
Abstract
Despite efforts to control Lyme disease in Connecticut, USA,

it remains endemic in many towns, posing a heavy burden. We
examined changes in the spatial distribution of significant spatial
clusters of Lyme disease incidence rates at the town level from
1991 to 2014 as an approach for targeted interventions. Lyme dis-
ease data were grouped into four discrete time periods and inci-
dence rates were smoothed with Empirical Bayes estimation in
GeoDa. Local clustering was measured using a local indicator of
spatial autocorrelation (LISA). Elliptic spatial scan statistics
(SSS) in different shapes and directions were also performed in
SaTScan. The accuracy of these two cluster detection methods
was assessed and compared for sensitivity, specificity, and overall
accuracy. There was significant clustering during each period and
significant clusters persisted predominantly in western and eastern
parts of the state. Generally, the SSS method was more sensitive,
while LISA was more specific with higher overall accuracy in
identifying clusters. Even though the location of clusters changed
over time, some towns were persistently (across all four periods)
identified as clusters in LISA and their neighbouring towns (three

of four periods) in SSS suggesting these regions should be priori-
tised for targeted interventions. 

Introduction
Lyme disease (LD), a tick-borne, bacterial, zoonotic infection,

remains a serious challenge for public health. The disease is dis-
tributed globally, predominantly in temperate portions of the
Northern Hemisphere such as Europe, Canada and USA (Oliver et
al., 2014). In the United States (US), the geographical distribution
of LD is primarily confined to the north-eastern and mid-western
areas (Pepin et al., 2012). Past studies have shown that in these
areas, LD is caused by Borrelia burgdorferi sensu stricto. The
pathogen is mainly transmitted to humans during blood meals by
the bite of infected blacklegged ticks (Ixodes scapularis) with
white footed mice (Peromyscus leucopus) serving as the primary
reservoir for this bacteria (Anderson, 1989). The disease is the
most common vector-borne disease in U.S. with an estimated
average number of 30,000 new cases every year (Radolf et al.,
2012); however, the genuine number is likely much higher. The
mean incidence rate of LD in the top 13 U.S. states with the high-
est incidence rate during 2005-2009 progressively rose from
29.6±10.6 per 100,000 in 2005 to 49.6±15.5 per 100,000 in 2009
(Pepin et al., 2012). At the same time, in 11 states with the lowest
incidence rate, the mean incidence developed from 1.3±0.7 to
2.3±1.7 per 100,000 individuals (Pepin et al., 2012). Although this
common zoonotic disease rarely leads to death, it can cause severe
symptoms related to skin, joints and heart in addition to anxiety
and depression if untreated (CDC, 2016). LD can also be a socio-
economic burden to society.

In recent years, exploratory spatial data analyses (ESDA) to
describe spatial patterns of LD has increased significantly as a
strategy to improve our understanding of disease transmission and
risk. Several recent studies from different parts of the U.S. have
examined the spatial pattern of LD using ESDA. For example,
Kugeler and colleagues (2015) applied circular scan statistics to
detect high-risk counties of LD in the U.S. from 1993 to 2012.
They showed that the number of counties with high incidence of
LD successively increased from 69 (1993-1997) to 130 (1998-
2002) and further to 197 (2003-2007) and 260 (2008-2012) coun-
ties, respectively (Kugeler et al., 2015). In Texas, which is a non-
endemic LD area, Szonya et al. (2015) applied global and local
Moran’s I-tests to determine the distribution and location of pos-
sible clusters, respectively, with respect to the spatial distribution
of LD at the county level (2000-2011). They observed a clustered
distribution with a high incidence cluster in central parts of the
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state, mainly in a cross-timbers eco-region (Szonyi et al., 2015). In
Virginia, Li et al. (2014) utilized the Empirical Bayes smoothing
(EBS) method on census tract LD cases with the aim of lessening
random variations, especially in censuses with small populations.
Then, they applied space-time scan statistic and found a primary
cluster in northern Virginia which had experienced population
growth and urban-sub-urban improvements between 2008 and
2011 (Li et al., 2014). 

The town of Lyme in Connecticut was the first spot that LD
was recognized in the U.S. The initial cluster in 1976 was observed
in children (Steere et al., 1977). Since then, in spite of all endeav-
ours conducted by the Connecticut Department of Public Health
(CTDPH) to control the disease, it remains endemic with substan-
tial morbidity rates. Although LD is a well-investigated epidemio-
logical subject in Connecticut, historical changes in patterns of dis-
ease have been minimally studied (Cromley et al., 1993.
Additionally, even though geographical information systems (GIS)
is a useful tool to study infectious diseases (Moore and Carpenter,
1999), powerful GIS-based studies of LD from this region are
insufficient for prioritizing counties for intervention. Thus, the
main objective of this study is to use the combination of GIS and
ESDA to better describe changes in the spatial pattern of LD, sup-
posing that the reported passive cases of LD represent a spatially
random subsample of the disease in the state. Our specific research
questions included: 1) what is the spatial distribution (random/ dis-
persed/ clustered) of LD incidence over the past 24 years?; 2) If
clustered, where have the clusters/hotspots occurred? 3) Can we
avoid or minimize the effects of edges in the spatial scan statistic
technique?; and 4) Which cluster detection technique (LISA/spa-
tial scan statistic) is more sensitive, specific and accurate?

Materials and Methods

Data collection and preparation
We used passively reported indigenous LD cases over a period

of 24 years from 1991 to 2014 throughout the state of Connecticut.
We retrieved data from the CTDPH containing yearly counts and
rates of LD at the town level. The CTDPH has a well-established
LD surveillance system operating since 1987. Reports of cases
were based on the National Surveillance Case Definition from the
Centers for Disease Control and Prevention (CDC) for LD (CDC,
1996, 2008, 2011). Data were geocoded and grouped into four
equal intervals (each period included six years: 1991–1996, 1997–
2002, 2003–2008 and 2009–2014) to further explore clustering,
possible clusters and how hotspots had changed.

Administrative boundaries of towns were obtained from the
Map and Geographic Information Center (MAGIC) of Connecticut
GIS data using the shapefile format (http://magic.lib.uconn.edu/).
Similarly, annual population statistics were downloaded from
CTDPH (http://www.ct.gov/dph/site/default.asp). The study area
and the names of the towns mentioned in this paper are shown in
Figure 1.

Global clustering 
We applied global clustering techniques to statistically evalu-

ate whether the existing pattern of LD incidence was random, clus-
tered, or dispersed. We used the global Moran’s I statistic (Moran,
1950) to measure spatial autocorrelation using GeoDa software

version 1.6.7 (Anselin, 2004). The null hypothesis assumes that
there is no spatial pattern among the incidence of LD in different
towns (i.e. complete spatial randomness) (O’Sullivan and Unwin,
2014). This statistic employs a covariance term between each town
and its neighbours as follows (Mitchell, 1999):

      

Eq. 1

                                                                                                        

                                                
Eq. 2

where xi and xj are incidences of LD in the ith and jth towns, respec-
tively; N the aggregate number of towns; and wij the spatial neigh-
bourhood weight for towns i and j generated based on the first-
order Queen’s contiguity which shares all common points includ-
ing boundaries and vertices. The generated spatial weight is used
as a criterion for recognising neighbours of each town. The weight
is defined taking into account adjacent neighbours and written as:

                                                                                                        

   
Eq. 3

The Moran’s I index varies between -1 and +1, with 0 showing spa-
tially random distribution, while negative values indicate dispersed dis-
tributions and positive values for clustered distributions. We assessed
significance of the index using both the Z-score and P value.

Local clustering

Spatial smoothing
The global clustering techniques provide information about the

overall distribution of LD (random, clustered or dispersed), but we
were also interested in identifying local clusters. First, we applied
the EBS routine to account for variation in town sizes and popula-
tions. Contrasts in population size among the spatial areal units
(i.e. towns of Connecticut) may lead to variance instability and
spurious outliers (Anselin, 2004). This is due to the observed raw
rate in spatial areal units with small population being profoundly
affected by small changes of adding or removing few cases. Thus,
crude rates might not reflect underlying risk compared with other
areal units with large populations. EBS provides a solution to
avoid this type of possible bias as it adjusts the estimated risk
toward the global mean to reduce variance instability (Clayton and
Kaldor, 1987); areas with low population are adjusted more than
areas with larger populations. Since there was a considerable dif-
ferences in areas of some towns (e.g., Derby and New London are
approximately 5 mi2 while Woodstock and New Milford cover
more than 60 mi2) and also population size of towns (e.g., Union
and Canaan have about 1,000 people, whereas New Haven and
Bridgeport have more than 120,000 individuals) applying the EBS
is justifiable. We calculated spatial weights for each time interval
using the first-order Queen’s contiguity. EBS smoothed rates were
employed in local cluster detection analyses.
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Local Moran’s I
To detect local clusters of the LD rates smoothed by EBS, we

applied Anselin’s local indicator of spatial autocorrelation (LISA)
statistics (Kulldorff, 2010). LISA identifies hotspots (towns with a
high incidence surrounded by high incidences); coldspots (towns
with a low incidence surrounded by low incidences) and outliers
(towns with a high incidence surrounded by low incidences, or
towns with a low incidence surrounding by high incidences). We
used GeoDa (https://geodacenter.github.io/) for LISA analyses. We
set the number of permutation tests to 999 and 95% significance
level (P<0.05). We mapped significant clusters using ArcGIS 10.2
(ESRI, Redlands, CA, USA).

Spatial scan statistics 
We were interested in comparing LD clusters identified by

LISA and the Spatial Scan Statistic (SSS), for which we used an
ellipsoidal, moving window situated on the centroid of each town
so that at any point the window incorporated different sets of
neighbours. At each position, the radii of ellipse was set to vary

continuously from 0 to a maximum that never included more than
half of the total population at risk. If the window contained the
centroid of the neighbouring towns, then that whole town was
included. This procedure produces a very large number of ellip-
soidal windows and each one can be a possible cluster of LD with
different set of neighbours. The ratio of the length of longest to the
shortest axis of the ellipse was 1.5, 2, 3, 4 or 5. For each shape, a
different number of angles (i.e. the angle between the horizontal
east-west line and the longest axis of the ellipse) of the ellipse were
also tested. For each ellipse a likelihood ratio statistic was comput-
ed based on the number of observed and expected cases within and
outside the ellipse. The null hypothesis (i.e. LD incidence is equal
inside and outside of the window) was tested against the alterna-
tive hypothesis that the risk was elevated within the ellipse. The
likelihood ratio is reported by P values calculated based on the
Monte Carlo simulation approach which finds the maximum like-
lihood ratio over the entire study region. The ellipse with the max-
imum likelihood was signified the most likely (primary) cluster.
This approach also detected secondary clusters which were addi-

                   Article

Figure 1. Geographic location of Connecticut, USA, its towns and approximate populations. The names on the map show the location
of the towns that are mentioned in this paper.
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tional ranked clusters that had high likelihood ratios but did not
overlap the primary cluster (Kulldorff, 2010).

Three sets of data were built for the analysis based on discrete
Poisson probability model in SaTScan software version 9.4.2
(Kulldorff, 2010). The datasets were: Case file representing the
annual number of cases of LD for each town (n=169) from 1991 to
2014; Coordinate file was the two-dimensional Cartesian coordi-
nates of centroid of each town; and Population file was the popu-
lation size of each town. We used the mean population and mean
number of cases per time interval. To scan the study area we
applied two criteria: no geographic overlap between clusters and
5% of the population as the maximum to search for hotspots with
the aim of comparing the results with LISA’s high-high clusters as
the LISA analysis only considered the neighboring towns. Also in
another run, we used no geographic overlap between clusters and
50% population at risk to investigate whether the results depended
on the primary settings. To ensure statistical power, the number of
Monte Carlo replications was set to 999 and only clusters at 99%
confidence interval were considered (P<0.01).

Accuracy assessments
Table 1 shows a 2x2 confusion matrix used to compare the per-

formance of LISA and SSS (for 5% and 50% of populations at risk)
to detect hotspots, sensitivity, specificity and overall accuracy
(Fielding and Bell, 1997). In this case, sensitivity measures how
well the cluster detection techniques correctly detected the pres-
ence of LD hotspots, whereas specificity provides a measure of
how well the techniques correctly identified the absence of LD
hotspots. Overall accuracy shows the ability of cluster detection
techniques to identify true positive and true negative LD hotspots.
Locations of the detected clusters with both LISA and SSS tech-
niques were compared with the location of true clusters as defined
by Birnbaum et al. (1996) that true clusters explain fewer than 5%
of all reported clusters. Therefore the top 5% towns with regard to
high LD incidence were considered as True Hotspots. We calculat-
ed these statistics for each technique in each period, separately.

Results
There were 54,478 reported human LD cases from 1991 to

2014, out of which 10,328 cases (19.0%) occurred in first period
(1991-1996), 20,234 cases (37.1%) in second period (1997-2002),
11,210 cases (20.6%) in third period (2003-2008) and 12,706 cases
(23.3%) in the last period (2009-2014). The annual incidence of
LD ranged between 84.7 (in 1993) and 305.6 (in 2002) cases per
100,000 individuals with a mean of 144.8 cases per 100,000 people
(Figure 2). The P values for the global Moran’s I statistic were
close to zero which reject the null hypothesis of complete spatial
randomness (CSR) for all time periods (Table 2). The index values
ranged from 0.55 to 0.71, which indicates significant clustering.
Although, we detected clustering with both raw and smoothed
methods, and in all four periods, the variation in rates required
EBS before running LISA. Based on the results of EB smoothing
technique, LISA found High-High clusters (hotspots), which var-
ied for each study period. Results of LISA showed that in the first
and last period, the hotspots were completely restricted to the
towns in the East. In other words, for the first period, 24 towns and
for the last period 30 towns were identified as the hotspot in east-
ern Connecticut. The towns in the West were more influenced in
the second and third periods. The number of towns in the West
identified as hotspots in the second period was 8, while 7 towns
were hotspot in the East of Connecticut. In addition, in the third
period, 10 towns in the West and 6 towns in the East were identi-
fied as hotspots. It should be noted that applying EBS before run-
ning LISA, reduces the likelihood of detecting a false cluster in
low-population areas where the cases were detected. But compari-
son of the detected clusters by raw and EBS methods in LISA
showed small differences with regard to the location of the detect-
ed clusters.

Spatial scan statistics with 5% and 50% of the populations at
risk with no geographic cluster overlaps identified clusters with
high incidence rates for each period. Except for the second period,
The SSS results revealed that the most likely cluster predominant-
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Figure 2. Temporal trend of Lyme disease incidence throughout
Connecticut, USA, from 1991 to 2014. Black dots show the inci-
dence rate for each year and the blue line represents a scatter with
smooth lines.

Table 1. Comparison of local indicator of spatial autocorrelation
and SaTScan clusters by confusion matrix and its derivatives sta-
tistics.

Actual hotspots Identified hotspots (LISA or SaTScan)
(top 5%                                       Presence                Absence
incidence rates)                                 

Presence                                                           TP                                  FN
Absence                                                             FP                                   TN
TP, true positive; FN, false negative; FP, false positive; TN, true negative. Sensitivity=(TP)/(TP+FN);
Specificity=(TN)/(TN+FP); Overall accuracy=(TP+TN)/(TP+FN+FP+TN).

Table 2. Results of the global Moran statistics of Lyme disease
incidence rate for Connecticut, USA, 1991-2014.

Years            Index      Z-score       P value     Type of distribution

1991-1996             0.71              16.05                   ≈0                        Clustered
1997-2002             0.59              13.54                   ≈0                        Clustered
2003-2008             0.55              12.73                   ≈0                        Clustered
2009-2014             0.59              13.28                   ≈0                        Clustered
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ly occurred in the eastern region of the state, while the secondary
cluster occurred in towns in the West (Figure 3). Primary and sec-
ondary hotspots were observed in different locations when 5% of
the population at risk was investigated using SSS for comparison
with LISA. For the first period, the primary cluster occurred in the
eastern parts of the state and included 22 towns and 792 cases.
The risk of LD incidence within the primary cluster was 7.67
times greater than outside the cluster. The secondary cluster
occurred in the western region and contained 5 towns and 152
cases. During the second period, the primary cluster occurred only
in the eastern parts of the state and included 23 towns and 1,208
cases. The risk of LD incidence within this cluster was 3.40 times
higher than outside. During the 2003-2008 period, the disease
largely affected the eastern region with 22 towns and 738 cases as

compared to the western parts with 10 towns and 145 cases. The
relative risks of primary and secondary clusters were 3.33 and
9.18, respectively. In the last period, only eastern parts of the state
showed statically significant clustering (no secondary cluster).
The primary cluster contained 24 towns and 942 cases. The risk of
LD incidence in this cluster was 3.69 times more than in other
areas (Table 3). 

Comparison of the results of accuracy assessments of the spa-
tial scan statistics at 5% and 50% of the populations at risk, shows
that sensitivity of this method increases with an increment of the
population defined to be at risk. However, increasing the popula-
tion at risk also leads to a decrease in the specificity of the results.
In addition, LISA tended to have higher specificity and had the
highest overall accuracy (Figure 4). 

                   Article

Figure 3. Locations of spatial clusters of Lyme disease incidence in Connecticut, USA, based on the true-cluster definition with local
indicator of spatial autocorrelation and spatial scan statistics methods targeting 5% of the population at risk, for the period 1991-1996
(A), 1997-2002 (B), 2003-2008 (C), and 2009-2014 (D). 
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Discussion
This retrospective study examined the spatial structure of LD

incidence distribution in Connecticut based on 24 years of reported
data with the aim of describing the spatial distribution and the
changes that have occurred with regard to the disease. It differs
from most other studies in the region by not focusing on local stud-
ies of the pathogen, reservoir or vector and their associations with
the environment. Instead, it focuses on the changing patterns of
documented human disease occurrencies. We assumed that the
number of affected human cases corresponded to the density of
Ixodes scapularis in Connecticut (Connally et al., 2006; Mather et
al., 1996; Stafford et al., 1998). In addition, it should be noted that
ticks have limited capabilities to move to new areas because of
their small size (Ogden et al., 2008). Therefore, one of the means
to fight against the risk of the disease in the study area would be
targeted intervention in the areas (towns in this case) that were
constantly affected with a very high morbidity rate. Targeted con-
trol, planning and management of the disease can assist with
resource allocation to the towns with persistent high incidence
rates resulting in time and costs savings.

Results of this study confirm and extend the findings of Xue et
al. (2015) in Connecticut. They analysed yearly clusters of LD and
showed that the distribution was clustered and that this clustering
occurred in western and eastern Connecticut with few cases in the
central region supposing the yearly incidence weighted-geographic
mean analysis represents the clusters of the case distributions.
According to the paper, the epidemic of LD reached equilibrium in
2007 in the western parts of Connecticut, while this happened in
2009 in the East. Comparison of the results shows that periods 1-3
included epidemic conditions while period 4 contained equilibrium
condition. Therefore, actual/sudden shifts in the locations of clus-
ters occurred roughly before equilibrium (period 1-3); and it may
be that epidemic conditions affected both western and eastern parts
of the state; while equilibrium conditions only occurred in the east-
ern regions.

This study identified towns with high LD incidence rates using
the LISA test and spatial scan statistics approaches. By intersecting
the locations of the clusters identified by LISA some towns,
including Chaplin, Windham and Scotland, were persistently
detected to have high-rate clusters. Likewise, neighbours of these
towns including Andover, Columbia and Lebanon, were recog-
nized as having high-rate clusters in 3 out of the 4 periods of study
(Figure 1). This indicates that these areas were almost persistently
affected by a high incidence of LD during the 24 years of study and
therefore they deserve closer consideration.

In this study, we used an elliptical window in the scan rather

than highly applied circular shape used in other studies for several
reasons. First, according to previously published papers, the ellip-
tic shape had better power and precision compared with circular
one and also follows more accurately certain geographic features
with varying shapes and directions (Root et al., 2009). Another
reason was to avoid edge effects at the borders of the study area.
When circles are used for scanning the study area, particularly
when the circle should centre on the centroid of border towns, con-
siderable parts of it inevitably covers the neighbouring state (i.e.
Rhode Island in the East, Massachusetts in the North, Long Island
Sound to the South and New York in West, where states are also
LD-endemic areas where data were not accessible) and the true
number of cases would be underestimated. The use of ellipses with
different shapes and directions helps to reduce this problem to
some degree.
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Figure 4. Comparison of local indicator of spatial autocorrelation
and spatial scan statistics with 5% and 50% of the population at
risk of Lyme disease in Connecticut, USA, for each period from
1991 to 2014. Sensitivity, specificity and overall accuracy
expressed as %.

Table 3. Characteristics of Lyme disease spatial clusters detected by spatial scan statistics with 5% of the population at risk throughout
Connecticut, USA, for the period 1991-2014.

Cluster                           Year        Observed cases (n)Expected cases (n) Ratio (Obs/Exp)        P value           RR       Log likelihood ratio

Most likely (East)              1991-1996                         792                                 171.26                                 4.62                         <0.0001               7.67                         736.02
Secondary (West)             1991-1996                         152                                  32.26                                  4.71                         <0.0001               5.07                         120.17
Most likely (East)              1997-2002                        1,208                               474.52                                 2.55                         <0.0001               3.40                         496.50
Most likely (East)              2003-2008                         738                                 305.46                                 2.42                         <0.0001               3.33                         284.31
Secondary (West)             2003-2008                         145                                  16.96                                  8.55                         <0.0001               9.18                         187.61
Most likely (East)              2009-2014                         942                                 376.77                                 2.50                         <0.0001               3.69                         400.80
RR, relative risk. P values were obtained from the Monte Carlo hypothesis test.
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There were similarities in the locations of the spatial hotspots
identified by SaTScan and LISA even though these methods apply
different methodologies to detect hotspots. It should be noted that
we smoothed the incidence rate for the LISA cluster detection
method, while this is not available for spatial scan statistics. The
results were also in agreement with the findings of Barro et al.
(2015), who compared different cluster detection techniques
including Getis-Ord Gi*statistic, a multidirectional optimal eco-
tope-based algorithm (AMOEBA) and the spatial scan statistic for
identifying hotspots of human cutaneous anthrax in Georgia for
point data. They also found that SSS was more sensitive (due to
augmentation in the quantity of true positives) but less specific (by
increment of the population at risk because of a declining number
of true negative clusters). Here, the results were highly dependent
on defining the weight matrix in LISA or the percentage of the
population at risk in spatial scan statistics.

The most important limitation of this study is attributed to the
data reported that were used in this study. As indicated by the
CDC, surveillance data are subject to under-reporting and misclas-
sification in highly endemic areas such as Connecticut; however,
this problem would not be very severe in light of well-designed LD
surveillance system in this state. Additionally, as long as there is
simply a spatially random thinning of reported cases, the overall
spatial analysis should not be affected. However, if there is persis-
tent over- or under-reporting in selected regions, it may be difficult
to recognize the impact of such biases. Another factor influencing
the results is that the definition of LD has changed several times:
from using a two-test approach for laboratory affirmation (CDC,
1996) to the addition of probable and suspect categories with less
strict criteria (CDC, 2007) and subtle changes in the
specification of confirmed cases (CDC, 2011). However, empiri-
cally (Figure 3), these changes do not seem to substantially have
altered the areas of high-risk clusters. Therefore, although the anal-
yses conducted were based on data reported by CTDPH, the find-
ings of this study should be interpreted with some caution.

Conclusions
The findings of this study can be regarded as a basis for gener-

ating hypotheses about underlying risk components. For instance,
visual comparison of the locations of towns that were never iden-
tified as cluster areas (Figure 3) and the digital elevation model
(DEM) of the study area suggest that low-risk towns are located in
low-lying areas; thus it seems that people who live at moderate or
higher altitudes in Connecticut are at a higher risk. This would be
consistent with the earliest epidemiologic investigations (Steere et
al., 1977) that identified increased risk in areas away from the
seashore. Thus, altitude as a proxy of other environmental factors
can uncover the reasons of the spatial distribution of the disease in
the study area. Moreover, except for Windham, all of the other
towns identified as persistent clusters had populations lower than
8,000 people showing that persistent towns as clusters occurred in
less populated areas. Therefore, further studies should incorporate
other environmental factors that have significant influence on the
spatial and temporal patterns of the disease.
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