given such variability in the sampling probabilities, we expect an

—~
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Figure 2. Spatial distribution of posterior estimates of sampling
probabilities p; for Campania region, Southern Italy (2013-
2014).
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effect on the geostatistical model estimates. However, such effect
might be mitigated by the fact that our geostatistical model for the risk
infection also account for bioclimatic and remote sensing covariates
which can affect the prevalence of £ Hepatica. As discussed above, we
reduce the dimensionality of the covariates (a total of 30+19) via a fac-
tor analysis that we have embedded in the Bayesian geostatistical
model. The three latent factors are spatially structured: in particular,
the posterior means of the three latent factors highlight a strong spa-
tial pattern with a South East-North West gradient for periodicity and
an opposite gradient for position and variability (Figure 3). Seasonality
variability is wider in the mountain area, while average temperature
and other climatic indexes are higher along the coast. Additionally, the
range of these variables is generally greater in the southern areas and
along the coast.

F hepatica infection is rare in the Campania region with a range of
posterior predicted probabilities of 0.8-36.0%. The probability of infec-
tion at each farm is calculated as the mean of the posterior predictive
distribution derived from the model with preferential sampling weights
fixed at their posterior mean (e.g. Stage 1 model). The geographical
distribution of the posterior probabilities of infection and their related
standard errors are shown in Figure 4, which shows that the northern
and mountain areas of the region appear to be free of risk of infection.
While our predictions of infection are generally good as expected, we
notice that while one isolated positive farm is positively predicted by
our model, two other isolated positive farms in the far south are not
captured by the predictions. We believe that this is an effect of the
smoothness in the covariates. In fact,  hepatica is a very rare infection
in Italy because of Italy’s climate characteristics (in contrast for exam-
ple to Ireland; Rinaldi et al., 2015a) and given the general smoothness
of the covariates included in the geostatistical model for risk infection,
we expect some smoothing in the predicted infection probabilities.

To study the impact of preferential sampling we evaluate the discrep-
ancies between two alternative models (one that accounts for preferen-
tial sampling and a second that does not) by computing for each grid
cell the calibrated Kullback-Leibler (KL) divergence p(c). Figure 5 pres-
ents the histogram of the KL divergences and their geographical distri-
bution. Overall, there is a strong influence of the preferential sampling
adjustment, with p(c) largely above 0.7. High calibrated KL divergence
suggest strong difference between predictions derived from simple

o

geostatistical model predictions and predictions from a preferentially
adjusted geostatistical model. The areas that emerge most influenced
are those with low sampling probabilities (Figure 2).

Finally, Figure 6 shows the spatial distribution of the Variance
Inflation Factor across the Campania region. From the Figure we can
note that VIF is consistently higher on the north-western areas of the
region where the number of farms is smaller.

Discussion

The spread of geospatial tools and the need for large-scale surveil-
lance has made increasingly popular the use of disease mapping meth-
ods in veterinary epidemiology. However, it is important to note that in
this context, opportunistic samples are very common and the inclusion
of a farm in a sample can depend on characteristics which are not
under control to the researcher and that are related to the phenomenon
under study (infection probability). Thus, consideration of potential
bias due to preferential sampling must be addressed in the inferential
procedure.

In some instances, inclusion probabilities can be known a priori by
design. In such case it is simple to use them as sampling weights in the
analysis, following a classical Horvitz-Thompson approach. However,
informative sampling may be the result of qualitative judgment during
the survey and thus no prior weights are defined. In this case, a statis-
tical model to estimate them is needed.

In this paper, we consider also a different mechanism: the situation
in which the researcher deliberately chooses informative sampling
probabilities. We have discussed this issue in a previous paper as well
(Catelan et al., 2012).

In spatial statistics, mostly in applications in environmental sci-
ences and exposure assessment, several approaches have been pro-
posed to address the preferential sampling nature of the data, all of
which introduce two processes: the spatial point process for the sam-
pling locations and the spatial point-referenced process for the
response under study. The existence and extent of the bias in the sta-
tistical inference depends on the degree of overlap between the two
underlying spatial processes.

Y

==

s

Figure 3. Spatial distribution of posterior means of the three latent factors: periodicity, position index and variability (respectively from

A to C). Campania region, Southern Italy (2013-2014).
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In this paper, considering as application the prevalence of infection
to Fasciola hepatica in the Campania region, we propose a two-stage
approach. First, we specify an inhomogeneous point process to model
the spatial intensity of the sampled farms. The motivating idea behind
this modelling choice is that a spatially structured random term (clus-
tering) can capture unknown factors which are spatially structured and
that are both related to the sampling probabilities and to the probability

7
h A

e

of infections. Covariates, if available and pertinent, can easily be intro-
duced. Other specifications are reported in the literature. To model the
spatially structured random term, we choose the Besag, York, Mollié
(BYM) model because of its flexibility. Although the issue of identifia-
bility of the BYM model components is well know and documented, we
are not concerned with it here as this is not relevant in our context: in
fact our focus is simply in using the posterior estimates of the sampling

(.075295,.2135] e
(058435, 075285] N
(045805 058435] Su]
[.01875, 045805] L s

Mot

Figure 4. Spatial map of the posterior means (A) and standard deviations (B) of the probabilities of infection of Fasciola hepatica.

Campania region, Southern Italy (2013-2014).

A

8 7 B9 1
Calibrated Kullback-Leibler divergence

Figure 5. Calibrated Kullback-Leibler divergence between a model that explicitly accounts for preferential sampling and a model with-
out such adjustment. A) histogram of the calibrated Kullback-Leibler divergences; B) spatial distribution of the calibrated Kullback-
Leibler divergences. Campania region, Southern Italy (2013-2014).
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probabilities and not the estimates of the single components.

From the first step, we estimate posterior sampling probabilities for
each grid cell and we use them as weights in a hierarchical Bayesian
geostatistical model for the infection probability. The adjustment for
preferential sampling is carried out by introducing the estimates of the
sampling probabilities as weights in the linear predictor of the geosta-
tistical model. This is similar to other approaches proposed in the liter-
ature (Pati et al, 2011; Diggle et al., 2013). Robustness and scale
appropriateness in the linear predictor are two aspects, which merit
further investigation. Since the mean function is not the identity, the
inclusion of the preferential sampling correction in the linear predictor
is not straightforward. Several other functions could be specified, anal-
ogously to the freedom of choice one has in defining the offset in a gen-
eralised linear model. Robustness to different specifications is also an
important aspect to consider and investigate.

In our study, we overimposed a fixed grid over the study region. The
cell size is important and should depend on the phenomenon under
study. Information from previous surveys can be used to this purpose.

Fitting the two models in the two steps jointly can be very cumber-
some, especially given the latent factor analysis step. For this reason,
we choose to fit the two models separately. It can be argued that a ques-
tion of uncertainty propagation arises: to address this issue we have
decided to follow a simple strategy common in multiple imputation data
analysis. More in detail, we sample five values from the joint posterior
of the sampling probabilities and we run the model in the second step
five times on the five pseudodata. A variance inflation factor is then
obtained for each posterior predicted infection probabilities obtained
from the geostatistical model. Our results show an underestimation of
uncertainty using the two-stage approach thus the VIF should be used
to correct the map of posterior standard errors of infection probabili-
ties.

Our data is clearly affected by preferential sampling: we expected
this a priori and we proposed the statistical model presented in this
paper to address this issue. Not surprisingly the calibrated Kullback-
Leibler divergence displays high values, greater than 0.70, for almost all

Figure 6. Spatial distribution of the variance inflation factor.
Campania region, southern Italy (2013-2014).
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grid cells. Even more interesting, some of the cells with higher calibrat-
ed Kullback-Leibler divergence are in the highest risk area located in
the northern part of the region.

Conclusions

In veterinary surveillance the use of remote sensing covariates is
becoming fairly popular, mainly because some of these covariates can
accurately predict intermediate host ecology. We choose to simplify this
aspect via a dimension-reduction factor analysis embedded in our
Bayesian geostatistical model. We chose a priori the covariates to
include in each latent factors thanks to the vast documentation avail-
able on the lifecycle and the biology of the £ hepatica. On the contrary,
if the covariates would have to be chosen arbitrarily, without any sup-
port from literature and expert opinion, this approach may distort the
analysis and the results could be biased.

Adjusting for preferential sampling is very important to produce reli-
able prediction maps. The two-step procedure can comply easily in con-
texts in which sampling probabilities are estimated separately from the
disease mapping modelling task.
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