
Abstract
Fasciola hepatica is the causative agent of fasciolosis, a glob-

al disease of a wide range of mammals, particularly sheep and cat-
tle. Liver fluke infection causes annual losses estimated at around
€2.5 billion to livestock and food industries worldwide. Various
models have been developed to define risk factors and predict

exposure to this liver fluke in ruminants in European countries,
most of them based exclusively on data from dairy herds. The aim
of this study was to validate a published theoretical baseline risk
map of liver fluke exposure and cluster maps in Ireland, by includ-
ing further explanatory variables and additional herd types that are
spatially more widespread. Three approaches were employed: i)
comparison of predicted and actual exposure; ii) comparison of
cluster distribution of hotspots and coldspots; and iii) develop-
ment of a new model to compare predicted spatial distribution and
risk factors. Based on new survey data, the published baseline pre-
dictive map was found to have a sensitivity of 94.7%, a specificity
of 5%, a positive predictive value of 60% and a negative predic-
tive value of 38.2%. In agreement with the original model, our
validation highlighted temperature and rainfall among the main
risk factors. In addition, we identified vegetation indices as impor-
tant risk factors. Both the previously published and our new model
predict that exposure to Fasciola is higher in the western parts of
Ireland. However, foci of high probability do not match complete-
ly, nor do the location of clusters of hotspots and coldspots.

Introduction
Fasciolosis is a continuing threat to the sustainability of

European agriculture. The parasite is highly prevalent and increas-
ing numbers of anthelmintic resistant isolates are reported world-
wide (Kelley et al., 2016). Furthermore, the effects of climate
change are predicted to increase the incidence of fasciolosis in
north-western and central Europe (Caminade et al., 2015). For
example in the UK, sub-acute fasciolosis is increasingly diag-
nosed in areas where it was not present before, as the parasite has
expanded its transmission range (van Dijk et al., 2010; Fox et al.,
2011). In Ireland, several studies have shown very high prevalence
rates in dairy herds (76.1%-82%) and sheep flocks (61.6%)
(Mooney et al., 2009; Bloemhoff et al., 2015; Rinaldi et al., 2015;
Selemetas et al., 2015a).

Due to the long grazing season, the specific landform and cli-
mate of Ireland render it highly suitable for livestock farming
(O’Mara, 2008). Ireland is one of the main exporters of beef and
dairy products in the European Union (EU), with 90% of beef cat-
tle, 75% of dairy products and 60% of sheep meat produced for
export mainly within the EU, but also to international markets
(O’Mara, 2008; Browne, 2010). Given the focus on grass-based
production and the mild and humid Irish climate, infection with
helminth parasites is a significant threat in the Irish production
system. With a prevalence of infection of 82% in dairy herds
(Selemetas et al., 2015a), fasciolosis caused by the liver fluke
Fasciola hepatica is one of the main parasites affecting Irish live-
stock associated with significant economic losses. The life cycle
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of the parasite involves mud snails as intermediate hosts. In fact,
distribution of F. hepatica is largely dependent on the presence of
an appropriate habitat for the snail intermediate host, which in turn
is reliant on climatic and environmental conditions. In Europe,
Galba truncatula represents the main intermediate snail host. This
amphibious freshwater snail lives at the edges of small water bod-
ies with loamy, muddy or clayey ground at pH values between 5
and 9 and 10-25°C temperature (Deplazes et al., 2016).

The definitive host of F. hepatica is usually a herbivore,
although humans can also act as definitive hosts. Animals become
infected by ingesting encysted metacercariae from pasture.
Juvenile flukes excyst in the duodenum and then penetrate the gut
wall and peritoneal cavity and move towards the liver. Once there,
they migrate through the parenchyma to mature and become estab-
lished in the bile ducts, producing eggs that are shed with the fae-
ces into the environment. Miracidia hatch from the eggs and pene-
trate the foot of the intermediate snail host where they develop
through the redia and sporocyst stages to cercariae, which com-
plete the life cycle by encysting on herbage as metacercariae
(Skuce and Zadoks, 2013; Deplazes et al., 2016; Taylor et al.,
2016). Management factors such as herd size, flukicide treatment
protocols and length of grazing season have been shown to be of
importance in the epidemiology of fasciolosis (Bennema et al.,
2011; Howell et al., 2015; Olsen et al., 2015; Munita et al., 2016).

Sudden deaths due to acute fasciolosis occur in sheep, when
the infective burden is high (Deplazes et al., 2016; Taylor et al.,
2016). In cattle, where F. hepatica most frequently follows a
chronic course, infections are associated with increased calving
interval, delayed puberty, reduced milk yield, reduced milk fat
content, lower body condition scores and carcass cold weight
(López-Díaz et al., 1998; Schweizer et al., 2005; Charlier et al.,
2007; Sanchez-Vazquez and Lewis, 2013; Skuce and Zadoks,
2013). This, together with liver condemnations in abattoirs further
increases the economic costs due to fasciolosis, which can reach up
to €90 million every year in Ireland (Animal Health Ireland, 2013).

The emergence of F. hepatica strains resistant to triclabenda-
zole (the only chemical that kills early immature, immature and
adult flukes) and the difficulty inherent in developing a vaccine
against the parasite are making future prospects for the control of
this infection challenging (Mooney et al., 2009; Toet et al., 2014;
Hanna et al., 2015; Molina-Hernández et al., 2015). Hence, there
is interest in developing detailed, local predictive high-resolution
models in order to improve control methods and minimise losses.
Geographical Information Systems (GIS) and Remote Sensing
(RS) have become valuable tools for investigating spatial patterns
of disease and supporting decision-making with regard to selecting
the most appropriate approaches. Baseline risk and cluster maps
for Ireland were published within the scope of the EU project
GLOWORM (funded by the European Commission’s Seventh
Framework Programme FP7–KBBE-2011-5 under grant agree-
ment no. 288975), which investigated global changes in the emer-
gence of drug resistance, environmental and climatological condi-
tions, and their effects on ruminant livestock helminth infections
through the use of GIS and RS for mapping and modelling
(Selemetas and de Waal, 2015; Selemetas et al., 2015a). Irish
GLOWORM studies were based on dairy herds concentrated in the
South-west of the country. The main objective of this new study
was to develop a more inclusive and widespread spatial analysis of
the epidemiology of fasciolosis in Ireland. We aimed to re-evaluate
the maps previously published by Selemetas et al., (2015a); and
Selemetas and de Waal, (2015) using survey data from dairy, beef

and sheep farms with a more widespread geographical distribution
compared to that employed in the original study.

Materials and Methods

Study area and data provision
Ireland has an area of 69,825 km2 with a climate characterized

by cool summers and mild winters and defined as temperate ocean-
ic climate, which means mild and moist with environmental and
climatologic conditions that can vary greatly over short distances.

The Agriculture and Food Development Authority in Ireland,
officially referred to as Teagasc, is responsible for research and
development, training and advisory services in the agri-food sec-
tor. The authority has a number of county advisory centres, col-
leges and research laboratories all over the country.

Data were collected during three surveys conducted between
October 2014 and February 2015 (Flukeless research project,
Research Stimulus Fund under project no 13/S/405) and made
available by the Animal and Grassland Research and Innovation
Centre (AGRIC), Teagasc Moorepark in Fermoy, Cork County,
Ireland.

Sampling strategy
For dairy herds, a target sample size of 318 herds was calculat-

ed based on a predicted prevalence of 70% and a dairy population
of 18,500 herds [95% confidence limit (CL), 5% precision (CI)].
The 319 herds included in the project by Bloemhoff et al., (2015)
were initially targeted, as these geographically represent the Irish
national dairy population (O’Doherty et al., 2013; Bloemhoff et
al., 2015). Herds were selected from the HerdPlus® database con-
taining 3,500 dairy herds which is a breeding information decision
support tool coordinated by the Irish Cattle Breeding Federation
(ICBF). Herds were selected using a stratified sampling procedure
based on herd size and geographical location. A total of 322 flocks
(predicted prevalence of 70%, population 33,500 flocks, 95% CL,
5% CI) and 325 beef herds (predicted prevalence 70%, population
100,000 herds, 95% CL, 5%CI) were targeted. Applications for
sheep and beef farms were distributed through Teagasc
Newsletters; which is a monthly publication produced by Teagasc
Advisory Services. A stratified sampling strategy, based on herd
size and geographical location, was also used for selection of these
farms. To increase the study power, an additional 44 dairy herds,
applied through Teagasc Newsletters, were randomly selected to
take part in the study. The participation of herds in the current
study was on a volunteer and non-incentive basis. All sampled
farms had just one piece of land where their livestock was kept, i.e.
all animals experienced the same environmental and climatologic
conditions.

Farms from which incorrect or incomplete geographical coor-
dinates were noted were not included. Consequently, data from
312 dairy herds, 194 beef herds and 290 sheep flocks were finally
used (Figure 1A). Exposure to F. hepatica in the various operations
was investigated as follows. For dairy herds, bulk tank milk
(BTM) samples were collected and tested for specific anti-F. hep-
atica antibodies by the Ildana Biotech F. hepatica recombinant
mutant Cathepsin L1 (CL1) ELISA (http://www.ucd.ie/conway
/innovation/ildanabiotech/). With this kit antibodies start to be
detectable between 2 and 4 weeks after infection, and decline 3 to
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4 months after flukicide treatment (Bloemhoff et al., 2015). The
tests were carried out as per manufacturer’s instructions and previ-
ously described by Bloemhoff et al. (2015). The ELISA sample-to-
positive (S/P) ratio was calculated for each sample by first sub-
tracting the optical density (OD) reading of the CL1 uncoated well
from the reading of the coated well. Subsequently, the ratio of the
sample OD to the positive control was calculated (S/P ratio). Herds
with an S/P ratio higher than 15 were considered as positive,
whereas herds with an SP ratio of 15 or less were considered neg-
ative. For beef herds, serum samples from at least 6 animals per
herd were tested using the same ELISA kit. Average SP ratios per
herd was calculated. Those herds with one serum sample value
higher than 20 were considered a positive herd, and those with all
sera samples with values of 20 or lower were considered negative
herds (Bloemhoff et al., 2015). Finally, data produced by
Martinez-Ibeas et al., (2016) were used for exposure in sheep
flocks (Martinez-Ibeas et al., 2016). Briefly, a standardised sam-
pling kit was posted to each farmer with a request to submit 20
fresh faecal catch samples from 20 different mature ewes. Faecal
egg counts (FEC) of liver fluke eggs were determined using the
sedimentation technique (Taylor et al., 2016). Flocks where at least
one liver fluke egg was observed were considered positive. Herd
status data based on these surveys are shown in Figure 1B.

Comparison of predicted probability of exposure and
actual exposure

Mapping and georeferencing
Using ArcGIS version 10.1 (ESRI, Redlands, CA, USA) geo-

graphical coordinates and exposure/infection status of all surveyed
farms were mapped, and a shapefile created. Since the prediction
by Selemetas et al., (2015a) was based on district electoral division
levels (DEDs), the shapefile for the new farms was also converted
from point locations to DED polygons. DEDs are the smallest
legally defined administrative areas in the state. A DED that con-
tained at least one positive farm was considered positive. Overall
exposure status was recorded for 658 DEDs.

The red, green and blue (RGB) image file of predicted proba-
bility (image 6 in Selemetas et al., 2015a) was geo-referenced. The
probability for each DED was extracted by using the feature to
point tool in ArcGIS with the parameter set to INSIDE.

Comparison of risk map with field surveys
Sensitivity, specificity as well as positive and negative predic-

tive values of the risk map by Selemetas et al. (2015a) were calcu-
lated by comparing the predicted probability of exposure in each
DED (for the year 2012) with the data collected in the three sur-
veys carried out in 2014 and 2015. True positive, true negative,
false positive and false negative DEDs were obtained by joining
the prediction map with the survey map. The result was exported
to an excel file to determine number of DEDs with presence or
absence as follows: True positives: prediction +/ survey +, true
negatives: prediction –/ survey –, false negatives: prediction –/ sur-
vey +, false positives: prediction +/ survey –. Sensitivity was cal-
culated as: true positives/ true positives + false negatives, specifici-
ty as: true negatives/ true negatives +false positives, positive pre-
dictive value as: true positives/ true positives +false positives, and
negative predictive value as: true negatives/ true negatives + false
negatives.

                   Article

Figure 1. Location of farms from Animal and Grassland Research and Innovation Centre  Teagasc Moorepark surveys. A) Type of farms;
B) Exposure.
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Hotspot analysis
Clusters of exposure were identified using the Getis-Ord Gi*

statistic (Getis and Ord, 1992; Ord and Getis, 1995) based on the
location of the 452 observed liver fluke-positive herds from the
three surveys mentioned above. The Getis-Ord Gi* statistic can be
used to determine whether the spatial clustering of high or low val-
ues is more pronounced than expected in a random distribution of
those same values. Z-scores values, the outputs of the statistic, rep-
resent standard deviations for clustering intensity. Different signif-
icance levels (P-values) apply to specific z-scores values, so that P-
values of <0.1, <0.05 and <0.01 correspond to z-scores of <–1.65
or >+1.65, <–1.96 or >+1.96 and <–2.58 or >+2.58, respectively.

As DEDs are artificial geographical divisions, it was decided
to group herds by proximity instead of DED for this analysis. As a
result, two herds located in different DEDs but very close to each
other, were grouped together. This gave a higher resolution to the
analysis and was more logical biologically. In addition, Irish herds
are generally relatively small (81 animals on average). For these
reasons, and to minimize edge effects, small distance thresholds
were studied to aggregate herds spatially. The distances used were:
1, 3, 5 and 10 km. Global Moran’s I statistic was applied to test
spatial auto-correlation at increasing distances by using the incre-
mental spatial autocorrelation tool in ArcGIS. Statistically signif-
icant peaks of clustering were only detected on the dataset that had
been aggregated by 3 km (Figure 2), which was the final dataset
employed for the hotspot analysis (Getis-Ord Gi*) performed in
ArcGIS. The critical distance was set to 46,148.26 m, the first peak
given by the Global Moran’s I statistic (Figure 2). Finally, an
inverse distance weighting (IDW) interpolation was performed
using the Z score of each point for visualization purposes.

Modelling 
Data from the AGRIC Teagasc Moorpark surveys were used to

develop a new predictive model that was subsequently compared
with the older, published model. Main risk factors identified by the
two models were also compared.

Presence/absence data
For the development of the new risk map using the 2014/2015

survey data, the exact location of each farm (n=796) rather than the
DED was used. The shapefile containing geographical coordinates

and presence/absence information (1/0) was projected to the
WGS1984 geographical coordinate system using ArcGIS.

Explanatory variables
Table 1 shows the variables used in the model. Habitat, land

cover and soil-related variables are categorical, whereas rainfall,
temperature, elevation and vegetation are numerical variables.
Vegetation indices, such as the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI), use near
infrared and red wavelengths reflected by the vegetation to com-
pute values that quantify plant biomass and/or vigour for each
pixel in a RS image. These values vary between –1.0 and 1.0 and
can be used to estimate vegetation amount or damage, i.e. infec-
tions, defoliation etc. (Cringoli et al., 2004; Weier and Herring,
2000). Both are calculated similarly, although EVI corrects for
some distortions by particles in the air or the ground cover below,
and does not become saturated when analysing highly vegetated
areas (Weier and Herring, 2000).

                                                                                                                                Article

Table 1. Data-layers included in the modelling approach.

Variable                                          Description                                                                                                   Source and resolution

Period 2010-2015 climatic variables        Averages of annual, seasonal and monthly mean temperatures (°C),                          Met Éireanna (1×1 km)
                                                                        total rainfall (mm) and annual total number of rain-days (daily rainfall ≥ 0.2 mm)  interpolated values
Year 2014 climatic variables                      Averages of annual, seasonal and monthly mean temperatures (°C),                          Met Éireanna (1×1 km) 
                                                                        total rainfall (mm) and annual total number of rain-days (daily rainfall ≥0.2 mm)   interpolated values
Soils, subsoils and soil drainage             National Soil Database                                                                                                               EPAb (scale 1:250,000)
Habitat                                                           National Habitat Indicator Map                                                                                                Teagasc (25×25 m)
Land Cover                                                    2012 CORINEc land cover datasetc                                                                                         EPA (25 ha minimum mapping unit)
Elevation                                                        National Elevation Map                                                                                                              UCDd maps and GIS library.
                                                                                                                                                                                                                                 Processed by CVERAe (25×25 m).
Vegetation                                                     NDVIf and EVIg from 2014                                                                                                         Avia-GIS (250×250 m)
aThe Irish National Meteorological Service; bEnvironmental Protection Agency; cCoordination of information on the environment (provided by the European Environment Agency (EEA)); dUniversity College Dublin;
eCentre for Veterinary Epidemiology and Risk Analysis; fMonthly normalized difference vegetation index; genhanced vegetation index.

Figure 2. Spatial autocorrelation for the dataset grouped by 3 km
distance. Produced by Moran’s I statistic showing intensity of
spatial clustering at increasing distances. Peaks represent dis-
tances where the spatial processes promoting clustering are most
pronounced.
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The various data files were projected to the WGS1984 geo-
graphical coordinate system and converted to raster file format
using either the point to raster or feature to raster tool in ArcGIS.
All final rasters had the same number of columns and rows (494,
258), the same cell size (0.016) and were saved in the same folder
for subsequent analysis with VECMAP (http://www.vecmap.
com/), version 1.5.16209.2382.

Random Forest methodology
The training dataset used to build the model was first balanced

using the Balance/code dataset tool in VECMAP. To create a reli-
able model, it is recommended to include an even number of pres-
ence and absence points in the input. This is done to avoid creating
a bias in the model prediction. Predictor values were extracted
using the extract tool.

As different predictive methodologies have been shown to
vary in their predictions even when using the same datasets (Elith
and Graham, 2009), the same algorithm employed by Selemetas et
al., (2015a) – Random Forest (RF) – was employed (Breiman,
2001; Selemetas et al., 2015a). RF is a machine-learning algorithm
that uses classification and regression trees (CART) where each
tree is constructed from a random sample of cases, and a randomly
selected subset of available variables are tested to split each node
into child nodes creating a tree. To assess variable importance, the
RF tool in VECMAP employs the Gini index (Breiman et al.,
1984). This index uses the impurity criterion as a measure of how
each variable contributes to the homogeneity of the nodes and the
leaves. In RF, it is used to search for the split that most reduces
node and tree impurity. Important variables lead to higher reduc-
tion of the Gini index when comparing original and child nodes.

A preliminary model was generated to select potentially impor-
tant variables to cluster the data. Selected variables included EVI,
temperature and rainfall variables from 2014 and soil type. Then,
using the 106 predictors, RF was performed in the classification
mode (presence/absence). Data scaling was set to probability scale
(presence/absence). A variable reduction forest was initially per-
formed to identify the most important variables. Subsequently, a
second RF was created including only a 50% subset of the most
significant variables, which improves model performance. In
VECMAP, model validation was carried out for each tree by using
the points not sampled from the full training set. These out-of-the-
bag (OOB) samples are classified. Comparison of the observed
and predicted results permits the generation of accuracy statistics.

The following default settings were used: reduction forest (100
points sampled for each tree, 600 trees to grow and 10 variables at
each node), prediction forest (100 points samples for each tree, 400
trees to grow and 10 variables used at each node). Each node was
split into two child nodes. The output raster file obtained was pro-
jected to TM65/Irish Grid using VECMAP.

Results

Validity of the previous liver fluke distribution predic-
tion

Table 2 shows the number of true positive, true negative, false
positive and false negative DEDs resulting from the comparison of
the predictive map and the 2014/2015 survey data, as well as
results for sensitivity, specificity, positive predictive value and
negative predictive value.

The predicted distribution was tested in two ways; first by only
considering DEDs in the 1st category (predicted probability 0-
15.6% according to Selemetas et al., (2015a) as negative, and sec-
ondly by considering all DEDs in categories 1 and 2 as negative
(i.e. including predicted probability of up to 42.8%), and only cat-
egories 3 to 10 as positive. The results indicated that overall sensi-
tivity of the predictive map by Selemetas et al. (2015a) was very
high (>0.9), while its specificity was very low (<0.1). The positive
and negative predictive values, ranging between 0.38 and 0.6, were
considered moderate in both comparisons.

Hotspot analysis
The analysis revealed that 7 groups of herds represented statis-

tically significant hotspots at the 99% confidence level, 18 at the
95% level and 10 at the 90% level (Figure 3A). Conversely, none
of the groups represented statistically significant coldspots at the
99% confidence level, and only 4 and 7 were significant at the 95%
and 90% level, respectively. Regarding the geographic distribution
of clustering, significant hotspots were mainly observed in the
South-west and North-west of the country, whereas significant
coldspots were located in the Mid-west and Mid-east.

Spatial prediction 
The predicted spatial distribution of fasciolosis is shown in

Figure 3B. Overall, probability of exposure is higher in the western
part of the country. A cluster of highly predicted probabilities of
exposure was found in the North-west. Areas with higher elevation
have a lower predicted probability of exposure, although elevation
was not included among the main risk factors. The model perfor-
mance was assessed by Cohen’s Kappa (0.52) with values of >0.4
regarded as acceptable, area under the curve (AUC) (0.69), sensi-
tivity (0.67) and specificity (0.61) (Landis and Koch, 1977).

Risk factors
According to the mean decrease of the Gini Index, the 10

most important variables (in order of importance) were: annual
mean temperature in 2014 and for the period 2010-2015, mean
temperature in September 2014, vegetation in April 2014, mean

                   Article

Table 2. DED parameters according to the survey data when compared to the prediction map.

                                                     True              True           False           False          Sensitivity     Specificity         Positive         Negative 
                                                  positives       negative     positives    negatives                                                      predictive      predictive
                                                                                                                                                                                          value               value

Only 1st class negative                              375                       13                      21                      249                        0.95                       0.05                          0.6                         0.38
1st and 2nd classes negative                      365                       23                      31                      239                         0.9                        0.09                          0.6                         0.43
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temperature in spring and autumn for the period 2010-2015, veg-
etation in March and January 2014, and mean rainfall during June
and July 2014.

Discussion
This study aimed to refine and validate a published model

which chiefly considered dairy herds located in the Munster region
(South-West) (Selemetas et al., 2015a) by including data from
dairy herds, beef herds and sheep flocks from a total of 796 farms
from 658 DEDs (just over 19% out of a total of 3,409 DEDs in the
Republic of Ireland) located throughout the country. It was hoped
that inclusion of diverse farm types would reduce bias of the mod-
elled prediction due to differences in management procedures
between them. For instance, the length of grazing season is usually
longer in sheep flocks than cattle herds as some flocks are not
housed, or are housed for shorter periods during the winter. Dairy
cattle in Ireland are usually housed from November to March,
although substantial regional differences in grazing practices have
been reported (Bloemhoff et al., 2014). Similarly, housing periods
for beef cattle range between 3 and 9 months (Teagasc, 2015). In
addition, timing and type of flukicide treatment also vary between
dairy, beef and sheep enterprises. Dairy herds are usually dosed
(with a restricted number of products licensed) once yearly, i.e.
during the dry season which is generally coincident with winter
housing (Bloemhoff et al., 2014). Flukicide treatments in beef
herds and sheep flocks are not as restrictive, although meat with-

drawal periods apply. In this case, rafoxanide is also available, and
animals are often dosed twice a year (Parr and Gray, 2000;
Teagasc, 2015, 2016).

In our study, ELISA applied to BTM or serum was used to
characterize disease exposure in dairy and beef herds, respectively.
For sheep flocks, FEC data were used. Although this added an
extra level of variability it was felt that including these data pro-
vided a greater number of true positive results and broadened the
scope of the study.

A comparison of the probability of exposure predicted by
Selemetas et al. (2015a) to the survey data revealed a high sensi-
tivity (0.95, or 0.92) but low specificity (0.05, or 0.09) of the orig-
inal predictive model, i.e. the model was good at predicting posi-
tive DEDs but failed to predict negative ones (Selemetas et al.,
2015a). Moreover, hotspot analysis based on the recent survey data
indicated a slightly different geographical pattern with respect to
that published by Selemetas and de Waal, (2015). While results for
clustering obtained from the north-western region (Figure 3A) are
similar for both studies, especially for those areas close to the bor-
der with Northern Ireland (UK), with z-scores between +1.65 and
+2.58, our study identified two additional significant hotspot clus-
ters in the northernmost region of the Republic of Ireland.
Furthermore, our results indicated significant clustering further
inland in the South-west (Munster) than what had been obtained by
Selemetas and de Waal, (2015) who located them closer to the
western coast. Interestingly, when Selemetas and colleagues per-
formed a similar analysis exclusively considering the Munster
Province (where most of the samples originated), the pattern

                                                                                                                                Article

Figure 3. Spatial analysis of dairy, beef and sheep exposure to Fasciola hepatica in Ireland. A) Hotspot analysis (Getis-OrdGi statistic)
for each cluster of exposure to F. hepatica; B) Spatial distribution of predicted probabilities of exposure to F. hepatica (spatial resolution:
1.2×1.2 km).
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observed for high clustering was more similar to our outcome
(Selemetas et al., 2015b). Selemetas and de Waal (2015) described
clusters of coldspots mainly on the southern coast and in the centre
of the country, whereas our results located these mostly in the Mid-
west and Mid-east.

With respect to predicted distributions, the two models agree in
that probability of exposure is predicted to be highest in the West
of the country. However, the Midlands-North region predicted to
have higher probabilities in the older model, was found to be locat-
ed further west in our study. Lower probabilities in areas with
higher elevation can also be observed from the new risk map,
although elevation was not one of the main risk factors for expo-
sure. Irish highlands are generally covered by blanket bogs, a type
of peat formed by waterlogged soil composed of compacted, par-
tially decomposed, vegetable matter fed exclusively by rainwater.
Due to the higher altitude, average temperatures in these regions
are also lower. In the past, overgrazing of these areas by sheep
caused severe damage to 7% of Ireland’s total blanket bogs.
However, changes in EU legislation resulted in significant reduc-
tion of sheep numbers (IPCC, 2016). Because of this, the number
of sample points from these areas is very low in our study.
However, as in theory, the model also predicts risk in areas where
no sampling is done, we suggest that the reason for the low predict-
ed probabilities in these regions is due to their environmental
unsuitability for the intermediate host and/or parasite.

In the present model, climatic and environmental variables
were useful predictors for the spatial probability of Fasciola expo-
sure. This agrees with Selemetas et al. (2015a) who predicted
annual rain days from the 1981-2010 period to be the main risk
factor, followed by other rainfall variables and annual temperature
from the year of sampling (2012). The main risk factors in our
study were temperature, vegetation and precipitation, with the
annual mean temperature being the best predictor. Other studies in
Ireland, the UK and the rest of Europe also highlighted precipita-
tion and temperature as the most important variables (McCann et
al., 2010; Ducheyne et al., 2015; Selemetas and de Waal, 2015;
Selemetas et al., 2015a; Munita et al., 2016). However, other envi-
ronmental predictors such as elevation, soil type or snail habitat
have also been found to be important (Bennema et al., 2011;
Charlier et al., 2011; Ducheyne et al., 2015). In our study, vegeta-
tion was included within the 10 best predictors. More specifically,
the most important months with respect to vegetation were April,
March and January in that order. The average EVI values of all
locations for these months were 0.54, 0.48 and 0.42, respectively.
In the spring months, the index is higher due to increased chloro-
phyll content in plants, which preferentially reflect near-infrared
wavelengths (Weier and Herring, 2000; Cringoli et al., 2004). The
inclusion of vegetation variables within the most important risk
factors in the new spatial model reflects the role of grazing in the
transmission of infection, and may indicate better conditions for
the development of the intermediate host. In fact in addition to ade-
quate moisture, spring growth of G. truncatula depends on the
quality and quantity of available food, which influences the mean
growth of the shell (Dreyfuss et al., 2015). It is worth mentioning
that some Irish studies have also found that management aspects,
such as smaller herd sizes and herds with heifers calving over 30
months of age (rather than <24 months), are relevant factors
(Bloemhoff et al., 2015; Munita et al., 2016). In fact, McCann et
al., (2010) reported that climatic and environmental variables
could only explain up to 70-76% of the variation in liver fluke
infection pressure (McCann et al., 2010).

The Ollerenshaw index is currently the most commonly used
method to predict liver fluke incidence in Ireland (Ollerenshaw
and Rowlands, 1959; de Waal et al., 2007). It is a seasonal index
derived from measured rainfall, number of rain days and potential
evapotranspiration for a given month between May and October.
Our results indicate that annual liver fluke forecasts could be
refined by including vegetation indices. In addition, it is likely that
climate change will impact the seasonality of the parasite as higher
temperatures may increase the number of overwintering metacer-
cariae on pastures (van Dijk et al., 2010; Fox et al., 2011;
Caminade et al., 2015). According to our results annual mean tem-
peratures are the best predictors of liver fluke exposure in Ireland.
Also, the fact that vegetation during January was included within
the main risk factors might indicate the significance of the preced-
ing winter season for forecasting fluke risk. A wider timeframe
than that used by the Ollerenshaw index (May to October) should
therefore be considered when forecasting the risk as suitable tem-
peratures for the parasite and intermediate host may occur at other
times during the year.

There are several potential reasons for differences in the out-
come of our study and that of Selemetas et al., (2015a) as indicated
by the literature (Selemetas et al., 2015a, 2015b; Selemetas and de
Waal, 2015). Discrepancies between hot and cold cluster distribu-
tions may largely be due to the fact that our analysis was based on
spatially dispersed sample points, while the previous study was
chiefly focused on the South-west and had few data points from
mid-western and eastern regions. Another important aspect is that
between March 2010 and October 2012, i.e. when sampling for the
Selemetas et al. (2015a) study was performed, there was a fluki-
cide license restriction which meant that albendazole and oxy-
clozanide were the only two licensed active ingredients for fluke
control in dairy cows (Bloemhoff et al., 2014). Both these drugs
are only effective against mature F. hepatica stages (Animal
Health Ireland, 2013; Williams et al., 2014). After the restriction
period other products were made available for pregnant dairy ani-
mals (though not cows during lactation), namely triclabendazole,
closantel and nitroxynil (O’Brien et al., 2010; IMB, 2013). Hence,
it is likely that control measures adopted in dairy herds differed
between the two studies. With regard to the explanatory variables
used in both models, Selemetas et al. (2015a) employed variable
averages from the period 1981-2010 as a background climatic
dataset, as well as data for the year of sampling (2012) (Selemetas
et al., 2015a), whereas we used a background dataset (2010-2015)
that spanned the actual dates when the survey herds were sampled,
which was likely to result in a better performing model (McCann
et al., 2010). Furthermore, climatologic conditions each year also
vary. In 2012, the spring and the summer average monthly rainfall
according to the Irish National Meteorological Service Met
Éireann’s online datasets (recorded from 25 weather stations situ-
ated in various parts of the country) was 102.53 and 99.06 mm,
respectively. However, during 2014, average rainfall during the
spring and the summer was recorded to be only 65.08 and 60.60
mm, respectively, and the average monthly temperature values in
the same seasons were between 0.8 and 1.7°C higher than in 2012.
It is highly likely that these fluctuations resulted in annual differ-
ences in liver fluke prevalence (Ollerenshaw and Rowlands, 1959;
Ollerenshaw, 1966). Finally the elevation and vegetation variables
were not included by Selemetas et al. (2015a), but incorporated in
the new model.
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Conclusions
Our study aimed to investigate further the spatial patterns of

liver fluke exposure in Ireland by evaluating a previously pub-
lished predictive model and hotspot analysis. To our knowledge,
this is the first study simultaneously addressing the spatial expo-
sure of Irish dairy, beef and sheep farms to F. hepatica across the
Republic of Ireland. The use of these data allowed us to detect new
hotspots for liver fluke exposure, a different pattern of predicted
distribution and further possible predictors. These results will help
locate areas where monitoring for development of anthelmintic
resistant strains as well as improved control measures may be con-
sidered. Furthermore, suggestions for the use of new possible pre-
dictors for future forecasting improvement are made.
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