
Abstract

Disease maps are effective tools for explaining and predicting pat-
terns of disease outcomes across geographical space, identifying areas
of potentially elevated risk, and formulating and validating aetiological
hypotheses for a disease. Bayesian models have become a standard
approach to disease mapping in recent decades. This article aims to
provide a basic understanding of the key concepts involved in Bayesian
disease mapping methods for areal data. It is anticipated that this will
help in interpretation of published maps, and provide a useful starting
point for anyone interested in running disease mapping methods for
areal data. The article provides detailed motivation and descriptions
on disease mapping methods by explaining the concepts, defining the
technical terms, and illustrating the utility of disease mapping for epi-

demiological research by demonstrating various ways of visualising
model outputs using a case study. The target audience includes spatial
scientists in health and other fields, policy or decision makers, health
geographers, spatial analysts, public health professionals, and epi-
demiologists.

Introduction

Disease mapping is a flourishing field due to the growing amount of
routinely collected health information worldwide (Rytkönen, 2004).
Advances in geographic information systems have greatly aided the
analytical manipulation and visual representation of spatial data
(Burrough and McDonnell, 1998). Spatial information in health is
especially useful for informing the locations of disease occurrences
and the onus is on making the best possible use of this information. 
Some excellent introductory guides for disease mapping are avail-

able in the literature. Nonetheless, many of these are either not
intended for non-statistical audiences, or lack specific details. For
instance, Elliot et al. (2000) present a comprehensive review of the
recent developments in spatial epidemiology but the statistical meth-
ods require a level of background knowledge, which may not be suit-
able for beginners. Marshall (1991) covers a broad range of methods
for the analysis of the geographical distribution of disease, rather than
upskill the reader in using particular methods. Lawson and Williams
(2001) provide a broad overview of the issues concerning disease map-
ping but is short on specifics (English, 2001). Banerjee et al. (2014)
present a fully model-based approach to all types of spatial data, includ-
ing point level, areal, and point pattern data. Cramb et al. (2011b) offer
insight into the decisions made in generating a health atlas, but is not
intended as an entry-level article for a non-statistical audience. This
article fills the niche by providing motivation, definition and descrip-
tion at a general level, and illustrating these ideas via a substantive
case study. 
Although disease mapping has been undertaken in various forms

for over 100 years, the opportunity now exists to use model-based
maps that acknowledge uncertainty in inputs and outputs (López-
Abente et al., 2014; Catelan and Biggeri, 2010), take account of the
spatial nature of the data to borrow strength from neighbouring areas
in order to improve small area estimates, and can provide probability
statements (Goovaerts, 2006b). In this article, we describe Bayesian
disease mapping for areal data (Lawson, 2001, 2009) as an approach
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that addresses these issues. We focus on a running example of map-
ping cancer, although the methods are applicable to other diseases. 
The primary purpose of this article is to provide a basic understand-

ing of the key concepts involved in Bayesian statistical models for dis-
ease mapping of areal data. We commence with a discussion of why
disease model-based mapping methods are required. Background on
Bayesian methods typically used for disease mapping is then provided,
and then some of the cartographic outputs commonly used are dis-
cussed, including methods for indicating statistical uncertainty in rel-
ative risk (Appendix Part D) of disease. 

Case study: cancer in Australia 
Cancer is now the world’s and Australia’s biggest killer (IARC, 2014).

The number of cases diagnosed continues to increase worldwide due to
population growth and aging, with the increasing prevalence
(Appendix Part D) of physical inactivity, poor diet and reproductive
changes (such as later parity) also contributing (Torre et al., 2015). In
Australia, cancer accounts for almost one-fifth (19%) of the total dis-
ease burden (AIHW, 2014). 
Disparities in cancer outcomes across broad socioeconomic status

and urban/rural categories have been reported internationally
(Wilkinson and Cameron, 2004; Woods et al., 2006; Ernst et al., 2010).
Within Australia, there are disparities in cancer outcomes with respect
to geographic remoteness and socioeconomic status (AIHW, 2014).
Cancers such as cervical and lung had higher incidence (Appendix Part
D) and mortality as remoteness or area-level disadvantage increased.
Furthermore, the five-year relative survival from all cancers combined
decreased with greater remoteness and greater socioeconomic disad-
vantage. 
Understanding disparities in these broad areas, while useful, is

unlikely to accurately reflect the heterogeneity in outcomes at the local
level. Efforts to monitor and reduce cancer disparities can benefit
greatly from quantifying variation across population groups and perti-
nent, small geographical areas. An understanding of the geographic
patterns of cancer enables health decision-making by health service
planners, clinicians, epidemiologists and industry groups to be more
accurate and effective, for example by targeting policy development and
resource allocation at areas of greater need (Mason et al., 1975;
Kulldorff et al., 2006). 
Cramb et al. (2011a) produced the first Atlas of Cancer in

Queensland to describe geographical variation in cancer incidence and
survival across small areas in Queensland, using routinely-collected
health information from the Queensland Cancer Registry. For the first
time, Bayesian model-based cancer incidence and survival maps for
Queensland were systematically presented at a comprehensive level.
The Atlas significantly contributed to the understanding of geographi-
cal variation of cancer incidence and survival across Queensland, and
subsequently influenced government policy decisions. 

Materials and Methods 

Disease maps are a visual representation of disease outcomes. The
use of disease maps to aid decision making in epidemiological and
medical research is well recognised (Koch, 2011). Disease maps are
effective tools for explaining and predicting patterns of disease out-
comes across geographical space, identifying areas of potentially ele-
vated risk, and formulating and validating aetiological hypotheses for a
disease (Shen and Louis, 2000). They are able to uncover local-level
inequalities frequently masked by health estimates from large areas

such as states, regions or cities (Borrell et al., 2010), enabling the
development of disease reduction and prevention programmes target-
ing high-risk populations, see for instance, Mason et al. (1975) and
Kulldorff et al. (2006) who have used cancer maps to depict the geo-
graphic patterns of cancer outcomes. 
Disease mapping encompasses small area studies that use data

aggregated over small areas and take into account local spatial correla-
tion, see for example, Clayton and Kaldor (1987); Cressie and Chan
(1989); Besag et al. (1991) and Bernadinelli et al. (1997). Data sparse-
ness is common in small area analyses, especially when working with
less common diseases. A small number of observed and expected dis-
ease occurrences leads to unstable risk estimates (Ancelet et al., 2012). 
The problem of potentially unstable risk estimates for sparse spatial

data needs to be mitigated to obtain reliable estimates. In practice, this
is achieved by implementing spatial smoothing techniques. Spatial
smoothing effectively borrows strength across small areas, so that the
disease rate estimated for an area with a small population denominator
would be weighted towards the estimated disease rate of neighbouring
areas that have larger denominators. The estimates obtained by
smoothing information from neighbouring areas are more reliable and
robust due to the increased precision in the risk estimates in areas
with few observations (Ancelet et al., 2012). In the context of disease
mapping for small areas, the implementation of spatial smoothing is
commonly achieved via the incorporation of a conditional autoregres-
sive prior distribution for the spatial effects (Lee, 2011).

A disease-mapping model is essentially a regression model that
links a disease outcome to a set of risk factors. An important concept in
disease mapping models, which is common to many other regression
models, is the use of random effects (Appendix Part D). In this context,
random effects provide a way of estimating variation in disease risk
between areas that is not otherwise captured by known risk factors
(e.g. age, sex, socioeconomic status, etc.). 

Why Bayesian? 
Bayesian statistics takes its name from the English clergyman

Thomas Bayes (1702-1761), although the key concepts were also con-
temporaneously established by Laplace and embedded in the general
view of inverse probability at that time (Bernardo and Smith, 2009). It
is an approach to data analysis that focuses on relating observed and
unknown quantities using conditional probabilities, which are meas-
ures of the probability of an event given that another event has
occurred. 
In a Bayesian model (Appendix Part E, Box 1), an unknown parame-

ter (Appendix Part D) is represented using a distribution rather than a
single point estimate (Johnson, 2004). The model parameters have dis-
tributions and are probabilistic [e.g. parameters representing coeffi-
cients associated with covariates in a regression model might be given
a Normal distribution (Appendix Part E, Box 2)]. These distributions
are known as prior distributions. These prior distributions can be con-
sidered as representing the uncertainty about the parameter before the
data are seen. The parameters in the prior distributions (e.g. the mean
and variance of the prior on a regression coefficient) can also have dis-
tributions, which are known as hyperprior distributions. Again, these
distributions also represent uncertainty about our knowledge of these
values. The combination of the prior information and the data results
in a posterior distribution. The posterior distribution can be thought of
as a probability distribution on the values of an unknown parameter
that combines prior knowledge about the parameter and the observed
data. The Bayesian model thus consists of parameters related to one
another in the form of a hierarchy. The complex nature of spatial data
can be captured using this hierarchical structure (Appendix Part D)
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(Shen and Louis, 2000; Best et al., 2005).
Random effects are generally included in these models. Typically, a

random effect is specified as being Normally distributed, whereby a few
areas are allowed to have a disease incidence much lower than expect-
ed based on these risk factors, a few areas much higher, but most are
close to expected (following a bell curve). For spatial data, we assume
that sites closer to each other are more similar, so we can use informa-
tion from neighbouring sites to obtain better estimates of disease risk.
Hence, when we fit a spatially correlated random effect, the variation
at a particular site is Normally distributed relative to the mean of its
neighbours. These random effects thus relate disease risk estimates to
neighbouring estimates, producing a smoothing effect across the area
of interest. 
There are many reasons why the Bayesian approach is a useful

framework for disease mapping. Firstly, Bayesian smoothing methods
produce robust and reliable estimation of health outcomes of interest
in a small area, even when based on small sample sizes (Ancelet et al.,
2012). Within these small areas, the sample sizes are sometimes too
small to yield estimates with adequate precision and reliability.
Bayesian smoothing techniques improve the estimation by using infor-
mation from neighbouring areas. 
Secondly, the use of prior distributions (usually based on existing

knowledge or expert opinion) in disease mapping models helps
strengthen inferences (Appendix Part D) about the true value of the
parameter and ensures that all relevant information is included
(Gurrin et al., 2000). These can be uninformative (e.g. set to be nor-
mally distributed with a mean of zero and a very large variance) or
informative if there is other information about the effect of this risk
factor (given the other risk factors in the model).�Thirdly, the
Bayesian approach allows for quantification of the uncertainty related
to the health estimates from the posterior distributions (Ghosh et al.,
1999; Wakefield, 2007). Spatial uncertainties added to the resulting
risk maps depict local details of the spatial variation of the risk and
provide valuable information for policy makers to make decisions
about thresholds and public health (ApSimon et al., 2002; Johnson,
2004; Goovaerts, 2006b). 
Lastly, direct probabilistic statements can be made about the under-

lying and unobserved parameters of interest using their posterior prob-
ability distributions. In disease mapping, it might be of interest to
make probability statements about areas of high risk for a disease. For
instance, computing and mapping probabilities that the risk in an area
exceeds certain thresholds can be done using the posterior probability
distributions (Green and Richardson, 2002). This probability of
exceedance can then be used to decide whether an area should be clas-
sified as having excess risk of a disease (Richardson et al., 2004). It is
straightforward to make these kinds of statements in a Bayesian con-
text, since they are directly obtained from the corresponding posterior
distribution. 

Data
Often health data are only available with location data supplied as a

small area (known as areal data), rather than a street address geocod-
ed to a latitude/longitude point. Determining the most appropriate
region size to use involves several considerations (Appendix Part E,
Box 3). This article focuses on the application of disease mapping
methods for spatial data aggregated over small areas and omits the dis-
cussion of other forms of spatial data such as geostatistical and point
patterns data. As an alternative, health outcome data may also be
analysed at the individual level, while incorporating spatial information
at any geographical scale such as a point or an area. 
The data described in the Atlas (Cramb et al., 2011a) focused on

Queensland cancer data aggregated to the statistical local area (SLA)
level, which was the smallest area with annual population data avail-
able. However, consistent with most administrative regions, the areas
are of varying sizes, and larger areas tend to dominate the map. An
alternative approach is to aggregate disease data with continuous coor-
dinate information to regular grid cells (Li et al., 2012a, 2012b; Kang et
al., 2014). Such an approach allows modelling of disease data at a fine
spatial scale, independent of administrative boundaries while preserv-
ing patient confidentiality. Using this approach, the spatial scale can be
manipulated to a practically, geographically and computationally sensi-
ble scale. It does, however, require individual level geocoded data,
which may not be accessible due to confidentiality concerns. Spatial
data may also be available at various geographical scales and hence
there is a need to combine information from multiple sources (Gotway
and Young, 2002). Cramb et al. (2011a) mapped two health outcome
measures in the Atlas, namely the incidence estimates and the relative
survival estimates (discussed in the following Section). Incidence is a
measure of the risk of developing a disease within a specified period of
time. Relative survival is the standard measure of survival from a dis-
ease in population-based disease survival studies (Yu, 2013). Each of
these outcomes requires specific input data (Appendix Part E, Boxes 4
and 5). Although other estimates of disease, such as prevalence, are
beyond the scope of this article, Bayesian mapping approaches are
described in Congdon (2006).

Bayesian spatial statistical models 
A response variable is the event studied and expected to vary when-

ever the independent variable is altered. It is also known as a depend-
ent variable. Here we consider two response variables, namely the
number of cancers diagnosed (incidence model) and the number of
deaths within x years of diagnosis (relative survival model). Because
both response distributions are counts, and the disease is less com-
mon, a Poisson distribution is used to model them (Appendix Part E,
Box 6). 
The resulting estimate for the incidence of a disease is known as the

standardised incidence ratio (SIR; Appendix Part D), which is an esti-
mate of relative risk within each area based on the population size, that
compares the observed incidence against the expected incidence. The
SIR explains if the observed incidence in a particular area is higher or
lower than the average across all areas included, given the age and sex
distribution and population size of the area. 
The relative survival of a disease is modelled using an excess mor-

tality model that contrasts the mortality in the background population
with disease mortality. The survival model results in an excess hazard,
which is called the relative excess risk (RER). The RER informs the rel-
ative survival (Appendix Part D) of a disease within each area, by
reporting the risk of death within a certain number of years of diagno-
sis after adjusting for broad age groups, compared to the average. The
SIR and RER are further explained in Appendix Part A. 
Small-area disease data typically exhibit spatial correlation due to

spatial structure in the unknown risk factors. The presence of spatial
correlation can be caused by a combination of socio-demographic clus-
tering and environmental effects (Browning et al., 2003). Traditional
regression models assume independence of random effects and so
ignore the potential presence of spatial correlation. This may lead to
false conclusions regarding covariate effects and unstable risk esti-
mates (Fahrmeir and Kneib, 2011). 
The spatial correlation can be accounted for using spatial smoothing

techniques, by estimating the effect of interest at a location using the
effect values at nearby locations (Wang, 2006). Spatial smoothing
approaches based on neighbourhood dependence are widely employed
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in disease mapping where areas with a common boundary are treated
as neighbours (Paciorek, 2013). By accounting for the spatial correla-
tion, model inference, prediction and estimation can be improved
(Haran, 2011). The effect of the arbitrary geographical boundaries can
also be reduced via spatial smoothing. Other smoothing techniques
include interpolation methods, kernel regression, kriging and partition
methods (Lawson et al., 2003; Goovaerts, 2006a). 
Two popular ways of defining a neighbourhood structure for the

modelling of spatial correlation are the Queen definition and the Rook
definition. The Rook method defines that two areas are considered
neighbours if they share a common boundary whereas the Queen
method specifies that two areas are termed neighbours if they share a
common boundary or vertex. Following Earnest et al. (2007), the illus-
tration of these two methods for defining a neighbourhood structure is
given in Figure 1. Such information can be used to calculate the aver-
age of spatially correlated random effects of neighbours for area i. 

The following Bayesian spatial models take the spatial correlation
into account by incorporating spatially correlated random effects. Both
the incidence and relative survival models assume a Poisson distribu-
tion for the observed data and contain spatial and unstructured (non-
spatial) random effects. The well-known Bayesian spatial model of
Besag et al. (1991) is widely used to model disease incidence
(Appendix Part E, Box 7) as it has desirable properties for disease map-
ping, particularly in modelling the geographical dependence between
neighbouring areas (Best et al., 2005). The incidence model can also
be used to model mortality. With regard to relative survival, the excess
mortality can be modelled via a generalised linear model, using exact
survival times (Dickman et al., 2004). The excess mortality is the mor-
tality that is attributable to a particular disease. It is a measure of the
deaths, which occur over and above those that would be expected for a
given population. Such a Bayesian relative survival model (Appendix
Part E, Box 8) has been used by Fairley et al. (2008) and Cramb et al.
(2011a). See Appendix Part A for the statistical models for incidence
and relative survival. In both models, the spatial random effect is the
component that accounts for spatial correlation between neighbouring
areas. The unstructured or non-spatial random effect accounts for the
unexplained variation in the model. 
In a Bayesian analysis, it is assumed that all parameters arise from

a probability distribution. As such, distributions representing the likely
spread of values are placed on each parameter. Commonly, a vague
Normal distribution such as one with mean 0 and variance 1.0×106 or
Normal (0,1.0×106) is used for the intercept or coefficients of predictor
terms (Appendix Part D). Vague priors refer to distributions with high
spread, such as a Normal distribution with extremely large variance.
Such a distribution gives similar prior value over a large range of
parameter values. 
Generally, the unstructured (non-spatial) random effects and the

spatial random effects are both assigned a prior distribution with addi-
tional hyperparameters (Appendix Part E, Box 9). To allow for spatial
correlation, commonly an intrinsic conditional autoregressive (CAR)
distribution is used. The CAR prior models the spatial dependence in a
study region by effectively borrowing information from neighbouring
areas than from distant areas and smoothing local rates toward local,
neighbouring values. The method provides some shrinkage and spatial
smoothing of the raw relative risk estimates (Clayton and Kaldor,
1987). This results in a more stable estimate of the pattern of the
underlying disease risk than that provided by the raw estimates.
Consequently, the variance in the associated estimates is reduced and
the spatial effect of geographical differences can be identified. This
prior has been widely employed in disease mapping to study the geo-
graphical variation of disease risk (Clayton and Bernardinelli, 1992;

Mollié, 1996; Wakefield et al., 2000), and works particularly well to
smooth out variability not relevant to the underlying risk (Assunção
and Krainski, 2009). 
Commonly, both the precision (inverse of the variance) hyperpara-

meters (Appendix Part D) are assigned a Gamma distribution.
Alternative hyperprior distributions may include placing either a
Uniform or half-Normal distribution on the standard deviation (square
root of the variance) (Gelman and Hill, 2006). 
The prior distributions used for the parameters may influence the

results and therefore should be carefully considered and compared.
There are two issues to consider when deciding on a prior distribu-
tion (Gelman, 2002): i) what information is going into the prior dis-
tribution; and ii) the impact on the resulting posterior distribution. A
sensitivity analysis (Appendix Part D) (Junaidi et al., 2011) can be
used to investigate the dependence of the posterior distribution on
prior distributions by comparing posterior inferences under different
reasonable choices of prior distribution. A literature review is usually
helpful to determine the prior distributions being used in similar
Bayesian models. 

Computation 
The complexity of these models means they cannot be solved analyt-

ically. Instead, some method of approximation is required. One
approach is to use Markov chain Monte Carlo (MCMC) methods
(Appendix Part D), which samples from the posterior distribution. A
variety of software is available to conduct MCMC, including BUGS
(Bayesian inference Using Gibbs Sampling), JAGS (Just Another Gibbs
Sampler), Stan and BACC (Bayesian Analysis, Computation &
Communication). WinBUGS is one of the most popular options (Brooks
et al., 2011) that provides great flexibility in Bayesian modelling, has a
simple programming language (Crainiceanu et al., 2005) and inter-
faces with multiple statistical software, including R, Matlab, Stata and
SAS. See Appendix Part B for the WinBUGS code for the discussed mod-
els. Some useful resources to help learn WinBUGS include Lawson et
al. (2003), Lunn et al. (2012), Ntzoufras (2009), Lykou and Ntzoufras
(2011), and Spiegelhalter et al. (2003). Bayesian computation for the
above models can also be conducted in R (R Core Team, 2012), by call-
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Figure 1. The representation of neighbourhood structure of area
i. Based on the Rook method, neighbours for area i include areas
2, 4, 6 and 8, while the Queen method defines regions 1-8 as
neighbours of area i.
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ing the INLA programme and adopting the integrated nested Laplace
approximation (INLA) approach proposed by Rue et al. (2009). The
INLA approach performs Bayesian inference for spatial models and is
able to return accurate parameter estimates in a much shorter time
than MCMC. The use of R-INLA for statistical analysis in various disci-
plines is increasingly common in recent years, including disease map-
ping. Appendix Part C provides R-INLA code to perform computation for
the discussed models. Some useful resources for getting started with R-
INLA include Schrödle and Held (2011a, 2011b), Blangiardo et al.
(2013), and Rue et al. (2012). To incorporate neighbourhood depend-
ence into the Bayesian models, a neighbourhood matrix is required.
The neighbourhood matrix contains a list of neighbours for an area.
Freely available software programmes that will calculate a neighbour-
hood matrix include GeoDa (Anselin et al., 2006), the spdep R package
Bivand et al. (2011), or within WinBUGS. 

Making decisions 
Perhaps the greatest advantage of Bayesian methods is the diversity

of options available to assist in the decision making process.
Communicating results in a way that is easily interpretable and accu-
rate enables informed decisions to be made. Here we outline some of
the ways modelled estimates can be used and visualised. 
The SIR and RER estimates produced using the methods described

in the previous sections are two commonly seen measures of disease
risk. Appendices B and C outline the code required for producing the
estimates. The estimates produced by Bayesian models give great flex-
ibility in reporting results, including comparison of the risk estimates
against the average, ranking estimates, and/or examining the uncer-
tainty around the estimates. 
Ranking of disease estimates ensures that public health investiga-

tions or interventions are prioritised correctly (Shen and Louis, 2000).

In the Bayesian context, the posterior distributions of health outcome
measures (such as SIR and RER) allow for the calculation of rank esti-
mates of each area (Clayton and Kaldor, 1987; Lawson et al., 2000). For
instance, Athens et al. (2013) use five health outcome measures to
obtain county rank estimates for a composite health outcome measure.
The five health outcome measures are converted to a score, and then
ranked by weighted means. The ranking of health outcomes is useful
for representing health performance of each area which can then be
used to inform health decision making. 
Moreover, comparison between two areas can be made easily in the

Bayesian framework. Outside of Bayesian methods, it may be difficult
and problematic to conduct a large number of pairwise comparisons for
all areas using post-hoc tests (Jaccard et al., 1984). The problem is that
by conducting so many comparisons, the probability of finding some of
the differences statistically significant by chance alone increases. The
Bayesian context eliminates this issue with pairwise comparisons of
the posterior distributions. 
Bayesian methods produce measures of uncertainty for each mod-

elled estimate. The uncertainty attached to the spatial distribution of
risk values across the study region can be known as spatial uncertainty
(Goovaerts, 2006b). It is valuable to visualise spatial uncertainty as it
provides local details of the spatial variation of the risk, as well as an
input to resource allocation, management and policy strategies. Several
methods have been proposed to describe the uncertainty attached to
the smoothed rates, including mapping the 95% credible interval
(Appendix Part D) of the posterior distribution of smoothed rates
(Johnson, 2004) and the probability that the risk in each small area
exceeds a certain threshold (Richardson et al., 2004). 
Under the Bayesian paradigm, there is great flexibility in communi-

cating and visualising results. Options include maps or graphs of the
smoothed estimates, their associated uncertainty, or the probabilities

                   Article

Figure 2. Bayesian smoothed estimate of relative excess risk
(RER). To show the spatial pattern of the underlying risk, the
median of the posterior distribution of statistical local area
(SLA)-level RER is mapped. An inset of South-East Queensland
is provided for greater detail as this region has a large number of
SLAs. Thematic categories are based on fixed breaks method. 

Figure 3. Uncertainty of Bayesian smoothed estimate of relative
excess risk (RER). This map depicts the uncertainty associated
with the estimates of relative risk. The 95th percentile range
(97.5th minus the 2.5th percentile) of the 10,000 values sampled
from the posterior distribution of RER for each statistical local
area (SLA) is mapped here. An inset of South-East Queensland is
provided for greater detail as this region has a large number of
SLAs. Thematic categories are based on quintiles. 
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of being above/below certain values. Mapping of disease rates or out-
comes facilitates comparison of spatial patterns in disease rates
between males and females, between age groups, between races, over
time, and motivates comparison with patterns of potential causes
(Brewer and Pickle, 2002). By comparing disease rates of different
areas, clues to possible causation may be found and this serves as a
starting point for further investigation. 
The purpose of this Section is to showcase various visualisations

that can be produced using the outputs obtained from Bayesian model-
ling techniques and the associated interpretation. This is demonstrat-
ed on a common cancer with poor survival: male lung cancer in
Queensland. Figures 2 to 7 present an array of maps or plots based on
the results from modelled survival (RER of death within 5 years of diag-
nosis) for each SLA that are useful for communicating the results of
statistical analysis via the Bayesian paradigm. The RER expresses the
risk of cancer patients dying from their cancer within five years of diag-
nosis in an SLA compared to the Queensland average (RER=1), and
therefore should not be directly compared between two SLAs. The fig-
ures were produced using the software R, package maptools. 
Figure 2 maps the posterior distribution of SLA-level RER and pro-

vides a picture of the spatial pattern of the underlying risk. Figure 3
depicts the uncertainty associated with the Bayesian estimates of RER
by mapping the 95th percentile range of the 10,000 values sampled from
the posterior distribution of RER for each SLA. A graph showing the
ranked RER with the associated 95% credible interval for each SLA is
provided in Figure 4. Horizontal box plots (Appendix Part D) of the RER
estimates by socioeconomic status and rurality are provided in Figure
5 to provide additional information about where the extent of variabil-
ity across the Queensland state. Figure 6 maps the SLAs having a 90%
probability of RER being higher than the Queensland average (RER=1)
(highlighted in red) and the SLAs having at least a 90% probability of
RER being lower than the Queensland average (RER=1) (highlighted
in blue). Figure 7A depicts the probability of the SLAs having RER
exceeding 1 and Figure 7B depicts the probability of the SLAs having
RER exceeding 1.2.

Results and Discussion 

In this article we have outlined the benefits of Bayesian models for
both analysis and visualisation. The public health arena regularly
makes practical decisions affecting people’s health. To facilitate deci-
sions, it is vital that the analysis is conducted appropriately, and results
are communicated effectively. 
Bayesian methods are increasingly being used to analyse routinely

collected data. The Bayesian framework is now the tool of choice in
many applied statistical areas, including disease mapping (Lawson et
al., 1999). In small area studies, Bayesian methods often have better
model fit than non-Bayesian smoothing methods (Lawson et al., 2000).
Greater flexibility in distributional assumptions is possible under
Bayesian methods than in traditional regression models (Waller and
Gotway, 2004).  Whether to standardise response rates depends on the
study objectives. For the cancer atlas, it was desirable to remove the
influence of age, so that differences were not due to different age struc-
tures between areas. For incidence, we used the SIR, which adjusts for
the area-specific age and sex structure. An alternative method to stan-
dardisation for dealing with confounders is via the use of regression
models (McNamee, 2005). These can be particularly useful when mul-
tiple confounders need to be controlled for simultaneously. For relative
survival, we included age in the regression equation to remove its
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Figure 4. Uncertainty of Bayesian smoothed estimate of relative
excess risk (RER). The 95% credible interval (97.5th-2.5th per-
centile) of the 10,000 values sampled from the posterior distribu-
tion of RER for each statistical local area (SLA) is plotted here.
This plot shows how much reliance can be placed on the esti-
mates. The black line is the median RER for each SLA. The blue
vertical lines are the 95% credible intervals, and indicate the
amount of uncertainty associated with each estimate. The red line
shows the Queensland average (set to 1). 

Figure 5. Distribution of smoothed relative excess risk (RER) esti-
mates according to: socioeconomic status (A) and rurality (B).
The distributional plots reflect the general patterns in the
smoothed RER estimates across the area-based categories of
socioeconomic status and rurality. These plots show the propor-
tion of RER estimates that are above or below the Queensland
average (vertical red line) within each of the area-based cate-
gories. The plots only present the range of point estimates, and so
do not take the amount of uncertainty associated with each sta-
tistical local area-specific estimate into account. 
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influence on the results. However, if the purpose of a study is to iden-
tify where the highest rates of disease are, such as for service provi-
sion, then there is no need to standardise (or otherwise adjust) the
incidence rates. This is because the cause of the variation (whether
sex, age or other factors), is inconsequential. 
Visualising disease patterns through maps remains an effective

method to convey a large amount of information in an engaging way.
Few modern day visualisations include uncertainty measures, yet this
greatly assists in decision-making. Online, interactive visualisations
can dynamically link maps (e.g. Figure 2 showing the smoothed
Bayesian RER), with plots of the uncertainty (e.g. Figure 3 showing the
95% credible interval for each area). Selecting an area would then
highlight the corresponding region in both plots, providing much
greater information to the user. 
There are limitations associated with using routinely collected data.

Determining the direction of causation may not be possible. Often
there is a lag time between exposure and disease detection, and
patients may move during this time. Bayesian methods also have cer-
tain limitations, including greater computational time if using Markov
chain Monte Carlo approaches, and requiring sensitivity analyses to
ensure priors are not exerting undue effect. With regard to computa-
tion using R-INLA, models must be expressible in the linear model for-

mat and there are restrictions on the types of prior distributions that
can be assumed. However, we believe the advantages outlined in this
article outweigh any limitations. Routinely collected data exist to
enable disease monitoring and control. Appropriate analyses convert
this data into information, which once communicated, enables action.
Bayesian methods not only enable appropriate analyses to be per-
formed, they also provide greater flexibility in visual communications.
Can descriptive studies really influence government policy? The dispar-
ities identified in the cancer atlas resulted in the Queensland govern-
ment including a specific objective aimed at reducing the geographic
disparities in cancer outcomes in their Strategic Directions (Statewide
Health Service Strategy and Planning Unit, 2014). Results were also
used in lobbying to increase the amount of financial assistance the
government provided to remote patients to offset travel and accommo-
dation costs while obtaining treatment away from home, and the
amount provided was subsequently increased. Our experience is that
routinely collected data, when appropriately analysed and communicat-
ed, facilitate appropriate government action. 

                   Article

Figure 6. In the Bayesian paradigm, the statistical local areas
(SLAs) highlighted in red have a 90% probability of relative
excess risk (RER) being higher than the Queensland average
(RER=1). This means that the lower 10th percentile of the poste-
rior distribution of RER exceeds 1. The SLAs highlighted in blue
express at least a 90% probability of RER being lower than the
Queensland average (RER=1). This means that the upper 90th

percentile of the posterior distribution of RER is less than 1. The
density plots show the posterior distribution of RER for four ran-
domly chosen SLAs where the x-axis is the RER values. The two
density plots on the left show that there is more than 90% chance
for the RER to be higher than 1. The two density plots on the
right show that there is more than 90% chance for the RER to be
lower than 1. The percentage of low risk or high risk for each SLA
is also given in each density plot. An inset of South-East
Queensland is provided for greater detail as this region has a large
number of SLAs. 

Figure 7. Thematic map depicting the probability of relative
excess risk exceeding 1 (A) and 1.2 (B). The threshold 1.2 was
chosen to reflect high risk as it lies in the fifth quintile. Four sta-
tistical local areas (SLAs) are chosen to demonstrate how the
probabilities change when the thresholds change. An inset of
South-East Queensland is provided for greater detail as this
region has a large number of SLAs.
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Conclusions

We hope this article will enable greater understanding and potential-
ly uptake of Bayesian methods in disease mapping, along with available
options for communicating estimates and their uncertainty. 
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