
Abstract
Domestic dogs and cats are potentially effective sentinel pop-

ulations for monitoring occurrence and spread of Lyme disease.
Few studies have evaluated the public health utility of sentinel

programmes using geo-analytic approaches. Confirmed Lyme dis-
ease cases diagnosed by physicians and ticks submitted by veteri-
narians to the West Virginia State Health Department were
obtained for 2014-2016. Ticks were identified to species, and only
Ixodes scapularis were incorporated in the analysis. Separate ordi-
nary least squares (OLS) and spatial lag regression models were
conducted to estimate the association between average numbers of
Ix. scapularis collected on pets and human Lyme disease inci-
dence. Regression residuals were visualised using Local Moran’s
I as a diagnostic tool to identify spatial dependence. Statistically
significant associations were identified between average numbers
of Ix. scapularis collected from dogs and human Lyme disease in
the OLS (β=20.7, P<0.001) and spatial lag (β=12.0, P=0.002)
regression. No significant associations were identified for cats in
either regression model. Statistically significant (P≤0.05) spatial
dependence was identified in all regression models. Local
Moran’s I maps produced for spatial lag regression residuals indi-
cated a decrease in model over- and under-estimation, but identi-
fied a higher number of statistically significant outliers than OLS
regression. Results support previous conclusions that dogs are
effective sentinel populations for monitoring risk of human expo-
sure to Lyme disease. Findings reinforce the utility of spatial anal-
ysis of surveillance data, and highlight West Virginia’s unique
position within the eastern United States in regards to Lyme dis-
ease occurrence. 

Introduction
Lyme disease is the most commonly reported vector-borne

disease in the United States (Hinckley et al., 2014; CDC, 2015b).
Human infection occurs primarily in the North-eastern and North
Central United States, but is not exclusive to these areas due to
constant geographic expansion of the principal vector Ixodes
scapularis (CDC, 2015a; Mead, 2015). Human risk of exposure is
uncertain in many areas where Lyme disease is considered an
emerging issue due to variability in disease manifestation
(Sanchez et al., 2016; Steere et al., 2016), limitations of diagnostic
tests (Aguero-Rosenfeld and Wormser, 2015) and variable infec-
tion prevalence ascertained through local tick surveys (Guerra et
al., 2001; Duncan et al., 2005; Hamer et al., 2009). Tick surveys
among companion animals have been identified as a potentially
representative surveillance methodology for estimating human
risk within geographic areas where Lyme disease is an emerging
concern (Millen et al., 2013). Animals such as dogs, cats and hors-
es are potentially effective sentinel populations due to increased
likelihood of tick infestation and close association with their
human owners (Anderson, 1989). However, few studies to date
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have evaluated the utility of companion animal sentinel pro-
grammes as public health tools with spatial analytic approaches to
study the spatial structure of tick-host disease transmission dynam-
ics (Killilea et al., 2008; Abdullah et al., 2016; Tulloch et al.,
2017).

Humans and companion animals are dead-end hosts for
Borrelia burgdorferi, the causative agent of Lyme disease (Little et
al., 2010; Radolf, 2012). Exposure to tick-borne pathogens occurs
when a host comes in contact with actively questing ticks in the
environment. Presence of infected ticks are influenced by environ-
mental factors such as availability of competent reservoir hosts and
climatic factors that drive tick survival and pathogen propagation
(Eisen et al., 2012; Brinkerhoff et al., 2015). Domestic pets, such
as dogs, are significant risk factors for disease acquisition, and six
times more likely to be exposed to infected ticks due to the
increased potential exposure time in tick habitat (Jones et al.,
2002; Hamer et al., 2009). Sampling companion animal popula-
tions is an effective approach to estimate human risk in areas
where Lyme disease may be newly endemic.

Popular concern for Lyme disease has prompted many animal
sentinel studies across the United States and the United Kingdom
(Goosens et al., 2001; Johnson et al., 2004; Duncan et al., 2005;
Glickman et al., 2006; Hamer et al., 2009; Smith et al., 2012;
Abdullah et al., 2016). These studies primarily focused on ticks
and associated pathogens collected from domestic dogs because of
their ability to produce antibodies to B. burgdorferi, attainable
travel history information, and frequency of outdoor exposure
(Burgess, 1986; Eng et al., 1988; Lindenmayer et al., 1991; Mather
et al., 1994; Walker et al., 1998; Duncan et al., 2005; Little et al.,
2010). Methodologies for pathogen detection are restricted to sero-
logic tests such as enzyme-linked immunosorbent assay (ELISA)
and Western blot, as well as direct polymerase chain reaction
(PCR) of ticks collected from domestic dogs (Goosens et al., 2001;
Johnson et al., 2004; Duncan et al., 2005; Glickman et al., 2006;
Hamer et al., 2009; Smith et al., 2012). Studies suggest that serol-
ogy screening is an effective approach in Lyme-endemic areas
(Bowman et al., 2009; Mead, 2011) but may not be as sensitive an
indicator for estimating prevalence of infected ticks as direct
screening of ticks via PCR within areas of low tick density (Hamer
et al., 2009). Previous studies also suggest variable sample sizes
may result in potentially bias results in localities with few partici-
pating veterinary practices (Johnson et al., 2004). 

Some studies have shown that success in detection of B.
burgdorferi in dogs or ticks collected from dogs correlates with
human Lyme disease incidence and tick feeding behaviour within
their respective localities (Eisen et al., 2006; Little et al., 2010).
This conclusion, along with recognition that tick survival and dis-
ease transmission are spatial processes (Eisen et al., 2012), recom-
mend analytic spatial approaches to identify areas of increased
human risk. To date, no known study has investigated geographic
associations between Ix. scapularis collected from sentinel com-
panion animal surveillance and human Lyme disease cases com-
paring non-spatial and spatial regression approaches particularly in
rural states such as West Virginia. Additionally, few or no available
studies have utilised spatial diagnostic tools to identify areas where
increased recruitment may be necessary to optimise Lyme disease
surveillance or considered sentinel potential for cats in regards to
Ix. scapularis and Lyme disease. The objectives of our study were
to 1) conduct spatial regression to identify geographic associations
between animal species-specific Ix. scapularis sentinel and human
Lyme disease case data and to 2) investigate local clustering of

regression residuals to identify counties were additional effort may
be needed to optimise surveillance efficacy. 

Materials and Methods 

Study area
West Virginia is in a mid-latitude, temperate area, with a humid

continental climate that is warmer in the lower elevation parts of
the state in the south-western and eastern counties. Temperatures
are near 0°C in winter and 25°C in the summer, with colder tem-
peratures at higher elevations (National Climate Data Center,
2017). The state receives 80 to 140 cm of precipitation annually,
most of which along the western side of the Allegheny Front. West
Virginia is a mountainous state, averaging about 460 m above the
mean sea level (MSL), with the lowest areas along the Ohio River
on the western border and the Potomac River along the north-east-
ern border. The Allegheny Front runs from the southern to the
north-eastern part of the state, and has the highest elevations,
reaching 1,482 m above MSL at Spruce Knob (West Virginia GIS
Technical Center, 2011). The landscape is dominated by temperate
forests (West Virginia GIS Technical Center, 2017). The state is
predominantly rural, with the largest cities being Charleston at
49,138 residents and Huntington at 48,113 residents (US Census
Bureau, 2017). Annual confirmed human case counts within West
Virginia have increased two-fold between 2005 (n=161) and 2016
(n=388) (CDC, 2015a; WVDHHR, 2016). Geographically, West
Virginia is bordered on the East by the highly endemic (for Lyme
disease) states of Pennsylvania, Maryland and Virginia and on the
west by the low-incidence states of Ohio and Kentucky. States
which have high incidence status have had ≥10 confirmed cases of
Lyme disease per 100,000 persons for the last three reporting years
(CDC, 2017). In 2017, West Virginia met this criterion based on
2014 to 2016 human surveillance data. In addition to human cases
reported, companion animal sentinel surveillance data have been
collected from local licensed veterinary practices within the state
since 2013 (WVDHHR, 2017).

Data acquisition and management
Human Lyme disease case data in West Virginia were obtained

for 2014-2016 from the West Virginia state health department
(WVDHHR, 2016). Human surveillance data were limited to con-
firmed cases (based on the 2011 Council of State and Territorial
Epidemiologists Lyme disease case definition) with reported infec-
tions acquired within their home county. Briefly, cases assigned to
a confirmed status need to have either 1) Erythema migrans (EM)
and known exposure; 2) EM rash, laboratory evidence, and no
known exposure; or 3) a case with at least one late stage manifes-
tation and laboratory evidence (CDC, 2011). Known exposure is
defined as having been in a tick habitat defined as a wooded,
brushy or grassy landscape within a county endemic for Lyme dis-
ease within 30 days of EM onset (CDC 2011). Laboratory evidence
for diagnosing a confirmed case may consist of 1) a B. burgdorferi
positive culture; 2) a positive IgM response within 30 days of
symptom onset or a positive IgG response at any time; 3) a single-
tier positive IgG response; or 4) cerebrospinal fluid (CSF) anti-
body positive enzyme immunoassay or immunofluorescence assay
when the concentration of antibody is higher than it was in serum
(CDC, 2011). Restricting raw case counts to confirmed status-lim-
ited biases associated with travel related disease acquisition
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(Szonyi et al., 2015) led to consistency of medical, laboratory and
epidemiologic evidence (Li et al., 2014) and included recent expo-
sure to a tick habitat (CDC, 2017). Crude measures of human
Lyme disease frequency were calculated by dividing the sum of
2014-2016 county-level case counts by 2015 U.S. census West
Virginia county-level population estimates (US Census Bureau,
2015) to reflect county-level incidence throughout the state during
the period 2014-2016 (Gertsman, 2013).

Invitation letters and information regarding our project were
sent to every licensed veterinary practice in the state. Participating
practices received quarterly updates using ArcGIS story mapping
methodologies (ESRI, Redlands, CA, USA). No practices were
incentivised other than providing yearly participation certificates.
Companion animal surveillance data were obtained from the West
Virginia state health department from 2014-2016 and contained
yearly county level information relating the diversity and abun-
dance of different tick species removed from animals by veterinar-
ians participating in the convenience sample. Ticks removed by
veterinarians were mailed in secured envelopes with a survey not-
ing animal and practice location, prior tick borne disease testing
results, use of tick prevention, animal travel history and relative
exposure to a tick habitat (WVDHHR, 2017). Ticks were identified
to species, sex and life-stage by trained staff using appropriate tax-
onomic keys (Keirans and Litwak, 1989). Observations were sort-
ed by county and Ix. scapularis removed from animals were
summed across individuals in SAS 9.4.1 (SAS Institute, Cary, NC,
USA) to produce four variables representing the total and average
number of Ix. scapularis collected from dogs and cats by county.
Zeros were assigned to any county with no Ix. scapularis collec-
tion data, as a fundamental assumption in our analysis was that all
practices received equal opportunity to participate. This assump-
tion was in fact key in maintaining a sample size of counties large
enough to conduct the exploratory analysis.

Human population and case estimates were paired with aver-
age number of Ix. scapularis estimates from dogs and cats by
respective reporting county in Microsoft Excel spreadsheets that
were eventually joined in ArcMap 10.4.1 (ESRI) to a U.S.
Counties and Localities shape file obtained U.S. Department of
Agriculture National Resources Conservation Service Geospatial
Gateway (USDA:NRCS) (USDA NRCS, 2015). 

Regression and spatial analysis
Separate ordinary least squares (OLS) regression models were

performed using average number of Ix. scapularis collected on
dogs and cats as the independent variable and the total sum of
county-level human Lyme disease incidence per 100,000 popula-
tion over the study period as the dependent variable. Rook and
queen spatial contiguity weights matrices were visualised within
connectivity histograms to characterise neighbour structures
(Hendricks and Mark-Carew, 2017). Contiguity based spatial
weights were utilised within our spatial analysis to satisfy regular-
ity conditions and to reduce the potential for introducing het-
eroscedasticity (Anselin, 2002). A queen contiguity weight was
chosen to increase the number of neighbours evaluated during the
spatial analysis (Anselin et al., 2006). Univariate Local Moran’s I
and local indicators of spatial autocorrelation (LISA) maps were
calculated to identify the extent of spatial autocorrelation within
the residuals (Tiefelsdorf, 2000). Lagrange multiplier values were
calculated during the OLS regression utilising the previously
defined queen spatial weights matrix as a model selection tool in
comparing spatial lag and error regression models (Anselin et al.,

2006; Matthews, 2006). Residuals from the spatial model were
visualised using univariate Local Moran’s I LISA maps to display
remaining spatial dependence. Akaike information criteria (AICs)
between OLS and spatial autoregressive models were compared to
examine model goodness of fit. All regression and spatial analyses
were conducted in GeoDa 1.8 with a significance level of 0.05
(GeoDa Center, Tempe, AZ, USA; https://edirc.repec.org/data/gca-
suus.html). 

Results

Regression and spatial analysis
County-level incidence of confirmed human Lyme disease for

the entire period ranged from 0-388 with an average rate of 30.3
[standard deviation (SD)=65.4] per 100,000 persons. Of the 172
total veterinary practices located in West Virginia, 36% (n=62) par-
ticipated in the study in at least one of the three years. The total
number of unique identification numbers recorded for dogs in the
study was 1,305, of which 26% (n=349) had at least one Ix. scapu-
laris submitted. The total number of unique identification numbers
for cats in the study was 363, of which 59% (n=213) had at least
one Ix. scapularis submitted. These estimates serve as a crude esti-
mation of the animal population size, but do not reflect the true
population as they do not control for multiple site visits per animal.
County-level raw ticks counts and incidence of human Lyme dis-
ease per 100, 000 persons are displayed together in Figure 1.
County-level Ix. scapularis collections ranged from 0-93 for dogs
with a mean number removed of 11.2 (SD=18.8) and 0-37 for cats
with a mean number of 5.6 (SD=9.30) removed over the duration
of the study period. 

OLS regression parameters were significant (F=3.91,
P<0.001) for the dog-specific model, and not significant (F=0.91,
P=0.36) for the cat-specific model. Univariate Local Moran’s I
indicated significant clustering among OLS dog (I=0.27, pseudo
P=0.002) and cat (I=0.50, pseudo P<0.001) regression residuals.
Lagrange multiplier (LM) values were significant for dog spatial
lag (F=24.0, P<0.01) and dog spatial error (F=8.19, P=0.04) as
well as cat spatial lag (F=30.1, P<0.01) and cat spatial error
(F=27.2, P<0.001) models. The spatial lag autoregressive model
was chosen based upon higher robust LM values (30.0 vs 14.0 for
dogs and cats (12.8 vs 9.92) (Anselin et al., 2006) and because the
spatial lag model adjusts for substantive rather than nuisance spa-
tial dependence (Matthews, 2006). Average number of Ix. scapu-
laris collected per dog remained significant (F=3.04, P=0.002) in
the spatial lag model and identified significant positive spatial
dependence (rho=0.66, P<0.001). The average number of Ix.
scapularis collected per cat remained non-significant (F=-0.14,
P=0.89) within the spatial lag model. However, a significant
(rho=0.73, P<0.001) strong positive spatial dependence was iden-
tified. Univariate Local Moran’s I indicated significant dispersal
among canine (I=-0.14 pseudo P=0.02) and non-significant disper-
sal among feline (I=-0.04 pseudo P=0.40) spatial lag residuals.
Parameter estimates for animal specific regression models are
summarised in Table 1. Model goodness of fit, measured by a
reduction in AIC values, was improved for dog (AIC=582 vs
AIC=605) and cat (AIC=591 vs 618) models utilising spatial lag
regression. Figure 2 shows LISA maps based on OLS and spatial
lag model residuals for dogs and cats. High-high ranking indicates
counties where human Lyme disease cases per 100,000 persons are
higher than what would be expected after adjusting for covariates.
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Conversely, low, high-low and low-high rankings indicate counties
where human Lyme disease cases per 100,000 population are
lower; higher surrounded by lower; or lower surrounded by higher
than what would be expected after adjusting for covariates.

Discussion
Exploratory statistical approaches are routinely applied as

methods to evaluate associations between animal sentinel and
human disease data. Our study is the first known animal sentinel
and human Lyme disease surveillance study to compare and con-
trast OLS and spatial autoregressive techniques using a combina-
tion of visualisation and statistical methodologies, such as Moran’s
I, in an exploratory approach. Descriptive analysis identified a
higher frequency of Ix. scapularis among veterinarian cat submis-
sions, 59% vs 26% for dogs. Despite this difference, more Ix.
scapularis were removed from dogs. Significant associations
between Ix. scapularis collections from dogs were identified in
OLS and spatial lag models. This finding is consistent with previ-
ous studies which identified dogs as potentially effective sentinel
animals for monitoring human Lyme disease due to their close
association with pet owners and therefore increased probability for
tick exposure (Anderson, 1989; Jones et al., 2002; Hamer et al.,
2009). Conversely, no statistical association was identified
between cat Ix. scapularis collections and human disease in either

OLS or spatial lag autoregressive models. This finding is in con-
trast to recent work by Tulloch et al. (2017), which identified cats
as potentially effective sentinel populations for tick-borne dis-
eases. Discrepancy among study findings is potentially attributable
to a substantially lower number of cat submissions compared to
dog submissions, or an artefact of our decision to exclude non-
Lyme disease tick vector species within the analysis. Further
research is warranted as interactions between ticks, disease agents,

                   Article

Figure 1. County-level choropleth maps displaying the total number of Ixodes scapularis ticks removed from animal species and the
incidence per 100,000 persons of human Lyme disease.

Table 1. Summary of animal species-specific regression results.

Variable                                                   Estimate      SE          P

Dog-specific regression models
       Model 1: OLS regression                                                                             
       Average Ix. scapularis collected                        20.7             9.94        <0.001
       Model 2: spatial lag regression                                                                   
       Average Ix. scapularis collected                        12.0             3.93         0.002
       Average incidence per 100,000 persons
       of neighbouring counties                                    0.66             0.10        <0.001
Cat-specific regression models
       Model 1: OLS regression                                                                             
       Average Ix. scapularis collected                        7.40             8.05          0.36
       Model 2: spatial lag regression                                                                   
       Average Ix. scapularis collected                      -0.789           5.55          0.88
       Average incidence per 100,000 persons 
       of neighbouring counties                                    0.73             0.09        <0.001
SE, standard error; OLS, ordinary least squares.
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and cat hosts is poorly understood (Krupka and Straubinger, 2010). 
Further analysis of model residuals via local indicators of spa-

tial autocorrelation permits additional insight into surveillance sys-
tem effectiveness by providing a sound diagnostic methodology
for identifying spatial dependence within the regression models
(Tiefelsdorf, 2000; Burt et al., 2009). Spatial dependence, also
termed spatial autocorrelation, occurs when the assumption of
independence among dependent variables is violated, or when the
regression residuals themselves display spatial dependence (Burt
et al., 2009). In either case, parameter estimates from OLS regres-
sion are inefficient. Local indicators of spatial autocorrelation
(LISA in Figure 2), calculated for OLS regression residuals, iden-
tified significant clustering of model over- and under-estimation
throughout West Virginia. Incorporation of the spatial lag model

resulted in a reduction in the number of counties regarded as high-
high (model under-estimation) and low-low (model over-estima-
tion) among dogs and cats. However, residual spatial dependence
was identified within spatial lag model residuals in the form of
low-high and high-low spatial outliers. These spatial outliers are
potentially an artefact of border bias (Hendricks and Mark-Carew,
2017) resulting from a shared border with the Lyme disease
endemic states of Pennsylvania, Maryland and Virginia (CDC,
2015b). Additionally, they could also be spurious outliers resulting
from low or variable county-level veterinary participation, poten-
tially remedied by increasing veterinary practice recruitment
efforts in West Virginia north-eastern counties. 

The study findings are based upon a state-wide county level
ecological regression between human Lyme disease incidence per
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Figure 2. Local indicator of spatial autocorrelation maps according to output from univariate Local Moran’s I for ordinary least squares
residuals and spatial lag regression residuals with respect to dogs and cats.
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100,000 persons and animal sentinel data collected as a conve-
nience sample from 2014-2016. Spatial lag models are often con-
ducted for data aggregated at the county level, but are potentially
prone to the ecological fallacy if data incorporated are at differing
spatial scales (Anselin, 2002). Additionally, some studies call for
the presentation of vector-borne disease surveillance data at scales
finer than the county level (Eisen, 2007). We attempted to adjust
for the ecological fallacy and misclassification biases by incorpo-
rating confirmed cases of human Lyme disease obtained within the
patient’s home county of residence and animal sentinel data aggre-
gated at the same county level scale. Our analysis was limited to
the county-level scale as this is the finest scale for which travel-
associated infection status can be noted. Incorporation of the
assumption that all veterinary practices received equal opportunity
to participate and would participate uniformly was employed with-
in our analysis to conserve sample size. This is a potentially impor-
tant study limitation, while other potential limitations are associat-
ed with differing reporting biases associated with unequal Lyme
disease awareness among physicians or other public health offi-
cials and varying presentation of Lyme disease signs and symp-
toms among patients infected (Hayes and Piesman, 2003; Bacon et
al., 2008; Brett et al., 2014; Sanchez et al., 2016; Steere et al.,
2016). Unfortunately, we were unable to characterise the effect of
differing reporting biases due to the aggregate nature of our retro-
spective investigation. 

Conclusions
Despite limitations stated above, our findings fill significant

gaps in the literature regarding the spatial biases of public health
surveillance data. Results confirm the efficacy of dog sentinel
surveillance programmes in association with human Lyme disease.
Interestingly, residual spatial dependence was identified among
spatial models and potentially point to other geographic biases not
considered. In particular, West Virginia is prone to border biases
resulting from shared boundaries with states both high and low
incidence of Lyme disease (CDC, 2015b; Hendricks and Mark-
Carew, 2017). In addition to border bias, residual spatial depen-
dence is potentially the result of geophysical, vegetation, soil or
other ecological variables known to influence tick from previous
studies (Guerra et al., 2001; Diuk-Wasser et al., 2012). Future
research is warranted to incorporate these ecological variables as
well as behavioural variables into spatial models to produce more
accurate visualisation of human Lyme disease risk, thus including
parameters such as dog ownership in rural vs urban counties where
the level of exposure to tick habitats may differ. Results highlight
the unique geographic position that West Virginia shares with its
neighbouring states, and emphasise the necessity of spatial analy-
sis to adjust for inherent biases associated with collection of public
health surveillance data. 
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