
Abstract

Influenza-like illness (ILI) is an acute respiratory disease that
remains a public health concern for its ability to circulate globally
affecting any age group and gender causing serious illness with mor-
tality risk. Comprehensive assessment of the spatio-temporal dynam-
ics of ILI is a prerequisite for effective risk assessment and application
of control measures. Though meteorological parameters, such as rain-
fall, average relative humidity and temperature, influence ILI and rep-
resent crucial information for control of this disease, the relation
between the disease and these variables is not clearly understood in
tropical climates. The aim of this study was to analyse the epidemiol-
ogy of ILI cases using integrated methods (space-time analysis, spatial
autocorrelation and other correlation statistics). After 2009s H1N1

influenza pandemic, Phitsanulok Province in northern Thailand was

strongly affected by ILI for many years. This study is based on ILI cases
in villages in this province from 2005 to 2012. We used highly precise
weekly incidence records covering eight years, which allowed accurate
estimation of the ILI outbreak. Comprehensive methodology was devel-
oped to analyse the global and local patterns of the spread of the dis-
ease. Significant space-time clusters were detected over the study
region during eight different periods. ILI cases showed seasonal clus-
tered patterns with a peak in 2010 (P>0.05-9.999 iterations). Local
indicators of spatial association identified hotspots for each year.
Statistically, the weather pattern showed a clear influence on ILI cases
and it strongly correlated with humidity at a lag of 1 month, while tem-
perature had a weaker correlation. 

Introduction

Influenza-like illness (ILI) is a highly contagious acute respiratory
disease capable of triggering outbreaks ranging from local epidemics
to global pandemics (Sakai et al., 2004; WHO, 2014). It is responsible
for a high contribution of all influenza cases (Kimura et al., 2011;
Prachayangprecha et al., 2015), yet it is not well understood and the
clinical symptoms are not easily differentiable from other respiratory
diseases (Laguna-Torres et al., 2009; Tamerius et al., 2011). ILI has
been attributed by wide range of respiratory diseases, predominantly
attributed by viruses such as influenzas A and B (Yang et al., 2012;
Zhang et al., 2014). The diagnostic approach for ILI is the same as that
of influenza (Kelly and Birch, 2004), but all ILIs are not caused by
influenza virus. However, more than 70% of all ILI cases diagnosed
during the epidemic of June 2009 to January 2010 were due to the
influenza A, subtype H1N1 virus (Yang et al., 2012). The clinical symp-
toms of ILI present as a sudden onset of fever (≥38°C), body ache with
one of the typical respiratory symptoms such as sore throat and cough
(CDC, 2016). The infection occurs around the year in tropical regions
and in the winter to spring period in temperate regions Like common
influenza, it circulates around the globe rapidly (Birch and Kelly, 2004;
Yang et al., 2012). According to the World Health Organization (WHO)
surveillance, ILIs spread from infected to healthy persons through
fomites in a close proximity, and the human host is the utmost vector
and carrier (Bollaerts et al., 2013; Yang et al., 2015). Therefore, a full
understanding of the connection with the vector has an enormous
potential with respect to quantification of ILI dissemination and its
spatial dynamics, knowledge of which would strongly contribute to
control of the disease (Viboud et al., 2006).
This study occupies itself with the general forms of respiratory dis-

eases and spatial dynamic studies, but it deals predominantly with
influenza since it includes a larger portion of ILI cases in peak seasons
(Yang et al., 2015). However, Lowen and Palese (2009) recognised that
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ILIs are mixed infections consisting of adenoviruses, respiratory syncy-
tial viruses (RSV), enteroviruses, human meta-pneumo viruses and
parainfluenza viruses besides classical the influenza viral strains.
Recent epidemiological modelling has greatly improved our knowledge
of viral evolution and the related complex antigenic evolution, but there
is also a need to understand the spatio-temporal aspects of the vector-
borne respiratory diseases (Nelson and Holmes, 2007; Soebiyanto et
al., 2015). Furthermore, in a series of monitored influenza studies with
special reference to ILI viruses, it is stressed that ILI spatio-temporal
dynamics must be clarified within the broader aspect of respiratory
infections (Bollaerts et al., 2013). In tropical and subtropical settings,
ILI epidemics occur more frequently with high temporal variability.
However, people are not aware about the burden of morbidity which
negatively affects the socio-economic strata involved (Viboud et al.,
2006; Simmerman and Uyeki, 2008; Simmerman et al., 2009; Yang et
al., 2015). Although the majority of the viruses which collectively make
up the ILIs can be preventable by early vaccinations, e.g., against
influenzas A and B (WHO, 2013; Prachayangprecha et al., 2015), there
is no such thing as an integrated vaccine to be used for general ILI pre-
vention. The Thai infectious disease control and vaccination pro-
gramme vaccinates against the majority of seasonal influenza viruses
according to global standards (Prachayangprecha et al., 2015).
However, these vaccines remain effective only for a year and ILI peaks
frequently a year later due to the ability of these viruses to rearrange
genomes varying from minor mutations to major antigenic shift under
the pressure of human immunity. Since the immune system is not used
to new viruses (Morse, 1995), large numbers of people are vulnerable
in spite of prior infections and vaccinations (Laguna-Torres et al., 2009;
Yang et al., 2015). 
Past research of respiratory diseases in the current healthcare set-

tings are limited to hospitalised and laboratory confirmed cases
(Russell et al., 2008; Kimura et al., 2011), which are highly likely to
underestimate the real situation, thereby hiding the broader view of
spatial disease dynamics (Anderson et al., 2012). Additionally, most
influenza studies are based on the 1918 and 2009 pandemics
(Biggerstaff et al., 2014), so there is still insufficient information on ILI
dynamics.  Tamerius et al. (2011) have reviewed the effect of season-
ality, human immunity and virus survival on the spread of respiratory
viruses. Anderson et al. (2012) assessed ILI based on occupation, sex,
social contacts and stress levels finding that social contact in public
(school, workplace, etc.) and contaminated areas (markets, banks, etc.)
are sources of infections. Furthermore, stress, job insecurity and phys-
iological distress impact adversely on the general health, which leads
to prevalence of ILI. 
Research studies have focused on specific respiratory viral strains

from confirmed cases, while less attention has been given to the esti-
mation of ILI space-time dynamics. Numerous studies on the relations
between meteorological parameters and influenza have been carried
out (Charland et al., 2009; Rambaut et al., 2008). Shaman and Kohn
(2009) introduced mathematical modelling to estimate seasonal pat-
terns of Influenza from humidity, while Tamerius et al. (2011) and
Zhang et al. (2014) cited studies on influenza susceptibility, epidemi-
ology and aetiology and its relationship with virus types, regional
immunity, indoor crowding, climate, and socioeconomic factors. The
rate of virus transfer depends on the virus load (carrying capacity) and
the surrounding weather condition (Dushoff et al., 2004; Charland et
al., 2009; Lowen and Palese, 2009). Influenza viruses can remain infec-
tious up to twelve days on inanimate surfaces, and several respiratory
pathogens can be active several months depending on the average rel-
ative humidity and temperature (Kramer et al., 2006). 
This study assumes a high correlation between ILI and influenza

cases and compares weather dynamics in relation to both ILI and other
forms of influenza since minor changes in the weather parameter can
induce a large number of ILI cases (Shaman et al., 2010; Chong et al.,
2015). The overall aim was to elucidate the space-time pattern analysis
of ILI from the 2005-2012 epidemic at the village level to identify
hotspots with a view to support possible rearrangement of existing
strategies and improvising the methods. We studied the situation in
Phitsanulok, a northern Thai province where high ILI morbidity
(250.55 per 100,000 population) was reported by the Provincial Health
Department. This put Phitsanulok Province third with respect to this
disease in the top ten provinces after Bangkok.

Materials and Methods

Study area
Phitsanulok Province, Thailand, comprising 9 districts and 991 vil-

lages over an area of 10,815 km2 (Figure 1). The province, situated
around latitude 100 E and longitude 17 N, is mostly covered with forests
and mountains and it has mixed weather with a daily average relative
humidity ranging from 60 to 87%, high rainfall and strong temperature
variability. An administrative boundary map was collected from Thai
Ministry of the Interior. 
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Figure 1. Phitasanulok Province, Thailand, with villages and
population distribution. 
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Case data
The Provincial Health Department provided case data for 991villages

with ID codes that could be linked with administrative units in a com-
puterised shapefile. Standard case definitions included a sudden onset
of fever (≥38°C) together with one respiratory symptom, such as
cough, sore throat or body ache. Cases with known cause of respiratory
disease (e.g. pneumonia) were excluded. The Thai Ministry of Public
Health collects ILI incidence data nationally with high coverage and
quality, however this study used only regional, provincial data from
2005-2012 available from regional health centres, municipality hospi-
tals and private clinics responsible for reporting ILI case data to the
central provincial health office on a daily basis. This study also focused
on the distribution of ILI cases in different age groups and with differ-
ent occupations. Therefore, details of age and occupation were collect-
ed along with case counts. 

Meteorological determinants
Meteorological data (rainfall, humidity and temperature) were col-

lected from Thai Meteorological Department. Data covering eight years
(2005-2012) were used to find correlations between cases and weather
parameters. IBM SPSS 20 (http://www-01.ibm.com/support/
docview.wss?uid=swg21509012) statistical software was used to
analyse the Pearson’s correlation coefficient sing a level of significance
<0.05. The ILI case count for the years 2005 and 2006 was too low to
show in the graph, therefore, only the period 2007-2012 was plotted
(Figure 2). 

Data analysis
Geographical information systems (GIS) were used to support the

investigation of the geospatial analysis. The space-time term refers to
the simultaneous detection of spatio-temporal clusters using dedicated
SaTScan package tools (Kulldorff, 2005). To detect spatial hotspots in
the region, spatial autocorrelation methods in the GeoDa software
package (https://geodacenter.asu.edu/software/downloads) was used.

Space-time clusters
The question whether ILI cases were distributed randomly over

space and/or time and whether there was any significant clustering
pattern in region was investigated using SaTScan V9.4.2 open source
software (http://www.satscan.org/). Space-time statistics explicitly con-
siders the connections between space and time in three-dimensional
(3-D) space noting observed verses expected cases inside a circular
window. Space-time analysis is based on the use of a cylindrical win-
dow, where the base of cylinder represents the geographical location
and the height the temporal extent of a cluster. The method is a retro-
spective analysis using Poisson discrete statistics which considers pop-
ulation under risk, where the null hypothesis (to be rejected) defines
cases as distributed randomly over space and time (Kulldorff et al.,
1998, 2005). Information of a village population was used to find the
population under risk. The population data for the median year (2009)
was selected to avoid the bias of population change during the study
period. Using retrospective analysis to find significant cluster(s), the
number of collected ILI cases by date and ID-sourced village location
were applied using 999 permutations of the Monte Carlo statistics
approach. The SaTScan application was run separately for each year. To
consider all temporal cluster possibilities, weekly data were selected in
annual cycles starting in April since the number of ILI cases was at low-
est in that month. To avoid overestimation of cases from any potential
cluster origin in region (this also allowed the detection of secondary
significant clusters), the maximum spatial cluster size was allowed to

grow considering the number of people and geographical size of region,
using 50% of the population at risk as default value. 

Spatial autocorrelation
The open source GeoDa software was set to run for 999 permutations

analysing the data by Global Moran’s I global and local indicators of spa-
tial association (LISA) (Anselin, 2010). The outcome was considered
significant at P>0.05 to reject the null hypothesis. Spatial analysis (SA)
is a purely SA that compares degree of correlation between observed
cases to their geographical locations considering the population under
risk. Moran’s I is a global statistics used to find global phenomenon
over the whole study area where the null hypothesis states that cases
geographical locations are not correlated, i.e. random. Moran’s I near 1
indicate strong cluster pattern and values approaching to zero refers to
a random pattern. Neighbouring areas have high order of contingency.
To incorporate this, neighbourhood weight matrix estimated using the
K-nearest neighbours method, which defines the spatial relation
between neighbours using distances between them. We estimated the
matrix at the threshold distance, i.e. the maximum distance between
two neighbouring villages (Anselin, 2005, 2010). In Moran’s I; Bayesian
smoothing rate was estimated from the information of ILI cases and
population of each village; smoothing of the rate was done to avoid bias
of the less populated villages with high morbidity. We scanned the
entire dataset over the region with Moran’s I window and report signif-
icant clusters with high-high and low-low values including insignifi-
cant locations (random) using the Z score statistic (Anselin, 2005,
2010). We used the top and bottom values of significance (two-tailed
test) to achieve a high level of significance (http://www.ats.ucla.edu/
stat/mult_pkg/faq/general/tail_tests.htm). 

Hotspot-local spatial autocorrelation
Hotspot is a local phenomenon provided by local SA, which identifies

spatial clustering in a specified area. Although there may be a global
clustering of a disease in an entire study region, this disease may

                   Article

Figure 2. Monthly numbers of influenza like illness (ILI) cases
and meteorological data in Phitasanulok Province, Thailand, for
the period 2007-2012. Case numbers from the years 2005 and
2006 were excluded due to low count. The average relative
humidity peaks were well synchronised with ILI cases-highest
peak observed in September 2010. The rainfall peaks were best
correlated in 2008 and 2011-2012.
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spread in various ways by local phenomena, e.g., due to
favourable/unfavourable geographical or social conditions in the same
region. As global Moran’s I cannot detect the local clustering, LISA
(Anselin, 2010) was utilized to identify local phenomenon of spatial
distribution. This approach allows the decomposition of the global
Moran’s I of spatial association to local individual observation at cer-
tain threshold areas. We analysed cases with location information
within a 10-km radius considering all possible combinations of disease
spread to find hotspots as described by various scientists (Crighton et
al., 2008; Anselin, 2010). LISA was run for each year due to high spatial
variation across years with a randomization of 999 permutations. We
scanned village locations where the magnitudes of ILI morbidity were
particularly high or low to relate with an identical or uniform condition.
High-high magnitude clusters defined the locations as ILI hotspots. 

Results

Influenza-like illness incidence
There were a total 12,360 ILI cases in Phitsanulok Province during

the study period. Based on this figure, the analysis gives an average
yearly morbidity of 286 cases per 100,000 population for the whole peri-
od 2005-2012. The highest morbidity (580 per 100,000) was observed in
2010. Despite the fact that 2009 was the year of the H1N1 pandemic,
which totalled 2474 ILI cases (fourfold that of the previous year). The
number of cases in 2010 increased to 4718 (twofold of that in 2009).
Thus, within two years from 2008 to 2010 the number of cases
increased eight times. In the whole study period, the number of ILI
cases in children less than five years old, school children and students
collectively contributed to an average of 78.1%. The ILI distribution
among different age groups revealed that children and students were
highly vulnerable to ILI infections (Figure 3), presumably due to differ-
ent immune status and different social activity in children and adults.
Unexpectedly, the percentage of ILI in children less than five decreased
in 2009 and 2010 even if the prevalence increased in 2011 and 2012.
The percentage of students with ILI increased abruptly in 2009 (Figure
3). Disease distribution between occupations, such as public servants,
manual labour, farmer and people out of work did not reveal any partic-
ular pattern. 

Space-time clustering 
In SaTScan, the Poisson retrospective model detected clustering by

comparing observed versus expected clusters. Spatial and temporal
patterns of ILI were analysed simultaneously from April to April across

the whole study period to detect significant seasonal clustering
cycles. Unlike influenza, other respiratory viruses generally circulate
in the region for 10-15 days. To avoid false clustering results, the
duration of aggregation was kept from 10 days to a possible maximum
extent. We recorded eight significant spatio-temporal cluster periods
in the entire 8-year study period in this study region. The date of ini-
tial signs of clustering varied across the region from year to year, but
the majority of clusters were detected in the June-July period (Figure
4). SaTScan inspects millions of potential clusters (primary and sec-
ondary), from which only significant clusters (primary) with space-
time dimensions were reported from the village, based on their IDs.
In the temperate region of Phitsanulok, primary clusters at signifi-
cant confidence levels (P=0.001 to <0.05) were localised (Table 1).
The number of ILI cases recorded in the clusters was diverse year to
year also with temporal durations ranging from 1 to 10 months. In the
whole study period an average of 24.3-km radius of disease outbreaks
(clusters) were observed. We were able to detect the eight space time
cluster in region; only one cluster from 2007 showed the high tempo-
rality of 10 month, while the majority of clusters showed 3-month
temporal duration.

                                                                                                                                Article
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Table 1. Significance of identified influenza-like illness space-time clusters in Phitsanulok Province, Thailand.

Village name (ID)                                        Start date                          End date                       Radius (km)                   P              Cases (n)

Phai Khom Rattanaram (65011001)                           July 05, 2005                         December 01, 2005                               24.97                              0.001                     114
Leam doo (65080307)                                                January 31, 2007                          March 01, 2007                                   16.88                              0.001                      49
Ngiw Ngam (65012004)                                                June 06, 2007                            March 31, 2008                                   28.68                              0.001                     257
Phai kho don (65011902)                                             June 05, 2008                           January 30, 2009                                  16.85                              0.001                     323
Bueng Phrao (65081003)                                              July 05, 2009                           October 02, 2009                                 27.41                              0.001                     1184
Tha pho (65011208)                                                September 03, 2010                    October 02, 2010                                 24.97                              0.001                     1653
Pongsathon-Chin laap (65010707)                             July 11, 2011                           October 08, 2011                                 24.46                              0.001                     1067
Krap Phuang Tai (65060104)                                     August 04, 2012                       November 01, 2012                               30.03                              0.001                     543

Figure 3. The number of influenza like illness (ILI) cases in
Phitasanulok Province, Thailand, classified by occupation.
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Spatial autocorrelation-Moran’s I 
GeoDa detected spatial clusters in all years of the study except in

2009, the strength of clusters indicated by Z-values and Moran’s I. The
higher the Z-value, the higher the strength and intensity of the cluster
investigated. The observed Z value in 2010 was 48.28, which was the
highest cluster pattern during the whole period. High values of Moran’s
I were observed in 2007 and 2010, while the lowest index was seen in
2009, indicating a random pattern at that year. 

Hotspot detection-local indicators of spatial association
The LISA tool detected geographically homogenous high-high and

low-low values in the study area, the localisation of which is shown in
Figure 5. These spatially significant local clusters were missed by glob-
al Moran’s I statistic. However, some of the local clusters were of unex-
pected high strength (z-value) and they also correlated with the global
Moran’s I (Table 2). This index was at its lowest levels of significance
in 2006 and 2009, but appeared as equivalent disperse cluster patterns
on the LISA maps by visual inspection. However, the Z-value gives only
information about the cluster strength and the LISA cluster maps differ
at scale and geographical extent. For instance, the 2006 cluster did not
show a strong aggregation of village points, and there were many high-
high and low-low clusters in 2009. The year 2010 showed the highest,
well-defined cluster pattern across the study period, while 2011 and
2012 showed increased spread with low-low clusters in the southern
region of Phitsanulok Province. 

Weather variability
Pearson’s correlation statistics was used to analyse, on a weekly

basis, the relation between ILI cases and rainfall, minimum tempera-
ture, mean temperature, maximum temperature, change in tempera-
ture and average relative humidity. We assumed that a change in
weather parameters take some duration to create favourable environ-
mental condition (local level) for the infection to start spreading. Best
correlation coefficient was observed with average humidity, in particu-
lar after 1-month lag (Table 3) at P values varying between 0.05 and
0.01. These lag cases (t-1) were highly correlated with the average
humidity. Furthermore, high negative correlation was observed with
regard to change in temperature. However, while maximum tempera-
ture affected the t-1 cases negatively, we did not find any significant
relation with mean temperature. Rainfall correlated strongly without
time shift (t), indeed stronger than t-1. Exceptionally, the cases record-
ed in 2006 were not correlated with rainfall. Minimum temperature in
2009 revealed higher negative correlation (-0.80) with cases at t, which
was significant to note; also correlation with cases at t from the whole

study period showed negative (-.18) correlation with average rainfall
(Table 3). 
The coefficients showed a positive correlation between the weekly

number of cases on the one hand and average humidity and average
rainfall on the other. Furthermore, to highlight the relation between
peak values of humidity and rainfall with peaks of the weekly number
of cases, they were plotted together (Figure 6). When pivot table data
filtered for the top 10 values of humidity for the entire study period
were used, only the number of cases exceeding 50 per week were

                   Article

Figure 4. Detected influenza like illness space-time clusters in
Phitasanulok Province, Thailand, including their start dates.

Table 2. Results of global Moran’s I and local indicators of spatial association measurements.

Year                   Villages (n)                           P                             Moran’s I                              Z                                Distribution pattern

2005                                    115                                          0.001                                        0.598                                         36.61                                                     Cluster
2006                                     84                                          0.001                                        0.661                                         20.58                                                     Cluster
2007                                    204                                          0.002                                        0.632                                         41.29                                                     Cluster
2008                                    289                                          0.002                                        0.559                                         43.11                                                     Cluster
2009                                    664                                          0.001                                        0.039                                         12.68                                                    Random
2010                                    831                                          0.001                                        0.696                                         48.28                                                     Cluster
2011                                    613                                          0.004                                        0.583                                         39.21                                                     Cluster
2012                                    603                                          0.005                                        0.432                                         37.68                                                     Cluster
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selected for plotting. These 10 top average humidity accounted for
5212 ILI cases (up to 42.2% of the cases). In the graph shown in
Figure 6, rainfall had similar spikes as the number of ILI cases, pre-
dominantly in the weeks of August and September in 2009 and 2010.
However, in the initial years of study (2005-2008), no major spikes
were observed. In 2010, seven ILI spikes were observed which
amounted to 35% of all spikes, whereas in 2009 and 2011 five spikes
were observed each year. 

Discussion

This study integrated multiple tools to analyse ILI space-time epi-
demiology in Phitsanulok. Using various spatiotemporal analysis meth-
ods and correlation statistics, such as Moran’s I and LISA, with meteor-
ological parameters effectively mapped and determined the spatial epi-
demiology of ILI during 2005-2012 in local tropical settings. 

                                                                                                                                Article

Table 3. Results of evaluation using Pearson’s correlation coefficients.

Year                   Lag time                   Average                      Minimum                    Maximum                   Average                 Change in 
                                                             rainfall                     temperature                temperature                 humidity              temperature

2005                    One month (t-1)                       0.196                                       0.185                                      -0.124                                  .425**                              -.399**
2006                                                                           0.133                                       0.124                                     -0.303*                                 .412**                              -.419**
2007                                                                          -0.036                                     -0.304*                                  -0.395**                                 0.021                                 0.024
2008                                                                        0.519**                                    0.284*                                     -0.173                                  .672**                              -.599**
2009                                                                         0.276*                                    -0.327*                                    -0.156                                  .533**                                .295*
2010                                                                        0.438**                                     0.041                                     -0.273*                                 .504**                              -.441**
2011                                                                        0.480**                                   0.363**                                     0.002                                   .556**                              -.459**
2012                                                                        0.469**                                     0.021                                    -0.563**                                .571**                              -.574**
2005-2012                                                               0.229**                                    -0.058                                    -0.112*                                 .361**                               -0.006
2005                           No lag (t)                             0.333*                                        0.1                                       -0.272*                                 .473**                              -.465**
2006                                                                            0.08                                       0.295*                                      -0.01                                   .378**                              -.452**
2007                                                                         0-.248*                                     -0.184                                      -0.184                                   -0.232                                .280*
2008                                                                        0.435**                                     0.148                                     -0.315*                                 .593**                              -.564**
2009                                                                        0.426**                                  -0.805**                                   -0.048                                  .455**                               .821**
2010                                                                        0.404**                                     0.067                                      -0.232                                  .412**                              -.414**
2011                                                                        0.632**                                    0.295*                                     -0.057                                  .545**                              -.426**
2012                                                                        0.507**                                    -0.011                                   -0.417**                                .519**                              -.400**
2005-2012                                                               0.249**                                  -0.181**                                    -0.08                                   .313**                               .149**

Figure 5. Influenza like illness (ILI) clusters (hotspots) in Phitasanulok Province, Thailand, for the period 2005-2012.
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Changes of meteorological parameters are highly frequent, complex
and abrupt in tropical settings. Even small changes in the weather
characteristics can trigger pathological changes in large numbers of
peoples vulnerable to respiratory diseases (Tamerius et al., 2011).
Therefore, we aimed to find the relationship between weather variabil-
ity and the number of ILI cases. In this endeavour, we had great support
GIS, which contributed by providing user-friendly geospatial analytic
techniques suitable to carry out research on disease dynamics more
efficiently than previously. Many spatial statistical standard tools are
now available in GIS packages, which lend themselves well to spatial
and temporal analysis (Anselin, 2010). 
The key findings of this study are that children under the age of five

and students (5-14 years old) are the most susceptible age groups
(Figure 3), which is supported by Simmerman et al. (2009) and
Anderson et al. (2012), who found that children are most susceptible to
ILI infections. Although routine child vaccination and selective season-
al influenza vaccinations programmes cover major respiratory diseases
in the above mentioned age groups, we found that ILI cases represent-
ed 72.2% of the cases in the study, while children under five and stu-
dents below 14 account for only 23% of the study population. i.e. 300%
higher risk than other age groups. There are no vaccines available for
respiratory viruses, additionally human RSV, rhinovirus and para-
influenza viruses, which contribute to ILI due to rapid change in the
genome which cause repeated infections in the same population (Yang
et al., 2012). Despite advanced precautionary measures, ILI imposes
serious concern with respect to young adults, possibly due to lower
immunity, high social communication and low precautionary measures
in school children (Anderson et al., 2012). Farmers, general labourers,
small-scale private business people, public servants and the unem-
ployed contribute collectively to 18-22% of all ILI cases (Figure 3).
These classes showed less susceptibility to ILI than students (Anderson
et al., 2012). Moreover, awareness at work, vigilance and precautionary
working environment have shown that it is possible to interrupt the
spread of the disease. 

Though spatial epidemiological studies on ILI are less explored due
to lack of laboratory confirmation, they offer a broader view of the pat-
tern of respiratory diseases. Therefore, empirical comparison between
contributing respiratory viruses to ILI and collected cases of ILIs would
be useful. As influenza virus generally occupies the major part of ILI
cases, we compared some influenza studies. Overall, influenza made
up 30% of the ILI cases, but could, in peak month, reach above 70%
(Kimura et al., 2011; Yang et al., 2012). In general, elevated vaccination
and preventive measures after the 2009 pandemic, the number of cases
fell in the tropical regions in 2010 (Yang et al., 2012), whereas we
observed the highest increase of cases in 2010 (Figure 2). This could
be due to increased viral survival due to weather conditions, a higher
virulence factor in the region or the fact that immunity developed
through prior infections is temporary (Dushoff et al., 2004). Male and
female percentage of ILI cases in Thailand were different for each year
investigated, collectively 51.2% for males and 48.8% for females over
the whole 8-year period, even though the female population was higher
(97 males to 100 females). However, this difference is not statistically
significant.
Numerous mechanisms have been proposed to find spatial and/or

temporal patterns of respiratory diseases, but simultaneous focus on
space-time patterns are lacking, especially for ILI. Our work shows that
the integrated assessment of tools can be used to effectively map the
dynamics of ILI in 3-D space, global space and also for finding the
hotspots. Eight space-time clusters were identified at P<0.05. Major
clusters were shown to build in the rainy season from June to August,
continuing for 3 months. In contrast, clusters that started in the month
of January or March persisted only for a month (Figure 3). In 2009,
smaller peaks started in July with a maximum in September, the same
pattern was observed in the period 2010-12 (Figure 2). Space-time ret-
rospective scanning window revealed that ILI has the potential capabil-
ity to disseminate through a 16-30 km radius area, which approximate-
ly covers up to 50% of the study area, indicating that people in the study
area must have a high social interconnectivity. The spatio-temporal

                   Article

Figure 6. Weekly spikes of the number of influenza like illness (ILI) cases in Phitasanulok Province, Thailand, for the top 10 humidity
values. Labels on horizontal (x) axis: first row is the number of week in that month, second row represents the year (yy), and third row
stands for average humidity (%). The figure denotes the top 10 peaks of humidity where ILI cases have more than 50 patients; weekly
average rainfall (mm) is plotted as well. 
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clustering in 2007 and 2008 persisted for 8 and 10 months, respectively,
eventually spreading over an area of 28.7 to 16.8 km radius. However,
the rate of viral propagation was actually low: 257 to 323 cases, respec-
tively (Table 1). The clusters starting in the last week of January 2007
and June 2008 clearly coincide with influenza A spikes as in the study
by Simmerman et al. (2009), who included only influenza A cases con-
firmed in the laboratory. As influenza A is the most common pathogen
of the seasonal circulating viruses (Simmerman et al., 2009), the
majority of these infections could have emerged from this virus rather
than from influenza B. However, there is not sufficient data to draw
clear lines regarding the dynamics between these two virus types. 
In a purely spatial approach, Moran’s I could elucidate the evolving

pattern of ILI in the region. We recognised that there was distinctive
pattern in spread of ILI virus across the region for all the years identi-
fied using spatial statistics. The year 2009 showed a random pattern,
possibly due to ILI closely following the H1N1 pandemic, leaving behind
most of the districts and remote villages with ILI. The longest temporal
window (8 months) appeared in 2007. It had a high z-score indicating
a strong aggregation pattern (Table 2). The 2010 space-time cluster
included up to 1,653 cases within the span of one month. All the years
studied, except 2009, showed clustered patterns. The application of
LISA is known for its ability to effectively locate the spatially active local
clusters (Figure 5), which are missed (by default) by the global Moran
I (Jeefoo et al., 2011). Using the LISA approach, we observed two high-
high clusters marking a hotspot in 2010. This was the highest density
in our material, but we observed in the period of 2010-2012 also a com-
pact, low-low cluster pattern with a P=0.001. The visual analysis of this
pattern showed clusters with highly defined boundaries (Figure 5).
Although the years 2005-2007 showed high-high cluster hotspots, the
strength according to visual interpretation noted only a weak aggrega-
tion of involved villages, especially in 2006. This finding associates well
with the absence of clusters in 2006 according to our space-time analy-
sis. Knowledge of these clusters hold vital information for planning of
disease control and vaccination programmes, while yearly cluster maps
showed that the pattern was diverse for high-high and low-low clusters
with reference to year, geographic extent and number of villages infect-
ed. However, Mueang Phitsanulok, the capital of Phitsanulok Province,
was affected every year (Figure 5). The high population in the capital
(Figure 1), plus yearly increasing migration resulting in overcrowding,
produces naturally a high vector mobility. Our findings also suggest
that population density is the major factor in disease spread as shown
by Charland et al. (2009).
The strength and extent of ILI epidemics are influenced by factors

such as virulence, relative immunity of the population, crowding and
the weather conditions (Prachayangprecha et al., 2015). Pearson’s cor-
relation coefficient between meteorological parameters and number of
ILI cases showed different significance levels (Table 3). We are in
agreement that higher humidity has positive relation (directly propor-
tional) to the number of ILI cases (Soebiyanto et al., 2015; Tang et al.,
2010). Additionally, humidity had a highly significant correlation with
the number of ILI 1 month later, possibly due to increasing humidity
decreases immunity to the disease and thus increasing virus survival
(Tamerius et al., 2013). We also found high humid-rainy conditions
coinciding with ILI peaks as found by these authors. To explore more
about the humidity relation, we filtered the 10 high values of average
humidity. Peaks of ILI cases coincided with high humidity values and
average rainfall in the same period. For the top 10 humidity peaks, ILIs
accounts up to 40% of cases (Figure 6). This study shows that rainfall
has an immediate impact on ILI cases, possibly due to following the

high humid conditions. Although rainfall has shown a relatively low
correlation coefficient (Tamerius et al., 2013), some studies suggest
that rainfall and higher humidity increase indoor crowding leading to
an aggregation of the human population as well as favouring virus
propagation (Lofgren et al., 2007). In agreement with
Prachayangprecha et al. (2015), we observed that major ILI peaks
occurred in the rainy and early winter season trailing from July and
sustaining high rates up to December causing a major ILI spike, in
some years two (Figure 6). Another small ILI spike was observed in the
February-March period, while it appeared as a flat line in April, a drop
in the number of cases also found by  Kimura et al. (2011).
As often observed in temperate regions (Viboud et al., 2006;

Soebiyanto et al., 2015), respiratory viruses have an inverse associa-
tion with lower temperatures. Besides higher humidity, lower temper-
atures may also facilitate survival and transmission of respiratory
pathogens as showed by Lowen et al. (2007). Various factors could facil-
itate the spread of ILIs, but it clear that rainfall, humidity and low tem-
peratures contribute significantly. Lowen and Palese (2009) report that
an average relative humidity level above 80% block the spread of respi-
ratory virus. However, in contrast, this study observed 18 spikes
between 81.0 to 85.1% of humidity, which accounts for nearly 40% of all
ILI cases in the entire study period. The temporal graph (Figure 2)
illustrates that the major ILI spikes were observed in the August-
December and the February-March periods. 
Increased surveillance activities after the 2009 H1N1 pandemic in the

region, does not relate with rise of ILI cases in 2010, as identified clus-
ters reveal significant viral outbursts and absence of randomness.
Moreover, space-time statistical scans and LISA scans (hotspots) in
2007 and 2010 clearly show independent strong linkages between ILI
cases and the villages where they live. Space-time clusters and visual
interpretation (Figure 2) point out that the July-September period is
most common for disease outbreak in the region. In addition, the ILI
spike increased substantially in the year following the epidemic, i.e.
February-March 2010. ILI has shown a seasonal pattern in the spatio-
temporal and correlation analysis. However, one limitation was that
small study areas has only one meteorological data centre to test exten-
sive weather variability, so provincial border analysis could be more
elaborate if neighbouring province information were provided. In addi-
tion, better vaccination data could illustrate broader spatial dynamics
and so would future studies planned to integrate socioeconomic fac-
tors, such as housing patterns, water sources, economic status, stress
level and human migration. 

Conclusions

Humidity, rainfall and temperature play a stimulatory role for ILI in
the tropics. An average relative humidity and rainfall have a positive
correlation with the number of cases, and so has humidity with 1-
month lag. Temperature parameters have weak negative correlation
with cases numbers. Young (children and older school children) are
high-risk age groups, indicating persistent ILI burdens by jointly con-
tributing to a majority of ILI cases, sometimes reaching near 80% col-
lectively. Spatially, ILI infection clusters have an average radius of 24
km, while most cases are found in the period July-October. The year
2010 was the most significant in the study period since it contributed
high cluster strengths, space time clusters and multiple hotspots, even
though 2009 was the year of the H1N1 pandemic.
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