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Abstract

After elimination of the Aedes aegypti vector in South
America in the 1960s, dengue outbreaks started to reoccur during
the 1990s; strongly in Argentina since 1998. In 2016, Cérdoba
City had the largest dengue outbreak in its history. In this article
we report this outbreak including spatio-temporal analysis of
cases and vectors in the city. A total of 653 dengue cases were
recorded by the laboratory-based dengue surveillance system and
georeferenced by their residential addresses. Case maps were gen-
erated from the epidemiological week 1 (beginning of January) to
week 19 (mid-May). Dengue outbreak temporal evolution was
analysed globally and three specific, high-incidence zones were
detected using Knox analysis to characterising its spatio-temporal
attributes. Field and remotely sensed data were collected and anal-
ysed in real time and a vector presence map based on the MaxEnt
approach was generated to define hotspots, towards which the pes-
ticide-based strategy was then targeted. The recorded pattern of
cases evolution within the community suggests that dengue con-
trol measures should be improved.
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Introduction

Dengue is one of the most widespread vector-borne diseases
in the world (TDR/WHO, 2009). Aedes aegypti, the main vector
of the dengue virus (consisting of four different strains, i.e.
DENI1-4) in Latin America is a day-biter and peridomestic
mosquito that breeds preferably in containers related to the
house-hold (Gurber, 1997; Vezzani and Carbajo, 2008). The inci-
dence of dengue has grown dramatically in recent decades, with
a concomitant increasing trend in outbreaks in South America
during the past few years (Brathwaite et al., 2012; WHO, 2015).
After the successful vector eradication campaign, carried out at
the national level in the 1960s, the first outbreak of dengue in
Argentina was documented in 1998 (Aviles et al., 1999). The
largest notified dengue outbreak in Argentina before 2016
occurred in 2009. It reached subtropical regions affecting more
than 25,900 people from localities as far south as Cordoba and
Buenos Aires (Seijo, 2009). Most infections (>90%) occurred in
the northern provinces of Chaco, Catamarca and Salta (MSN,
2009).

Within the context of landscape epidemiology (Pavlovsky,
1996; Ostfeld et al., 2005), remotely sensed data and geospatial
technologies are essential tools. Using these ideas and method-
ological tools for the case of dengue epidemics within Argentina,
a number of interdisciplinary studies were produced and pub-
lished as predictive risk models based on environmental condi-
tions (Estallo et al., 2008; Espinosa et al., 2011, 2012, 2016;
Vergara et al., 2013; Dantur et al., 2015) and operational tools
(Porcasi et al., 2012). As the current approach for dengue control
is mainly based on vector control (Guzman and Kouri, 2002;
Guzman et al., 2004), models based on remotely sensed data
integrated with urban demography and socioeconomic data
would allow prediction of spatio-temporal variation of vector
population abundance.

The strongest dengue outbreak in Argentina so far occurred
in 2016. This outbreak started in early January 2015, coinciding
with information from the International Research Institute for
Climate and Society (IRI) (https://iri.columbia.edu/) that the Sea
Surface Temperature (SST) exceeded the threshold indicating
weak El Nifio conditions. In August, the SST had increased to
what is considered a strong El Nifio level. The El Nifio Southern
Oscillation (ENSO) is the leading mode of year-to-year global
climate variability (Cai et al., 2015) affecting global atmospheric
circulation, thereby altering rainfall and weather patterns around
the world and temporarily elevating global temperatures. In the
last quarter of 2015, and the first quarter of 2016, extreme rain-
fall was recorded in several parts of South America, particularly
in Paraguay, northern Argentina and southern Brazil. About
180,000 people were affected by flooding and more than 80,000
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were displaced. Cérdoba Province was no exception. The World
Meteorological Organization (WMO) (https://public.wmo.int/en)
issued a statement regarding the status of the global climate
(WMO, 2015) providing evidence that 2015 was the hottest year
so far in many countries, and indeed also globally. The global
average of temperatures over land areas in this year exceeded
previous hot years, such as 2005, 2007 and 2010. The global
average temperature over the sea surface in 2015 was equal to
2014 record. The combination of high temperatures, both over
land and sea made 2015 a record year. In South America, the tem-
peratures in 2015 were above normal for most of the continent,
with anomalies of up to 2°C. The potential association of dengue
epidemics and ENSO has been explored by several authors
(Gagnon et al., 2001; Cazelles et al., 2005; Johansson et al.,
2009). Taking the ENSO and the recent high temperatures into
account, we present here an analytic report of the 2016 dengue
outbreak in Coérdoba, the second largest city in central Argentina.
The objective was to describe the 2016 dengue outbreak includ-
ing a spatio-temporal analysis of cases and vectors using similar
concepts discussed by us previously (Rotela et al., 2007). We
considered it particularly relevant to do this supporting the gov-
ernmental surveillance system actions in real time with geospa-
tial tools using a combination of case and vector field data map-
ping, complemented with climate observations, remote sensing
and spatial statistics.

Cordoba City is located at the southernmost limit of dengue
epidemics recorded so far (Estallo ef al., 2014), and is showing
an increasing number of cases since the first epidemics of 2009,
with circulation of DEN-1 and DEN-4 strains. The analysis pre-
sented here is the first result of an integrated surveillance system
including operational geospatial tools. The surveillance system
records the coordinates and dates of each reported dengue case
and periodical sampling of vector presence. Field data, together
with ancillary climatic and remotely sensed variables, were used
to produce continuous mapping of the epidemic, prediction maps
of the vector distribution and space-time analysis of the epidem-
ic. The presence probability of A. aegypti breeding sites was pro-
duced during March 2016 and used operationally to define insec-
ticide application strategies during the outbreak.

Materials and Methods

Study area and climate context

Cordoba City is located at 31°24°30”’S, 64°11°02”’W, 450 m
above mean sea level, in central Argentina (Figure 1A). It has a
surface of 576 km? and, according to the census bureau in
Argentina, i.e. El Instituto Nacional de Estadistica y Censos de la
Reptblica (INDEC), a population of about 1.33 million (INDEC,
2011); the urban area represents around 37.2% of the city sur-
face, which is surrounded by agricultural fields. The city has a
semi-dry climate, with a well-defined rainy season between
October and March delivering an annual precipitation of about
750 mm. The mean annual temperature is 21°C (range 12-38°C).
The winters are temperate, with several frosts days in June and
July (range -3-28°C) (Jarsun et al., 2003).

Data handling

The dengue cases were recorded as suspected, probable and
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confirmed according to the definition adopted by the Ministry of
Health - Ministerio de Salud de la Nacion Argentina (MSN,
1999) and the Centers for Disease Control and Prevention
(CDCQ), Atlanta, GA, USA (CDC, 1990). The dengue cases con-
sidered in this study were the ones georeferenced by residential
address and confirmed by blood analysis from suspected cases or
cases identified by epidemiologic linkage. Autochthonous cases
were defined as those originated within the region of Cérdoba
City during the outbreak, while those coming from a different
region or country were termed imported cases. With confirmed
virus circulation occurring during the outbreak, we assumed that
a probable dengue case would have a high probability of being a
confirmed case, even in the absence of laboratory confirmation.
Based on this rationale, all suspected cases were included in the
spatio-temporal analysis, together with the confirmed cases.

By the end of 2015, the national system for dengue risk strat-
ification (Porcasi et al., 2012) predicted a high risk for the whole
Centre-North area of Argentina (Figure 1B). The Cordoba out-
break (developed in the context of a large national dengue out-
break) counted about 76,734 notifications, 41,207 autochthonous
confirmed cases, and a national disease rate of 96 cases per
100,000 inhabitants; the rate in Cordoba was about 19.1 per
100,000 inhabitants.

Density case maps were elaborated using the location of indi-
vidual cases during all the period using the heatmap tool of
Quantum  Geographical Information Systems (QGIS)
(http://www.qgis.org/en/site/) software used for this study. The
heatmap indicates spatial clustering and is generated using the
Kernel density algorithm that calculates the density of positive
points for any given area. Using this methodology, all dengue
hotspots could be shown for any time and place chosen.

Mapping the vector distribution

From December 2015 to May 2016, six monthly entomolog-
ical samplings of Ae. aegypti larvae were carried out in Cordoba
City through evaluation of all domestic containers belonging to
600 houses each time. The sampling scheme included 30 neigh-
bourhoods covering all regions of the city. In all selected house-
holds (georeferenced using the coordinates of Google Earth), the
water containers were classified into different categories (tires,
tanks, drums, barrels vases, efc.) and the total number of contain-
ers recorded, including the presence of water and larvae in them.
The larvae found were collected and transported to the laboratory
for taxonomic identification using a specific morphological key
(Rossi and Almiron, 2004). Houses found with at least one con-
tainer with one or more Ae. aegypti larvae or pupae were consid-
ered positive. The QGIS software was used to build the point
vector layers locating sampling points, sites with mosquito pres-
ence and larval abundance. The Ae. aegypti presence of February
2016, recorded by house surveillance sample that day, was cho-
sen to develop a presence distribution map using MaxEnt
(http://homepages.inf.ed.ac.uk/lzhang10/maxent.html), version
3.3.3a, according to the approach developed by Espinosa et al.
(2016). For the model development, a SPOT 6 satellite multi-
spectral image (4 bands) was processed through unsupervised
classification with 20 classes. The fraction of each class sur-
rounding each image pixel was used to build a raster per class
(=20 rasters). The set of 20 landscape covers layers, together with
distance to drinking water, Normalized Burn Ratio Thermal
NBRT (Holden et al., 2005) were used as predictor variables
(Peterson, 2001, 2003; Elith ez al., 2006; Rotela et al., 2007). The
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Figure 1. Location of Argentina and Cérdoba City (A). Extract from the operative dengue risk stratification system web-GIS (Porcasi

et al., 2012), showing Argentina and Cérdoba risk by the end of 2015 (B).

[page 228]

[Geospatial Health 2017; 12:564] OPENai\CCESS




A Monthly temperatures

Temperatures °C
&

MAR
MAR-2015 |
APR -
APR-2015 |
MAY -
MAY-2015 -
JUN A
JUN-2015 -
JUL
JUL-2015
AGU-2015 -
SEP
SEP-2015

Rainfall anomaly
=1 0

1100

5 200

Figure 2. The 16-year average monthly temperatures vs the 2015
monthly temperatures in Cérdoba City (A): dashed line repre-
sents 16-year average monthly temperatures, while solid line rep-
resents 2015 monthly temperatures. Anomaly of the accumulated
rainfall in the region surrounding Cérdoba City from December
2015 to April 2016 (B): expanded picture of Cérdoba City
shown in the lower, right corner.
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MaxEnt algorithm was run with 1,000 repetitions using 75% of
vector presence points for model training and 25% for validation.
The MaxEnt algorithm detects non-random relationships
between two datasets with the georeferenced records of the
species presence and the set of raster land cover types represent-
ing the environmental and demographic variables considered rel-
evant to determine the Ae. aegypti distribution (Philips et al.,
2006). The environmental dataset used in the analysis included
23 raster format variables of 10-m spatial resolution (Espinosa et
al., 2016). The predictive map produced by the model was
assessed by measurement of the area under the curve (AUC),
using the receiver operating characteristic (ROC) analysis, which
indicates the global accuracy of the test (Deleo, 1993).

Spatio-temporal analysis

A spatio-temporal dengue case clustering analysis was car-
ried out using the Knox test (Knox, 1964), as shown by
(Kullfdorf and Hjalmars, 1999; Rotela et al., 2004; Phillips ez al.,
2006). The number of pairs of points found at a given space-dis-
tance (in meters) and time-distance (in days) were counted and
compared with a random distribution of expected cases (basically
a 3D histogram of cases for the space-time distance coordinates).

Argentina provinces. Weeks 1-20, 2016
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Figure 3. The rate of dengue in Argentina at the provincial level
in 2016. Rate expressed per 100,000 inhabitants; all confirmed
and probable cases up to the 20% week taken into account; the
national disease rate at this point was 90.1/100,000 inhabitants.
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Results

Temperature and rainfall

Climate anomalies occurred in Cordoba City during 2015. As
shown by the temperature recorded at the Cordoba airport meteo-
rological station, the near-surface temperature was remarkably
superior to the average estimated with a 16-year time series (1998-
2014 monthly data). During autumn 2015 (March-June) the tem-
perature remained above the average, but from July to September
the trend was the inverse (Figure 2A). The entire region had a pos-
itive anomaly of accumulated rainfall from December 2015 to
April 2016, compared with the average of the period 1998-2014
(Figure 2B). The anomaly constituted a surplus rainfall varying
between 200 and 300 mm. The raw data for rainfall anomaly were
obtained from the Tropical Rainfall Measuring Mission (TRMM)
(https://trmm.gsfc.nasa.gov/) with the specific Rainfall Estimate
product TMPA/3B43, with a monthly frequency and a pixel size of
0.25 degree x 0.25 degree (25 km approximately).

Dengue cases

The national epidemiological scenario showed the highest
number of cases in the period up to April 2016, particularly at the

provincial level in northeastern and northern Argentina (MSN,
2016) (Figure 3). At the provincial level of Cérdoba, the number of
DF cases from the 2009 outbreak until the present 2016 outbreak
shows an increasing trend, as reported by the Ministry of Health
(Figure 4).

The provincial health agency recorded 2,197 suspected cases
(with febrile illness), in the period from January 01 2016 to May
15 2016. During this period, 75% of the cases were reported by the
public medical agencies with the rest by private medical care facil-
ities (the latter probably providing strongly underreported data).
The total number included 653 confirmed cases (572
autochthonous and 81 imported) constituting the highest number
of cases reported ever for the province. The temporal variation of
the total number of new cases during the 5 months of the epidemic
showed a peak value in February-March 2016 (Figure 5) with the
typical temporal wave-like pattern. Strain characterisation by rou-
tine protocol reported the virus associated with the autochthonous
cases as apparently DEN-1 and as a mixture of the 4 serotypes in
the imported ones. In this outbreak, 14% of the cases required hos-
pital admission. The largest number of cases occurred in the age
group of people between 20 and 29 years old (25% of the cases)
followed by the group between 10 and 19 years (16% of the cases).
The total age range varied between 6 months and 93 years of age.

At the city scale, the spatio-temporal variation of the number
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Figure 7. Distribution of the spatial clustering when accounting for confirmed cases during the 2016 dengue outbreak. The heatmap
shown was obtained with a 300-m searching radius and a 10-m pixel output.
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of cases is represented in Figure 6. Here it is interesting to see how,
in the places where cases appear in a certain period, there are still
cases in the later periods indicating that transmission in a certain
place continues once it has started. The kernel density algorithm
showed significant spatial aggregation of autochthonous cases,
highlighted as inserted zoom windows in Figure 7. The temporal
variation of the number of cases within each of these aggregations,
are presented in Figure 8 showing the particular temporal pattern
for each one.

Vector abundance and distribution

Between December 2015 and May 2016, the monthly sam-
pling showed that 7.3% to 23.8% of the houses had containers with
Ae. aegypti larvae; the maximum values were seen in February (an
example of vector sampling data is shown in Figure 9A). Using the
vector abundance data collected in February, the MaxEnt model
showed that three environmental variables could correctly describe
83% of the breeding sites distribution: urban coverage percentage,
bare soil coverage percentage and distance to drinking water (pub-
lic network) here given in decreasing importance. The breeding
site distribution map derived from the MaxEnt model showed an
AUC of 0.942 with a standard deviation (SD) of 0.013, a very good
performance according to Parolo et al. (2008). The probability map
for Ae. aegypti breeding sites generated by this ecological niche
model is shown in Figure 9B. This product was produced in March
2016 and operationally used to define the insecticide application
strategy during the outbreak.

Spatio-temporal analysis

As seen in Figure 10, the distribution of the DF cases for each
pair of distances showed the existence of three spatio-temporal
clusters (red colour in the figure), with a strong spatial component
and soft temporal oscillation. The first cluster (top left in Figure
10) occurred at a distance less than 500 m between pairs of cases,
and within a period of 20 days. The second one (centre left in
Figure 10) appeared between 2-3 km away and also within a period
of 20 days. The third cluster occurred at a distance larger than 6 km
and again within a period of 20 days. The spatial profile drawn as
a vertical line (I) crossing the three clusters, shows the spatial vari-
ation in cases within 7-day periods. Lines II and III show temporal
profiles at distances 2 and 6 km for 90 days. These temporal pro-
files suggest that cases are aggregated within periods of 40 or
fewer days, as the case occurrence dropped strongly after that time.

Discussion

The 2016 dengue outbreak shows that a clear clustering of
cases developed in Cordoba City showing specific neighbourhoods
with hotspots of high virus transmission and others with almost no
cases. Not all hotspots started simultaneously and it became clear
that in regions with high-transmission rates, virus circulation
remained active during the whole epidemic period. This indicates
that the vector control activities carried out were not sufficient to
interrupt transmission everywhere. On the other hand, it should
admit that the occurrence of case clusters suggests that control
activities carried out, together with the environment-driven vector
distribution, curbed the outbreak from engulfing the whole city.

The number of dengue cases was highest in the 10-29 years
age class, suggesting mainly out of home virus transmission. The
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mobility of young adults brings them into contact with hotspot
neighbourhoods that may also account for the high number of
cases in this age group. However, this finding contrast with several
studies that report that dengue risk exposure is greater at home
because of the endophilic habits of the Ae. aegypti vector
(Rodhain, 1996; Diarrassouba and Dossou-Yovo, 1997; Chadee
and Martinez, 2000).

The spatio-temporal pattern of dengue cases occurrence
showed a heterogeneity similar to that seen in the 2009 outbreak,
although with a stronger spatial clustering observable up to 6 km
within temporal windows up to 20 days (Estallo et al., 2014). The
first spatial cluster within 100 m may correspond to an intrinsic
hotspot transmission, showing the typical scale of this phe-
nomenon in each sector of the city. The other two spatial clusters
could be more related to inter-cluster distance. In the case of tem-
poral distance, two not well-defined peaks appeared, the first
between 2 and 3 days might correspond to the extension of the dis-
ease due to several infected mosquitoes (with the 3-day duration
possibly related to infected vectors surviving in the field). The sec-
ond one of about 20 days could be related to an extrinsic incuba-
tion period (EIP) of about 15 to 18 days for dengue viruses, how-
ever, longer than the one recorded in northern Argentina reported
by Rotela et al. (2007) plus approximately 3 days of infected life.
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Figure 8. Number of daily, confirmed cases in three representa-
tive, clustered areas in Cérdoba City during the 2016 dengue out-

break.
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Figure 9. Entomological survey results for Aedes aegypti grouped by neighbourhood (A): coloured areas show places where mosquito
breeding places were found; the colours indicate the numbers of breeding places in each area. Probability of Aedes aegypti presence (B):
estimates were produced by the Maxent model based on 15 macro-environmental variables and trained using Ae. aegyzpi breeding site
survey results.

OPEN aACCESS [Geospatial Health 2017; 12:564] [page 233]



The mean survival of Ade. aegypti females under field conditions
estimated by the Knox space-time analysis (Rotela et al., 2007)
gives approximately 20 days, which is comparable with previous
estimates (Muir and Kay, 1998; Harrington et al., 2001). However,
this 20-day peak could also be related with the extrinsic dengue
virus incubation period, usually found at mean summer tempera-
tures like in Cérdoba (Watts et al., 1987). The abundance of Ae.
aegypti, as measured by the house index, was substantially higher
than the values found in the 2009 outbreak (Estallo et al., 2014).
The non-simultaneous appearance of dengue cases throughout
the city and in specific sites may have several explanations. First,
in the context of a national outbreak, infected people from other
cities could introduce the virus into the community at some specif-
ic places at the beginning of the outbreak and spread the virus in
houses within neighbourhoods harbouring high vector populations.
Second, the pattern may be due to a delayed response of the
dengue surveillance system. The Ae. aegypti capacity to move over
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Figure 10. Knox space-time analysis of confirmed dengue cases
for each pair of space-time distances. Distribution analysis based
on pairs of cases occurring at different distances in time and
space. To simplify interpretation, x and y profiles at certain places
(white lines indicated by roman numbers) are shown on the right.
The vertical axis in the coloured part of the figure represents spa-
tial distances between case pairs (see I), and the horizontal axis
represents the time (between case pairs, see II and III). The num-
ber of case pairs at each distance is represented by colour, from 0
(none) to 16 (high numbers) as indicated.
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hundreds of meters (Reiter et al., 1995), and the environmental ele-
ments of each neighbourhood suggest that mosquito dispersal and
its abundance could be the origin of the clustered distribution in the
2016 outbreak in Cordoba. This space-time pattern differs, howev-
er, with regard to the reported one in 2009 (Estallo et al., 2014) in
that only very small clusters were detected.

This and previous outbreaks in Cordoba, as reported by Radke
et al. (2009), represent evidence for the emergence of dengue in
subtropical regions where Ae. aegypti is present. This means that
the awareness must be raised with regard to individual mosquito
protection and the need for seeking medical assistance early. In
addition, healthcare providers should implement rapid diagnosis
and institute general mosquito control early on.

Even though the climatic context might be considered as one
of the causes triggering the 2016 Cérdoba dengue outbreak, we
could not find a direct association between temperature or rainfall,
which is in accordance with cases reported elsewhere (Thu, 2004).
As Xu et al. (2007) have shown, these outbreaks have a number of
associated limitations related to data access. Also our study had
this kind of a limitation, especially linked with the under-reporting
and with the localisation of individual infections at specific sites.
In this connection, it is important to note that this study included
only data at the city scale and in this sense it is not possible to
include a spatial analysis of the climatic pattern, so we could not
include the meteorological variables as potential explanations for
the spatial pattern observed. This would be possible in a larger
scale study including all dengue cases in Argentina, but this is
beyond the objective of present contribution. In addition access to
the georeferenced epidemiological data from the whole country
would be problematic since they are reported at the provincial or
departmental level, which means the polygons studied would need
to be larger than 10,000 km?

The present epidemiologic scenario and transmission of
dengue, as well as of Chikungunya, Zika and other virus infections
in Argentina and other Latin-American countries require a great
effort to improve the response to these threats. In this context, the
operational use of geospatial and remote sensing technologies
would provide important contributions. However, as we noted in
previous studies (Morrison et al., 1998; Rotela et al., 2007;
Espinosa et al., 2016) and Earth observing satellite images for
modelling vector distribution remains linked to large-scale factors
related with the ecology of Ae. aegypti, that can explain some, but
not all, elements of the outbreak (Ostfeld et al., 2005).

Conclusions

The results presented here enhance the landscape epidemiolo-
gy perspective and the utility of geospatial tools for epidemic
surveillance and control of dengue. This strategy emphasises the
need to generalise this kind of approach over other outbreak
events. Governmental agencies in Argentina are working to
improve the efficiency of dengue surveillance in order to optimise
the efforts of health stakeholders. This multi-institutional report
shows another step in the operational implementation of this kind
of approach.
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