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Abstract

Clinical and epidemiological research has reported a strong associ-
ation between diabetes and obesity. However, whether increased dia-
betes prevalence is more likely to appear in areas with increased obe-
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sity prevalence has not been thoroughly investigated in the United
States (US). The Bayesian structured additive regression model was
applied to identify whether counties with higher obesity prevalence
are more likely clustered in specific regions in 48 contiguous US
states. Prevalence data adopted the small area estimate from the
Behavioral Risk Factor Surveillance System. Confounding variables
like socioeconomic status adopted data were from the American
Community Survey. This study reveals that an increased percentage of
relative risk of diabetes was more likely to appear in Southeast,
Northeast, Central and South regions. Of counties vulnerable to dia-
betes, 36.8% had low obesity prevalence, and most of them were locat-
ed in the Southeast, Central, and South regions. The geographic dis-
tribution of counties vulnerable to diabetes expanded to the
Southwest, West and Northern regions when obesity prevalence
increased. This study also discloses that 7.4% of counties had the
largest average in predicted diabetes prevalence compared to the other
counties. Their average diabetes prevalence escalated from 8.7% in
2004 to 11.2% in 2011. This study not only identifies counties vulnera-
ble to diabetes due to obesity, but also distinguishes counties in terms
of different levels of vulnerability to diabetes. The findings can provide
the possibility of establishing targeted surveillance systems to raise
awareness of diabetes in those counties.

Introduction

Over the past three decades, the prevalence of diagnosed diabetes
in the US increased from 2.5 to 6.9% (CDC, 2014a). Consequently, dia-
betes-related morbidity has dramatically increased over time in the
United States (US). The number of hospital discharges among those
diagnosed with diabetes has nearly doubled with 2.8 million dis-
charges in 1988 and 5.5 million discharges in 2009 (CDC, 2014b). In
addition, diabetes has led to increases in emergency department vis-
its, self-reported heart disease or stroke, visual impairment, lower
extremity conditions, end-stage renal disease, and other causes of
morbidity (CDC, 2014b). Obesity and diabetes are both epidemic in the
US, and diabetes has long been linked to obesity (Dansinger, 2014).
Starting in the 1990s, the rate of obesity in the US increased dramati-
cally. The age-adjusted obesity prevalence among adults was 15.6% in
1995, 19.8% in 2000, and 23.7% in 2005 (Blanck et al., 2006). The cur-
rent prevalence of obesity is 34.9% among adults and 17% among chil-
dren (CDC, 2014c). In 2010, the majority (84.7%) of diabetics in the
US was overweight or obese and over half of diabetics (56.9%) were
obese (CDC, 2014b). The prevalence of obesity and diabetes vary
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across US states. The highest recorded prevalence of obesity in the
southern region of the US was 30.2%. In Mississippi and West Virginia
it was over 35%, and no state in the US had a prevalence of obesity
lower than 20% (CDC, 2014c). The diabetes belt, which is where the
prevalence of diabetes is concentrated, includes 644 counties mostly
located in the southern states, and the belt includes the entire state of
Mississippi (CDC, 2011). Sullivan et a/. (2005) conducted a study in the
US on the prevalence of diabetes and found obesity to be strongly asso-
ciated with diabetes. Similarly, a California study conducted in
Alameda County, found that obesity and overweight were mediators of
Type 2 diabetes (Maty et al., 2005). There may be a possibility of a geo-
graphic disparity in the association of obesity and diabetes. However,
whether increased diabetes prevalence is more likely to appear in areas
with increased obesity prevalence has not been thoroughly investigated
in the US. The number of spatial analyses conducted on obesity and
diabetes is limited. Research on urbanisation as a potential risk factor
for diabetes has led to mixed results. In Asia, those living in urban
areas were found to be more likely to have diabetes (Mohan et al., 2008;
Ning et al., 2009; Katulanda et al., 2013), while in Greece, rural popula-
tions had a significantly increased prevalence of diabetes (Melidonis et
al., 2006). A study in Canada did not find a difference in the relative
risk (RR) of diabetes based on a rural-urban comparison, but a differ-
ence was found based on region (Foulds et al., 2012). A few studies
have been conducted on the spatial relationship between diabetes and
obesity in the US. In 2007, counties in the top two quintiles in both obe-
sity and diabetes prevalence were located in the South and the
Appalachian regions (Gregg et al., 2009). Congdon used a multilevel
method using 2007 data to confirm that the influence of geographic
variation existed on joint weight and diabetes status (Congdon, 2010).
Other studies have reported geographic clustering based on diabetes
and obesity status, but these studies were limited to small regions in
the US (Schlundt et al., 2006; Laraia et al., 2014; Zheutlin et al., 2014).
These results provide evidence that a more comprehensive analysis
that uses a spatio-temporal approach should be implemented with a
longer time period.

Preliminary research reveals that areas in the US may have higher
joint obesity and diabetes risks (Congdon, 2010), but those findings
lack advanced analyses providing reliable and enhanced evidence for
people who live in areas vulnerable to diabetes due to obesity. Hence,
the research purpose of this study is to investigate if diabetes is spa-
tially correlated with obesity at the county level, distinguish spatial
clusters, and identify counties vulnerable to diabetes due to obesity. We
address three research questions in this study: i) whether obesity
prevalence is spatially correlated to diabetes prevalence; ii) whether an
increase in obesity prevalence changes the geographic distribution of
diabetes at the county level; and iii) whether counties vulnerable to
diabetes can be clustered. The ultimate goal is to apply disease-risk
mapping for carrying out spatial association and variation between dia-
betes prevalence and obesity prevalence in the US.

Materials and Methods

Data source

This study contains three data sources: the Behavioral Risk Factor
Surveillance System (BRFSS) (http/www.cdc.gov/brfss), the American
Community Survey (ACS) (US Census Bureau, 2014), and the
Cartographic Boundary Files (https://www.census.gov/geo/maps-
data/datastiger-cart-boundary.html). The BRFSS data has been collected
by individual state health departments under the direction of US

[page 300]

P

Centers for Diseases and Prevention since 1984. It is the largest
nationwide telephone survey, and it annually gathers data on individ-
ual’s characteristics, risk behaviours, living status, and health condi-
tions. Using a Bayesian multilevel small area estimating method,
BRFSS calculates and publishes data for public-use on age-gender-race
adjusted prevalence for diabetes, obesity, and physical inactivity in
each county (Congdon and Lloyd, 2010). BRFSS has been approved by
Human Research Review Boards from the Department of Health in
each state. Selected participants need to sign an informed consent for
some specific questions. Detailed information about the BRFSS survey
design, full-text questionnaires, and data collection can be found at its
website (http//www.cdc.gov/brfss).

The data of ACS are collected by the largest decennial survey, admin-
istrated by the US Census Bureau since 2005 to provide the most cur-
rent and detailed information about population, social, housing and
economic conditions for states and local areas. The ACS has been wide-
ly used by federal/state/local agencies, nongovernmental organizations,
educators, business, and journalists (US Census Bureau, 2014). Every
year the ACS publishes 1-year, 3-year, and 5-year estimates for socioe-
conomic status (SES) factors, and this study adopted the 5-year esti-
mate (2007-2011) to reduce the amount of missing data in any county.
In addition, the cartographic boundary files are maintained and stored
by the US Census Bureau’s geographic database.

Study area

This study only considered the 48 contiguous states with a total of
3109 counties. Each county has at least one neighbouring county. We
selected county as the geographic unit in this research because the
smallest geographic data collected by BRFSS is at the county level. For
the purpose of facilitating explanations of the spatial pattern variations,
we divided up the 3109 counties into nine regions using the US climate
regions defined by the National Climate Data Center (Appendix 1).

Statistical data analysis

Firstly, we applied Moran’s / statistics to measure and test the spatial
autocorrelation of age-adjusted diabetes prevalence and age-adjusted
obesity prevalence at the county level for each year. Then, we built two
models to examine spatial association between diabetes prevalence
and obesity prevalence:

Model 1:

log(DMi)=ct + by + BX; + f; + OBy x Fipu (eq. 1)

where DM; and OB, are the adjusted diabetes prevalence and the
adjusted obesity prevalence at county i (i=1, 2, ..., 3109) and calendar
year ¢ (¢=1, 2, ..., 8) from 2004 to 2011, respectively. The notations o
and b, represent a fixed intercept and a random intercept, respectively.
The covariate vector X; with a dimension of 16x1 contains SES con-
founding factors obtained from 5-year estimates of ACS, including
health insurance coverage percentage, high school or higher education
percentage, male percentage, elders (=65 year-old) percentage, non-
Hispanic white percentage, non-Hispanic black percentage,
Latino/Hispanic percentage, average age, median family income per
1000 US dollars, poverty percentage, adjusted physical inactivity preva-
lence and five occupational percentages (management/business/sci-
ence/art, service, sales/office, natural resources/construction/mainte-
nance, and production/transportation/material moving). The notation f;
is a nonlinear time smoother to control for temporal autoregressive
correlations. This model can assess the spatial heterogeneity of obesity
prevalence on diabetes prevalence across counties. The spatial func-
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tion can be regarded as a geographic weight to evaluate how obesity
prevalence contributes to diabetes prevalence in each county different-
ly, along with considering complex spatial influence related to obesity
prevalence. We used the intrinsic conditional autoregressive prior for
the spatial function to capture the neighbourhood structure. Spatial
clusters of diabetes prevalence due to obesity prevalence can be first
demonstrated by Model 1. For the purpose of spatially comparing differ-
ent levels of adjusted obesity prevalence on diabetes, we categorised
obesity prevalence into quartiles (low, median-low, median-high, and
high levels), and modified Model 1 to fulfil the study purpose:

Model 2:

(eq.2)

where three indicator variables ( ) along with spatial
functions (fypaems, foparmn, fparr) represented counties with median-low,
median-high, or high level of obesity prevalence, respectively. It is
noted that the reference level is low obesity prevalence level, which is
not needed and can be presented by a single spatial function f;. All
the other notations and symbols in Model 2 are identical to those used
in Model 1. Both models were implemented by the structured additive
regression model with a fully Bayesian inference using Markov chain
Monte Carlo simulations (Brezger and Lang, 2006; Fahrmeir and Lang,
2001). The estimated coefficients and statistical significances of
parameters in all linear terms were determined by posterior means and
95% confidence intervals (Cls). The nonlinear smoother, £, was esti-
mated by a B-spline function with a second-order random walk (Lang
and Brezger, 2004). We applied Markov random fields (Kindermann
and Snell, 1980) with a conditional autoregressive prior to estimate all
spatial functions. The estimated spatial function can be used to calcu-
late the increased percentage of RR (RR%) for diabetes for every 1%
increase in obesity prevalence in each county. The 95% CI was also
used to determine the spatial significance of each estimate in a spatial
function. We defined spatial vulnerability as those counties that have a
RR% significantly greater than 0. In particular, Model 2 can conduct a
spatial significance in each spatial function, representing that each
county can be identified to have a spatial vulnerability in each level of
obesity prevalence. Hence, we counted the number of spatial vulnera-
bility in each county in Model 2, where counties with 0 spatial vulner-
ability indicate no impact on diabetes prevalence from each level of
obesity prevalence, while counties with four spatial vulnerabilities

indicates each level of obesity prevalence significantly affect diabetes
prevalence. Then, we defined five vulnerable levels (definite, higher,
moderate, lower, and least) for counties from four spatial vulnerabili-
ties to no spatial vulnerability in Model 2. Counties with definite vul-
nerable level represent residents in any of the four obesity levels who
are vulnerable to diabetes, and so on. To verify discrimination between
the five vulnerable levels among all counties, we applied the analysis of
variance to compare predicted diabetes prevalence among five vulner-
able levels. This study also performed a sensitivity analysis to examine
the robustness of spatial estimates by using different hyper-parameters
of the prior of the spatial variance in both models. Both data cleaning,
management and summary were accomplished by SAS v9.3 (SAS
Institute Inc., Cary, NC, USA). Spatial analysis was carried out by
BayesX software version 2.1 (Brezger et al., 2005). The significance of
multiple comparisons was decided by P<0.05.

Results

The average adjusted diabetes prevalence and average adjusted obe-
sity prevalence were unevenly distributed across the nation (Figure 1).
The average adjusted diabetes prevalence ranged from 3.90 per 100,000
people to 16.03 per 100,000 people, a higher rate appeared in the south-
eastern region. The spatial distribution of the average annual adjusted
obesity prevalence resembles the spatial pattern of average annual
adjusted diabetes prevalence, ranging from 13.00 to 43.03 per 100,000

Table 1. Spatial autocorrelations of the annual adjusted diabetes
and obesity prevalence at the county level in the US, 2004-2011.

2004 0.4868 <0.0001 0.4185 <0.0001
2005 0.4822 <0.0001 0.4212 <0.0001
2006 0.5122 <0.0001 0.4039 <0.0001
2007 0.5090 <0.0001 03975 <0.0001
2008 0.5222 <0.0001 0.4053 <0.0001
2009 04793 <0.0001 0.3655 <0.0001
2010 0.4565 <0.0001 0.3577 <0.0001
2011 04337 <0.0001 0.3363 <0.0001
B

Figure 1. Spatial distribution of the average adjusted diabetes (A) and obesity (B) prevalence per 100,000 people in the US.
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populations. The Moran’s / statistics indicate that there is an existing
significant spatial autocorrelation of average adjusted diabetes preva-
lence and average adjusted obesity prevalence in the 3109 US counties
each year (Table 1).

The results derived from Model 1 are shown in Figure 2, which
reveals an uneven distribution in the influence of obesity prevalence
on diabetes in the US. As obesity prevalence increased 1%, the
increased percentage of RR for diabetes ranged from -0.11% (95% Cl=
-0.38, -0.15) in Lake County, Colorado to 2.08% (95% CI=1.89, 2.26) in
Boone County, West Virginia. A higher increased RR% for diabetes was
more likely to appear in Southeast, Northeast, Central and South
regions. The geographic distribution of the increased RR% varied
across the US, and the significance map reveals that most counties had
a significantly increased RR% greater than 0%.

After analysing and comparing the spatial patterns of the four quar-
tile levels of adjusted obesity prevalence, 36.83% of counties with a low
level of adjusted obesity prevalence were found to be vulnerable to dia-
betes. Those counties were most prominent in Southeast, Central and
South regions as shown in Figure 3A. When obesity prevalence
increased to the median-low level, the highest RR% of diabetes
increased 7.05% (95% ClI=-0.77, 15.24) in San Juan County,
Washington. Regions had more counties with a significantly increased
RR% for diabetes when adjusted obesity prevalence increased to the
median-low level, except in the Southeast, South and East North
Central regions. In particular, a great amount of counties in Southwest
and West regions become vulnerable to diabetes as shown in Figure 3B.
When adjusted obesity prevalence elevated to the median-high level,
the significance map in Figure 3C indicates that counties vulnerable to
diabetes expanded to East North Central, West North Central and
Northwest regions. When adjusted obesity prevalence increased to the
median-high level, counties vulnerable to diabetes expanded to East
North Central region. When adjusted obesity prevalence elevated to the
high level, the greatest RR% increment for diabetes was in Union
County, Florida at 23.65% (95% Cl=-17.56, -29.44). Additionally, more
counties vulnerable to diabetes appeared in Central and West North
Central regions.

The geographic distribution of the five vulnerable levels shown in
Figure 4 explains a spatial cluster of adjusted diabetes prevalence as
230 counties (7.40%) were attributed to the definite vulnerable level. In
these counties, suffering due to high diabetes prevalence escalated

P N

from 8.74% in 2004 to 11.18% in 2011. Most of the counties in definite
vulnerable level were concentrated in Central and Southeast regions.
Moreover, multiple comparisons resulted in significant differences
among vulnerable levels by at least 0.58% (moderate level vs lower
level), while the difference between definite level and higher level was
only 0.13% (P=0.0629; 95% CI=-0.01, 0.27) and not statistically signifi-
cant (Table 2). When spatial estimates in Model 1 and Model 2 were
plotted by adjusted physical inactivity prevalence vs without physical
inactivity prevalence, distribution was along the 45° line (Figure 5).
This reflects that our results, in terms of spatial functions, were robust
and not sensitive. The sampling trace also shows that main estimated
parameters reached convergence (Appendix 2).

Discussion

The findings of this study contribute to the known geographical dif-
ferences of diabetes prevalence across the US and add critical informa-
tion to the body of knowledge on diabetes prevalence. The county-level

Table 2. Multiple comparisons of predicted diabetes prevalence
among the five vulnerable levels.

Definite vs higher 0.13 -0.01,0.27 0.0629
Definite vs moderate 1.33 1.18, 1.47 <0.0001
Definite vs lower 1.90 1.76, 2.04 <0.0001
Definite vs least 2.94 2.80, 3.08 <0.0001
Higher vs moderate 1.19 1.05,1.33 <0.0001
Higher vs lower 1.77 1.63,1.91 <0.0001
Higher vs least 2.81 2.67,2.95 <0.0001
Moderate vs lower 0.58 0.44,0.72 <0.0001
Moderate vs least 1.62 148, 1.76 <0.0001
Lower vs least 1.04 0.90, 1.18 <0.0001

Cl, confidence interval.

Figure 2. Spatial association between diabetes and obesity. A) Spatial map of the increased percentage of relative risk (RR) due to adjusted
obesity prevalence; B) significance map, where counties shaded by white colour had a significantly positive increased percentage of RR,
black colour had a significantly negative increased percentage of RR, and grey counties had a non-significant increased percentage of RR.
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Figure 3. Spatial association of diabetes prevalence by levels of adjusted obesity prevalence shown with significance maps. On the left
are spatial maps for diabetes prevalence; on the right are significance maps where counties shaded by white colour had a significanty
increased relative risk% (RR%), black colour had a significantly decreased RR%, and grey counties had a non-significant RR%. A) Low
level, B) low-median level, C) median-high level, and D) high level of adjusted obesity prevalence.
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analysis determined that counties vulnerable to diabetes were more
likely to be clustered in Southeast, Central and South regions because
of higher adjusted obesity prevalence. As obesity prevalence level
increased, counties vulnerable to diabetes expanded to Northeast, East
North Central, West North Central and Northwest regions. The study
was able to visualise the county-level spatial heterogeneity relationship
between obesity prevalence and diabetes prevalence across states, to
monitor counties with high risk of diabetes, and to quantify geograph-
ical disparity, explaining the level of variation of diabetes risk.

The spatial impact of adjusted diabetes prevalence discovered in this
study was elaborated by the geographic variation of adjusted obesity
prevalence, which has not been statistically proven in previous studies.
For example, diabetes prevalence was only previously investigated to
have significant spatial autocorrelations and an association with PM; 5
at the county-level in the US (Pearson et al., 2010; Chien et al., 2015).
Advanced evidence concluded that neighbourhood characteristics relat-
ed to greater affluence, occupation, and education are associated with
higher Type 1 diabetes risk (Liese et al., 2012). Spatial clustering
analysis also revealed significant county-level diabetes prevalence in
the US after adjusting for socio-demographic and built environment-
related variables (Hipp and Chalise, 2015). In addition, previous stud-
ies have shown a spatial variation in diabetes incidence. After control-
ling for population density, SES, remoteness and ethnicity, researchers
showed the risk of diabetes incidence in Western Australia varied with
latitude (Ball et al., 2014). Similar results were reported in Finland as
the incidence rate of diabetes was higher in rural areas as compared to
urban areas (Voutilainen et al., 2015).

Counties vulnerable to diabetes in the Southeast, Central and South
regions were also researched in previous studies. In particular, south-
ern Texas counties were investigated to have higher rates of obesity
and diabetes than the rest of the state and the nation, with nearly one-
third of population classified as obese and approximately one in nine
were diagnosed with diabetes (Ramirez et al., 2008). In Nashville,
Tennessee, the geographic distribution of obesity, diabetes, health
behaviour, and environmental characteristics was clustered and identi-

fied high vulnerability to diabetes and obesity in terms of census tract
(Schlundt et al., 2006). In Ohio and South Carolina, evidence of the
presence of a local variation in Type 1 and Type 2 diabetes mellitus inci-
dence was reported, which is important for future surveillance efforts
for diabetes (Liese et al., 2010). Our study is consistent with previous
results, and we provide solid statistical evidence, in terms of spatial
heterogeneity and vulnerability of diabetes, to strengthen our results.
The CDC defined the diabetes belt as a geographic region consisting
of 644 counties in 15 southern states with an estimated prevalence of
diagnosed diabetes greater than 11% (Barker et al., 2011), and some
counties in the diabetes belt appear again in the definite and higher
vulnerable levels defined by this study. Specifically, our findings reveal
that counties in these two vulnerable levels had higher levels of suffer-

Vulnerable level
B Definite
I Higher
[0 Moderate
] Lower

— -

Figure 4. Geographic distribution of five vulnerable levels to dia-
betes in the US.

Figure 5. Scatter plots of spatial function estimates with different hyper-parameters (a, b) in the prior of spatial variance. A) Estimate
of f,.c in Model 1; B-E) estimates of (fpacrs fipaemis fipacvits fipaet) in Model 2. The upper plots show (a, b) = (0.001, 0.001) vs (a, b) =
(1, 0.05); the lower plots show (a, b) = (0.001, 0.001) s (a, b) = (0.01, 0.01).
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ing due to high diabetes prevalence linked to obesity than the other
counties. This differs from the CDC report because people living in the
diabetes belt had a lower odds ratio of obesity than those living in the
rest of the US. Thus, we calculated the prevalence of predicted diabetes
based on our models and proved that the five vulnerable levels can be
distinguished from each other. Moreover, we also presented increasing
trends of predicted diabetes prevalence in five vulnerable levels and
concluded that counties in definite vulnerable level had the largest
increment annually. Therefore, we believe that our findings are com-
pelling as we present a solid analysis with a longer study period. More
importantly, a cluster of counties with a higher vulnerable level was
detected in Southwest region, which had not been discussed previous-
ly. There is a need to do further investigations in that area.
Comprehensively speaking, we suggest that the diabetes belt should be
reconsidered, in terms of obesity, and some counties, which are not
located in the diabetes belt, should be also under surveillance.

A new finding of this study is the geographic expansion of counties
vulnerable to diabetes when obesity prevalence increased, especially in
Northern US (Figure 3B and D). Eid (2011) addressed the prevalence
of obesity and diabetes mellitus in South Dakota, and elaborated on
some of the mechanisms of association between obesity and diabetes
mellitus. In a southeastern Wisconsin population, excess weight gain
during childhood was a risk factor for early manifestation of Type 1 dia-
betes mellitus (Evertsen et al., 2009). In Pennsylvania, researchers
found the burden of obesity and diabetes is extensive and growing
(Garcia-Dominic et al., 2014). The reason of the expansion of diabetes
prevalence due to high obesity prevalence in Northern US is still not
well understood from previous studies, so it is necessary to conduct fur-
ther work in counties vulnerable to diabetes, especially in West North
Central and East North Central regions.

Some limitations of this study need to be considered when interpret-
ing these findings. First, the data from BRFSS does not include people
younger than 18; thus, the spatial obesity impact on diabetes may be
not accurate due to missing childhood obesity information. Second, our
quantified findings can be only explained in terms of county, while
other geographic units, such as ZIP code or census tract, may produce
findings. Third, formal medical records, such as clinic visits and hospi-
talizations, were not considered in the self-reported survey. Lastly, the
questionnaire in BRFSS does not specify Type 1, Type 2 and gestational
diabetes, so the impacts on obesity cannot be differentiated.

Conclusions

This study determined a significant variation of spatial pattern for
diabetes in terms of the geographic variation of obesity prevalence, and
identified geographical clusters of diabetes prevalence in terms of four
quartiles of obesity prevalence. Counties in Central, South and
Southeast regions are more likely to be vulnerable to diabetes, even
with a low prevalence of obesity. In addition, as obesity prevalence
increased to higher levels, the geographic distribution of counties vul-
nerable to diabetes tended to expand to the Northern US regions. This
study highlighted the importance of surveillance efforts for diabetes
with small area estimates. Future research should focus on develop-
ment of interventions and prevention methods in those areas where
people are vulnerable to diabetes.
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