
Abstract

Modelling patterns of the spatial incidence of diseases using local
environmental factors has been a growing problem in the last few
years. Geostatistical models have become popular lately because they
allow estimating and predicting the underlying disease risk and relat-
ing it with possible risk factors. Our approach to these models is based
on the fact that the presence/absence of a disease can be expressed
with a hierarchical Bayesian spatial model that incorporates the infor-
mation provided by the geographical and environmental characteris-
tics of the region of interest. Nevertheless, our main interest here is

to tackle the misalignment problem arising when information about
possible covariates are partially (or totally) different than those of the
observed locations and those in which we want to predict. As a result,
we present two different models depending on the fact that there is
uncertainty on the covariates or not. In both cases, Bayesian inference
on the parameters and prediction of presence/absence in new loca-
tions are made by considering the model as a latent Gaussian model,
which allows the use of the integrated nested Laplace approximation.
In particular, the spatial effect is implemented with the stochastic par-
tial differential equation approach. The methodology is evaluated on
the presence of the Fasciola hepatica in Galicia, a North-West region
of Spain.

Introduction

Starting with the pioneering work by John Snow, who mapped out
the spread of a cholera outbreak in London more than 150 years ago
(Snow, 1857), researchers have been trying to identify disease causes
by relating spatial disease patterns to geographic variation in health
risks. The way to do so consists on building models that translate spa-
tial data on health outcomes and possible related covariates (such as
environmental, socio-economic, behavioral or demographic factors),
into epidemiologically meaningful results. This presents, however,
several methodological challenges arising from the fact that data can
be aggregated at different scales.
Although individual humans would ideally represent the basic unit

of spatial analysis in health research, publicly available data are often
aggregated to a sufficient extent to prevent the disclosure or recon-
struction of patient identity (Goovaerts, 2008). This kind of spatial
data, usually know as areal or lattice data (Cressie, 1993), require
methods that directly utilise the spatial setting and assume positive
spatial correlation between observations, essentially borrowing more
information from neighboring areas than from areas far away and
smoothing local rates toward local, neighboring values. 
In our case, we will focus in another kind of spatial data, usually

known as geostatistical or point-referenced data, that come from those
situations where the interest is to produce a continuous risk surface
starting from point data [see Banerjee et al. (2014), Cressie (1993),
Diggle and Ribeiro (2007) and references cited therein for a more
detailed explanation about geostatistical data].
Geostatistical health data require methods that allow relating the

disease data with potential related covariates (such as those above
mentioned) by quantifying the spatial dependence. Nevertheless, one
of the main interests in Geostatistics relies on predicting about the
underlying process on those non-observed locations. When dealing
with diseases, the interest is to create maps of disease prevalence.
Kriging, so named by Matheron (1963) in honor of Krige’s work
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(Krige, 1951), is maybe the most known geostatistical technique.
Basically, kriging takes into account the existing underlying spatial
structure between observations to predict attribute values at unsam-
pled locations using information related to one or several attributes.
Kriging has been extensively used in disease epidemiology (including
public health, plant pathology and veterinary). A very small sample of
examples of its use include the mapping of influenza in France (Carrat
and Valleron, 1992); the mapping of rotavirus in the United States;
kriging of malaria risk (Kleinschmidt et al., 2000); kriging of incidence
rates of rare diseases in England (Webster et al., 1994); the mapping of
the Hepatitis B in China (Zhong et al., 2005); the mapping of spatial
patterns of infant mortality and birth defect rates in Iowa (Rushtong
and Lolonis, 1996); the maps of many plant disease epidemics such as
Phytophthora (Larkin et al., 1995) and African cassava mosaic virus
(Lecoustre et al., 1989); and the map of rinderpest in Central and
Southern Somalia (Ortiz-Pelaez et al., 2010).
A usual extension to kriging arises when one is interested in includ-

ing the effect of possible covariates in the modelling or either to apply
it to situations in which the stochastic variation in the data is known
to be non-Gaussian. The resulting models are usually named gener-
alised linear geostatistical models used by Diggle et al. (1998) and fur-
ther described in Diggle and Ribeiro (2007) under the generic term of
model-based geostatistics. geoR and geoRglm (Ribeiro et al., 2003) are
two packages of the well-known statistical software R (R Core Team,
2015) that can be used to perform model-based geostatistical data-
analysis, while Diggle et al. (2002) is a good example of the application
of this approach in childhood malaria in the Gambia.
The combination of non-Gaussian data, the linear predictor and an

unobserved latent variable usually makes estimation and prediction
computationally difficult. Bayesian inference turns out to be a good
option to deal with spatial hierarchical models analysis because it
allows both the observed data and model parameters to be random vari-
ables (Banerjee et al., 2014), resulting in a more realistic and accurate
estimation of uncertainty [see for instance Haining et al. (2007), as an
example of the advantages over conventional – non-Bayesian – model-
ling approaches]. Another advantage of the Bayesian approach is the
ease with which prior information can be incorporated. Note that prior
information can usually be very helpful in discriminating spatial auto-
correlative effects from ordinary non-spatial linear effects (Gaudard et
al., 1999). This kind of approach is also known as Bayesian kriging
(Handcock and Stein, 1993). Bayesian geostatistical models have been
largely applied in the mapping of malaria (Craig et al., 2007; Gemperli
et al., 2004; Gosoniu et al., 2012; Haining et al., 2007; Hay et al., 2009;
Kazembe et al., 2006; Raso et al., 2012; Schur et al., 2011; Wardrop et
al., 2010), and neglected tropical diseases (Batchelor et al., 2009;
Clements et al., 2009, 2010; González-Warleta et al., 2013; Raso et al.,
2005; Schur et al., 2011; Wardrop et al., 2010); but also in veterinary
epidemiology (Biggeri et al., 2006).
Until recently, Markov Chain Monte Carlo (MCMC) algorithms

(Gilks et al., 1996) have been the most common method for making
Bayesian statistical inference with generalised linear geostatistical
models. Nevertheless, we use the integrated nested Laplace approxima-
tion (INLA) methodology (Rue et al., 2009) and software (http://www.r-
inla.org). This choice is mainly based on the speed of calculation and
the ease with which model comparison can be performed (Rue et al.,
2009). Moreover, as geostatistical models are continuously indexed
Gaussian Fields, we use the stochastic partial differential equation
(SPDE) approach (Lindgren et al., 2011) to deal with them.
Bayesian geostatistical analysis using INLA have been already

applied for mapping diseases. Along with introducing the package
geostatsinla for performing geostatistics with INLA in an easy way,

Brown (2015) applies it in the context of mapping the Loa loa filariasis
disease [a dataset previously cited in Diggle and Ribeiro (2007)].
Moreover, Karagiannis-Voules et al. (2013) have used Bayesian geosta-
tistical negative binomial models to analyse reported incidence data of
cutaneous and visceral leishmaniasis in Brazil covering a 10-year peri-
od, while González-Warleta et al. (2013) have also used Bayesian geo-
statistical binomial models to predict the probability of infection of
paramphistomosis in Galicia (NW Spain).
The most basic format of geostatistical health data is composed by

the spatial location, the measurement values about the disease preva-
lence observed at the location and the corresponding measurement val-
ues of the covariates of interest at the same location. Nevertheless,
commonly the measurement values about the disease prevalence are
not observed at the same locations that the covariates of interest. This
problem, usually named misalignment, must be taken into account and
so, it must be incorporated in the modelling, because it is important to
note that uncertainty about the covariates could influence on the pre-
dictions. For the sake of simplicity, in many analyses, the values of the
covariates of interest are previously predicted at the locations where
the disease has been observed by using geostatistical methods, such as
kriging. But this procedure clearly does not take into account the
uncertainty of those predicted values. There have been many approach-
es to tackle the misalignment problem (Foster et al., 2012; Gelfand,
2010; Haining, 2004; Miller et al., 2007; Waller and Gotway, 2004). In
our case, we use the INLA-SPDE module which allows us to incorporate
the uncertainty by building a spatial model for the covariate and anoth-
er for the response variable and then doing the estimation process
jointly (Krainski and Lindgren, 2014).
Our interest here is twofold. One the one hand, we aim to show how

to perform Bayesian geostatistical analysis for mapping diseases both
taking and not taking into account the uncertainty of the covariates
using INLA. But, on the other hand we also want to show how results
can be influenced by not taking into account the misalignment prob-
lem. In particular, we present a Bayesian geostatistical analysis of the
bovine fasciolosis in Galicia using information about the environmen-
tal and spatial features of each location. Finally, we would like to men-
tion that both approaches here presented could also be employed in dif-
ferent settings with other diseases in order to improve knowledge
about the spatial targeting of prevention and control.

Materials and Methods

In what follows, we firstly present the dataset used in this work. The
remainder of the Section is devoted to present how to perform a model-
based geostatistical approach for analysing the presence/absence of a
disease using a Bayesian approach (in particular, the Integrated
Nested Laplace approximation), firstly without taking into account spa-
tial misalignment and then taking it into account.

A dataset for explaining bovine fasciolosis in Galicia
Fasciola hepatica is a parasitic trematode that infects a wide variety

of domestic and wild mammals worldwide, including humans [see, for
instance, Martínez-Valladares et al. (2013) for a description of the vet-
erinary epidemiology of the disease]. The life-cycle of fascioliosis is
complex. It involves a final host (where the adult worm lives), an inter-
mediate host, mainly freshwater snails of the genus Lymnaea (where
the larval stages of the worm develop) and a carrier (aquatic plants that
will be ingested by animals). The fasciolosis infection depends to a
great extent on the biological life cycle and is strictly linked to the envi-
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ronmental and geographical conditions of the area where transmission
occurs. It is an important parasitic disease of farm livestock, and a
major cause of economic losses in farms due to decreased productivity
and quality of milk and meat products. Clearly, a good knowledge of the
spatial distribution of the disease could help animal health instances to
increase awareness in high-risk areas and better target their monitor-
ing and control efforts. Thus, it results a good example for showing the
behavior of hierarchical Bayesian models in the context of predicting
the occurrence of diseases, the plus being that data from the potential
covariates were not observed at the same locations where the disease
was observed (giving us also the possibility of describing the misalign-
ment issue).
Data analysed in this work come from a study conducted during 2008

aiming to explore basic aspects of the epidemiology of fascioliasis in
Galicia (NW Spain), the main cattle producing region in Spain. Galicia
occupies a surface area of 29,575 km2, administratively divided into 315
municipalities with very different cattle farming activity and stocking
rate per surface unit. According to the 2008 livestock census, there
were 339,530 dairy cows (99% on farms in the northern half of the
region), and 221,917 beef cows (on farms spread over a larger area
extending to the south-east of the region). Grasslands occupy approxi-
mately 60% of the useful agricultural land and cows usually graze
throughout the year, mainly on beef cattle farms. The type of livestock
husbandry and the climatic characteristics of the region favour graz-
ing-linked transmission of helminthosis.
A slaughterhouse that processes cattle from the whole region was

visited fortnightly during 2008. At each visit, 20 adult cattle slaughtered
(over 2 years old) were selected at random to determine the existence
of infections within the liver, as well as the occurrence of trematode
eggs in the faeces. Species identification was carried out by conven-
tional microscopy and subsequent confirmation by molecular tech-
niques.
In total, 192 beef cows (each one from a different farm located across

the region) were selected at random in the slaughterhouse for exami-
nation the presence of Fasciola hepatica. Figure 1 shows the observed
presence/absence of the disease. Other covariates were analysed in the
study. Nevertheless, taking into account that our main interest in here
is to show the different results obtained when incorporating covariates
with uncertainty, we will only use as covariate the annual mean tem-
perature. This was calculated from the data recorded at the 67 official
weather stations in Galicia during the period 2004-2008 (www.meteo-
galicia.es). 

Modelling without incorporating misalignment
Our interest here is to present a methodology to produce maps of

prevalence of diseases. As previously mentioned in the Introduction,
the disease prevalence can be considered as a real-valued spatially con-
tinuous process, and so, geostatistical data can be used for produce the
prevalence maps. The usual format for this kind of data is composed by
the spatial location, the response variable (either the presence or
absence of the disease, or the amount of people with the disease at par-
ticular locations, each one representing a finite area) and information
gathered about the possible effect of some covariates. In our case, we
will focus mainly in a Bernoulli response (presence or absence of the
disease), although the following approach would also valid for situa-
tions with a Poisson response variable.
Taking into account that our interest is to analyse Non-Gaussian

data and to include the effect of covariates, we have to deal within the
model-based geostatistics approach (Diggle and Ribeiro, 2007). In par-
ticular, we model the presence/absence of diseases with a hierarchical
spatial model by incorporating both the environmental and geographi-

cal features of each location and demographic characteristics of each
observation, the final aim being to create maps of predicted probabili-
ties of presence in unsampled areas. As previously mentioned,
Bayesian inference turns out to be a good option to deal with this kind
of models because it allows both the observed data and model parame-
ters to be random variables, resulting in a more realistic and accurate
estimation of uncertainty. 
Until recently, Markov Chain Monte Carlo (MCMC) algorithms

(Gilks et al., 1996) has been the most common (and nearly the only)
method for making Bayesian statistical inference with generalised lin-
ear geostatistical models. The R packages spbayes (Finley et al., 2007)
and the previously mentioned geoRglm (Christensen and Ribeiro,
2002) can be used to perform this approach, although WinBUGS (Lunn
et al., 2000) has been probably the most used software to perform
Bayesian analysis. Nevertheless, we use the integrated nested Laplace
approximation (INLA) methodology (Rue et al., 2009) and software
(http://www.r-inla.org) as an alternative to MCMC methods, the main
reason being the speed of calculation. While MCMC simulations
require much more time to run, and performing prediction has become
practically unfeasible when a lot of locations are available, INLA pro-
duces almost immediately accurate approximations to posterior distri-
butions even in complex models. Another advantage of this approach is
its generality, which makes it possible to perform Bayesian analysis in
a straightforward way and to compute model comparison criteria and
various predictive measures so that models can be compared easily
(Rue et al., 2009).
In spite of its wide acceptance and its good behavior in many Latent

Gaussian models, an additional development is needed to implement
geostatistical models within INLA. The underlying reason is that in
order to be computationally efficient and stable INLA works with latent
Gaussian models admitting conditional independence, that is, latent
Gaussian Markov random fields with a sparse precision matrix (Rue
and Held, 2005), while geostatistical models are continuously indexed
Gaussian Fields. Lindgren et al. (2011) have proposed an alternative
approach by using an approximate stochastic weak solution to a sto-
chastic partial differential equation (SPDE) as a Gaussian Markov ran-
dom field approximation to continuous Gaussian Fields with Matern
covariance structure. 
Assuming that the probability of finding the disease is related to its

prevalence, the presence/absence can be modelled by using a point-ref-
erenced spatial hierarchical model. Specifically, if represents presence
(1) or absence (0) at location i (i=1,…,n), the full model can be stated
as follows: 
                                                                                                                   

                 

where πi is the probability of occurrence at location i, Xiβ is the linear
predictor for observation i and q represents the spatially structured
random effect. This modelling is based on Lindgren et al. (2011), who
proposed an approach that avoids the computational issues arising
when using INLA with continuously indexed Gaussian Fields. It is
worth noting that when using this approach the correlation function is
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not modelled directly. Instead, the Gaussian field q is found numerical-
ly as a (weak) solution of a stochastic partial differential equation (the
one that relates the continuous Gaussian field with Matérn covariance
structure as a Gaussian Markov random field), and it depends on two
parameters k and t which determine the range of the effect and the
total variance, respectively. More precisely, the range is approximately

while the variance is . Note also, that 
in the model we have specified the prior distributions for the parameters
by setting a flat improper prior on the intercept (the default in INLA), and
independent zero-mean Gaussian priors with a fixed vague precision
(0.1). The priors for � and � are specified over the reparameterisations
log� and 2logk� as independent Gaussian distributions. We also use the
default values for their parameters. Specifically, mk is chosen automati-
cally such that the range of the field is about 20% of the diameter of the
region, while mt� is chosen so that the corresponding variance of the field
is 1. For more information about the practical implementation of the
SPDE approach in R see Krainski and Lindgren (2015).
Once the model is determined, the next step is estimate its parame-

ters, but more importantly to make prediction in unsampled locations.
INLA performs both the inference and prediction simultaneously. To do
so, we need to construct a lattice over the unsampled locations
enabling us to get a point estimation probability of occurrence. In con-
trast to ordinary kriging, an irregular grid is used in prediction process.
The INLA-SPDE module allows us to create a Delaunay triangulation
(Hjelle and Dæhlen, 2006) around the sampled points in the region.
Observations are treated as initial vertices for the triangulation, and
extra vertices are added heuristically to minimise the number of trian-
gles needed to cover the region subject to the triangulation constraints.
These extra vertices are used as prediction locations. This partition is

usually called mesh (see Figure 2 for an example of this kind of trian-
gulation in the data analysed in this work), and a good reason for its
use instead of a regular lattice is that it is denser in regions where
there are more observations and consequently brings more informa-
tion. Another advantage is that it saves computing time, because pre-
diction locations are typically much lower in number than those in a
regular grid.
As mentioned above, along with the inferential results about the

parameters, INLA-SPDE module can be used simultaneously to perform
prediction in unobserved locations (considering the prediction loca-
tions as points where the response is missing), which constitutes the
real interest in this problem. The basic idea is to deal with the disease
presence at a new location as a random variable with a certain proba-
bility of success and to calculate a point estimation of this probability,
and even its full predictive density. Once the prediction is performed in
the selected location, there are additional functions that linearly inter-
polate the results within each triangle into a finer regular grid. As a
result of the process, a faceted surface prediction is obtained which
approximates to the true predictive surface.

Modelling under uncertainty in the covariates
In order to perform the above predictive procedure at unobserved

locations, the measurement values of the covariates should be known
both at the observed locations of the response variable and at those
locations where we are going to make predictions. Nevertheless, as
Banerjee et al. (2014) stand with the explosion in spatial data collec-
tion, it is increasingly common to find that different spatial data layers
are collected at different scales. In the particular case of disease preva-
lence, information about possible covariates of interest usually come

                   Article

Figure 1. Sampling locations for the occurrence of Fasciola hepat-
ica in Galicia (North-West of Spain), where red dots are infected
locations, while black dots are non-infected locations. 

Figure 2. Delaunay triangulation (mesh) of Galicia with the pres-
ence (red dots) and absence (black dots) of the parasites in beef
cows. Each mesh vertex is either an observed point or a prediction
point.
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from other studies, and so, locations where we have information
about covariates are partially (or totally) different than those of the
response and those in which we want to predict. This problem, usually
named misalignment, has gained a lot of attention in the literature
[see Gotway and Young (2002), Gelfand (2010) and Chapter 7 of
Banerjee et al. (2014) and references cited therein for very good and
detailed descriptions of the problem], the most important reason
behind being that not taking it into account could clearly influence
results. Gryparis et al. (2009) and Wannemuehler et al. (2009) are
good examples of epidemiological studies presenting misalignment in
which the usual models cannot be applied.The naïve solution to this
problem would be to predict the value of the covariates at those loca-
tions on which we want to predict the occurrence of the disease by
using geostatistical methods (for instance, using kriging), and then,
plug-in these values in the prediction process, using them instead of
the true (but unknown) values. This two-stage analysis is used in
preference to forming a joint geostatistical model for the covariates
and the response variable. But, as Foster et al. (2012) stands it is not
immediately clear what effect ignoring this extra level of variation will
have on the validity of the ecological models. Among the solutions pro-
posed to overcome this problem, Miller et al. (2007) propose to predict
those true (but unknown) values using nearest neighbor interpola-
tion. In the same line, Gryparis et al. (2007) use semi-parametric
smoothing to solve the issue. Other approaches for the treatment of
unknown information avoiding the naïve solution above mentioned
are Waller and Gotway (2004), Haining (2004) or Pfeiffer and
Robinson (2008). 
Nevertheless, all these approaches are based on finding ways to

approximate the values of the predicted values, but not to try to
include the uncertainty of the covariates in the statistical model. But,
as Stein (1999) stands measurement errors are unavoidable, and so,
a good approximation for the problem would be to obtain optimal pre-
diction by using similar methodologies than those used for the non-
spatial missing data problems (Buonaccorsi, 2010). In this line, Foster
et al. (2012) include the extra variability in the statistical model by
specifying a Berkson error model instead of classical measurement
error (ME) models (Carroll et al., 2006) and compare it with the com-
monly performed analysis. Szpiro and Paciorek (2012) is an example
of an epidemiological study presenting misalignment analysed speci-
fying a Berkson error model. Bayesian methodology provides a flexible
framework to account for ME, because expert knowledge can be incor-
porated in the prior. Muff et al. (2014) show how the most common
approaches to adjust for ME (the classical and Berkson ME) can be
reformulated as latent Gaussian fields, allowing them to use the INLA
approach to perform Bayesian inference on them.
In our case, we use another approach to tackle the misalignment

problem, the one presented in Chapter 6 of the SPDE Manual
(Krainski and Lindgren, 2014), which is based on the assumption
(which turns out into a restriction) that there is only one covariate
influencing the response variable and the covariate has spatial
dependency. It is worth noting that in many cases this assumption is
easily achieved as many covariates have indeed this spatial dependen-
cy, the big restriction being that usually we have more than one
covariate. Based on this, we can build a spatial model for the covariate
and another spatial model for the response variable, and then perform
the estimation and prediction processes jointly using the INLA-SPDE
module.
In particular, if Yi represents the presence (1) or absence (0) at

location i (i=1,…,n), the joint model for the spatial covariate and the
response variable can be stated as follows: 

      

where pi is the probability of occurrence at location i, X is the covariate
of interest with spatial dependency being bβ its corresponding param-
eter, and q and ff are the corresponding Gaussian Markov random
fields with sparse precision structure associated with the mesh [as in
the previous subsection, this modelling is based on Lindgren et al.
(2011)] respectively for the response variable and the covariate. Note
that we choose Xi to be equal to fi�, that is, we consider that the covari-
ate is a realisation of the random field. Note also, that in the model we
have again specified the default prior distributions for the intercept
and βb1. As in the previous subsection, priors for �k, t, gg and �d are
specified over the reparameterisations logt, 2logk, logg and 2logd as
independent Gaussian distributions with the default values for their
parameters. For more information about the practical implementation
of this approach in R see Krainski and Lindgren (2014).
As above mentioned, once the model is determined, the next step is

estimate its parameters and to make prediction in unsampled locations
and INLA performs both simultaneously. Again, the idea could be to con-
struct a mesh and perform the prediction in its vertices. Another option
is to do a prediction in a 100x100 grid as in Cameletti et al. (2012). Along
with the inferential results about the parameters, with INLA-SPDE mod-
ule we can calculate a point estimation of the probability of presence at
each location, and even its full predictive density, and then obtain a
faceted surface prediction, which is the final aim of our work.

Results

In this section, we present the results obtained when applying both
methodologies (not taking and taking the misalignment into account)
to model the occurrence pattern of the Fasciola hepatica in the Galician
livestock by examining the data collected above introduced. 

Obtaining probability maps of presence of fasciolosis
not taking into account the misalignment
As previously mentioned the final model selected for fitting to the

data of Fasciola hepatica infection in beef cows is the one that includes
the annual mean temperature as covariate, and a stochastic spatial
component that accounts for the residual spatial autocorrelation.
Note that this is a typical example of misalignment, as information

about both climatic variables included in the study (annual mean tem-
perature and total rainfall) has been recorded at the 67 official weather
stations in Galicia during the period 2004-2008 (www.meteogalicia.es),
but the locations of the farms are not the same that the weather sta-
tions, neither the locations where we want to predict, specifically, each
vertex of the mesh. Figure 3 shows this situation.
A first (naïve) approach would consist in using the average annual

values obtained at the 67 official weather stations to make a kriging

eq. 2
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grid (1 km2 grid), and then interpolate the value of the mean tempera-
ture at the farms and at the prediction locations (the vertices of the
mesh). Figure 4 represents the annual mean temperature in Galicia
obtained doing so. Clearly, using the values obtained at Figure 4 to do
prediction does not take into account the uncertainty about them. In
order to learn about the behaviour of this (naïve) approach (and so, to
be able to compare with a better approach), we present in Table 1 the
numerical summary of the final model obtained using INLA, in partic-
ular the mean, standard deviation, median and 95% credible interval of
the two parameters (intercept and the coefficient of the covariate). It
is worth noting that the annual mean temperature has a negative effect
on the response variable, with a 0.81 posterior probability of being
lower than zero. The remaining term of the model is the spatial compo-
nent, which can be observed at Figure 5. This component shows a
strong effect, with positive values in the southern half of province of
Lugo and the eastern part of Ourense, and values around zero in the
rest of study region.Finally, Figure 6 shows the mean predicted distri-
bution of the probability of infection of beef cows across Galicia and the
variability of this estimation with the first and third quartiles of the
posterior distribution of occurrence. It can be seen that the highest val-
ues of the probability of occurrence of fasciolosis infection covers the
southeast area, in a similar way to the spatial effect. But note that this
map combines both the covariate effect (in Figure 4 we can appreciate
that lower temperatures are located in the eastern part of Galicia) and
the spatial component, with a marked influence of the latter.

Incorporating the uncertainty
In what follows we present the results obtained when instead of per-

form a kriging for the mean temperature, we build a spatial model for
the mean temperature and another spatial model for the presence of
the fasciolosis, and then perform the estimation and prediction
processes jointly using the INLA-SPDE module. As previously men-
tioned, in order to apply this methodology, the covariate must have a

spatial dependency, something we can clearly assume for the mean
temperature. The other restriction is that only one covariate can be
included in the model, as it is our case in this example.
Following the ideas and code presented in the INLA-SPDE manual,

we construct an observation matrix that extracts the values of the spa-
tial field at the measurement locations. We then build a joint model
including the two likelihoods, one for the response variable and anoth-
er for the covariate, including respectively information about the pres-
ence and about the mean temperature. As the mean temperature is
Gaussian and the presence/absence of the bacteria is clearly binomial,
we need to specify the identity and logit links for each distribution
when elicitating the likelihood. Table 2, and Figures 7 and 8 contain
respectively the numerical summary of the parameters of the model,
the spatial component (its mean and standard deviation) and the pre-
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Figure 3. Misalignment problem: the sixty-seven official weather
stations in Galicia do not coincide with the farms where data were
observed.

Figure 4. Annual mean temperature in Galicia. It was calculated
from the data recorded at the sixty-seven official weather stations
in Galicia during the period 2004-2008.

Table 1. Numerical summary of the posterior distributions of the
fixed effects for the infection of beef cows with Fasciola hepatica.

                         Mean         SD             Q0.025       Q0.5     Q0.975

Intercept                  2.89              2.64                   -2.46              2.96           7.88
Temperature          -0.34              0.22                   -0.77             -0.34           0.11
SD, standard deviation.

Table 2. Numerical summary of the posterior distributions of the
fixed effects for the infection of beef cows with Fasciola hepatica
taking into account misalignment.

                         Mean           SD            Q0.025      Q0.5      Q0.975

Intercept                 -2.88               6.65                  -17.70           -3.14            12.92
Temperature           0.15                0.15                   -0.14             0.16             0.43
SD, standard deviation.
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dicted distribution (expressed with the median, and the first and third
quartiles) of the probability of infection of beef cows across Galicia. As
it can be seen there are some differences with the results in the previ-
ous subsection. The annual mean temperature has a positive effect on
the response variable (there is a 0.76 posterior probability of the corre-
sponding coefficient being greater than zero). Although this is the
opposite as in the previous subsection it is worth to note that the spa-
tial component shows a stronger effect, giving less importance to the
covariate effect. This behaviour is mainly due to the fact that we have
less information about the temperature, i.e., there is a lot of uncertain-
ty about the temperature in the places of prediction. But more impor-
tantly, this is caused by the strong correlation between the covariate
and the underlying spatial structure, which gives more importance to
the effect of the spatial effect. Interestingly, Figure 8 shows a more reli-

able situation (in terms of the presence/absence observed) about the
probability of occurrence of fasciolosis infection. The prediction is a
combination of the covariate effect and the spatial component, but now
it seems that both are expressing the opposite and so their effects are
cancelled.

Discussion

The main advantage of using the Integrated nested Laplace approxi-
mation in order to perform inference and prediction is the computa-
tional ease in model fit and prediction compared to classical geostatis-
tical methods. In classical geostatistical applications, the full range of

                                                                                                                                Article
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Figure 6. Mean (A), and the first (B) and third (C) quantiles of the posterior distribution of the probability of occurrence. Red dots are
infected locations, while black dots are non-infected locations.

Figure 5. Posterior mean (A) and the standard deviation (B) of the spatial effect.
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uncertainties that are always associated with species distribution mod-
els is not correctly measured, as many parameters that are considered
to be known are actually estimated through the statistical model
(Diggle and Ribeiro, 2007), a potential cause of optimistic assessments
of predictive accuracy. Using the approach here presented, parameter
uncertainty can be incorporated into the prediction process. But not
only that, we can also incorporate the uncertainty about the covariates
involved in the model by means of the Stochastic Partial Differential
Equation approach (Lindgren et al., 2011), which provides an explicit
link between Gaussian Fields and Gaussian Markov Random Fields.
Thanks to the R-INLA library, the SPDE approach can be easily imple-

mented providing results in reasonable computing time (in contrast to
MCMC algorithms).
Extensions to this modelling arise in two lines of research. On the

one hand, one could include into the analysis the possibility that the
sample design (which results in the observed locations) could be sto-
chastically dependent of the process, which generates the measure-
ments. This type of sampling is usually named preferential sampling
(Diggle et al., 2010) and could cause a big influence on the results if
not taken into account. On the second hand, a natural extension would
be to expand this modelling to the spatiotemporal domain by incorpo-
rating an extra term for the temporal effect, using parametric or semi-

                   Article

Figure 7. Posterior mean (A) and the standard deviation (B) of the spatial effect taking into account the misalignment.

Figure 8. Mean (A), and the first (B) and third (C) quantiles of the posterior distribution of the probability of occurrence taking into
account the misalignment. Red dots are infected locations, while black dots are non-infected locations. 
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parametric constructions to reflect linear, nonlinear, autoregressive or
more complex behaviors [see for instance Blangiardo et al. (2013) for
examples of how to include these effects]. Nevertheless, in our case,
the information available did not include a reasonable enough number
of years for performing any temporal analyses.

Conclusions

To conclude, we would like to mention that our results clearly show that
the misalignment problem is an important issue that we must incorporate
in our analysis. Results obtained when not taking into account can be
misleading. In our case, results could indicate that there is an important
region of Galicia with a high prevalence of fasciolosis, while this could be
an artefact of the uncertainty about the mean temperature. Results of the
modelling incorporating uncertainty about the mean temperature show
that the high prevalence areas are in closer places but not exactly the
same ones. Of course, there is still room for improvement in our conclu-
sions, and experts should analyse results with care in order to check about
possible reasons underneath.Finally, we would also like to mention that
the analytical approach we used here to document the spatial patterns in
the prevalence of diseases can be applied similarly in many fields of
research like Environmental science, hydrogeology, mining, remote sens-
ing, etc. Muñoz et al. (2013) and Pennino et al. (2013, 2014) are examples
of this approach in the fisheries context.
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