
Abstract
Scrub typhus, a bacterial, febrile disease commonly occurring

in the autumn, can easily be cured if diagnosed early. However, it
can develop serious complications and even lead to death. For this
reason, it is an important issue to find the risk factors and thus be
able to prevent outbreaks. We analyzed the monthly scrub typhus
data over the entire areas of South Korea from 2010 through 2014.
A 2-stage hierarchical framework was considered since weather
data are covariates and the scrub typhus data have different spatial
resolutions. At the first stage, we obtained the administrative-level
estimates for weather data using a spatial model; in the second, we
applied a Bayesian zero-inflated spatio-temporal model since the
scrub typhus data include excess zero counts. We found that the

zero-inflated model considering the spatio-temporal interaction
terms improves fitting and prediction performance. This study
found that low humidity and a high proportion of elderly people
are significantly associated with scrub typhus incidence.

Introduction
Scrub typhus is an acute febrile disease spread by the bites of

the larvae of trombiculid mites infected with Orientia tsutsuga-
mushi, a bacterium similar to Rickettsia (Ogawa et al., 2002). The
infection usually occurs in autumn when there is a high chance of
contact with these chigger larvae (Cracco et al., 2000). It is com-
monly distributed in the Asia-Pacific area (Figure 1) within the so-
called tsutsugamushi triangle region (McCrumb et al., 1957). In
South Korea within this triangle, an average of 8,329 patients per
year were diagnosed with scrub typhus from 2010 to 2016.

Patients with scrub typhus have symptoms such as fever,
headache, fatigue, swollen lymph nodes and muscle pain. They
are easily cured by antibiotica (tetracycline or chloramphenicol)
when administered in the early stage; however, patients who are
not treated appropriately can develop complications that can lead
to death, such as pneumonia, encephalitis, and multi-organ failure.
Finding the risk factors for scrub typhus is important as this would
contribute to prevention of outbreaks of the disease. 

Previous studies suggest that meteorological factors and the
proportion of elderly people influence the number of scrub typhus
cases (Ogawa et al., 2002; Kuo et al., 2011; Tsai et al., 2013; Li et
al., 2014). Kuo et al. (2011) focused the spatial distribution of
scrub typhus in 350 administrative districts of Taiwan, showing by
application of the Spearman rank correlation coefficient. They
showed that the scrub typhus occurs more often if the temperature
increases and rainfall, normalized difference vegetation index, the
proportion of farmers and dry land decrease. Li et al. (2014) inves-
tigated the association between meteorological factors and the
monthly scrub typhus incidence in Guangzhou, China for the peri-
od 2006-2012 through negative binomial regression. They found
that temperature had a positive association and humidity a negative
one, i.e. less infections with lower temperature and higher humidi-
ty. They only considered the temporal resolution and their results
might be applicable only in countries with similar weather patterns.
Ogawa et al. (2002) analyzed the clinical characteristics of scrub
typhus in Japan by use of a questionnaire approach involving
healthcare workers in 1998, showing that females and people over
51 years old had a higher chance of acquiring scrub typhus.

In recent years, a few studies have examined the spatial or spa-
tio-temporal distribution of scrub typhus. Kuo et al. (2011) con-
ducted spatial clustering of scrub typhus incidence using Moran’s
I (Li et al., 2007) and LISA (Anselin, 1995). Wardrop et al. (2013)
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conducted a spatial analysis using a Poisson regression model with
weather covariates. Wu et al. (2016) explored the spatio-temporal
patterns of scrub typhus incidence to detect hotspots using cluster-
ing methods, while Noh et al. (2013) analyzed the scrub typhus
incidence dataset in Korea by considering the spatio-temporal
dependency structures within a Bayesian framework. However,
neither Wu et al. (2016) nor Noh et al. (2013) considered the pos-
sible risk factors, which are particularly important with reference
to policy decision-making. In addition, although Noh et al. (2013)
considered space and time, they only took into account a single
spatial dependency structure and a single temporal dependency
structure over the entire domain investigated. A more versatile
approach is needed as the spatial and temporal patterns of scrub
typhus incidence could vary across space and time. For example,
the spatial distribution of scrub typhus incidence this year might
not be the same as the one in the past. In such cases, it is important
that the interaction of space and time be considered in modelling
in the statistical analysis in order to avoid distorted, even wrong
results.

In this paper, we discuss the analysis of monthly scrub typhus
incidence data for all administrative districts of South Korea, while
also considering the complicated spatio-temporal dependency
structures. To the best of our knowledge, this is the first study to
adopt a spatio-temporal zero-inflated model for scrub typhus data.

Materials and Methods
We used meteorological and socioeconomic factors as covari-

ates and propose a Bayesian hierarchical model for the building of
flexible spatio-temporal structures by combining prior knowledge

with the data at hand. We examined whether such a space-time
interaction structure should be adopted in analyzing the data along
with the overall spatial and temporal dependency structures. In
South Korea, most of the scrub typhus incidence is concentrated in
the south-western regions of the country and in the autumn season
because of harvest and increased outdoor activities. Taking the
whole country into account, most of the monthly incidence data
had zero counts, which leads to over-dispersion. Therefore, we
used a zero-inflated Poisson (ZIP) distribution (Lambert, 1992) to
account for such data distribution characteristics. Since the meteo-
rological data as covariates are gathered from monitoring stations
and the scrub typhus incidence data are collected based on admin-
istrative area, they have different spatial data resolutions, which is
often called spatial misalignment (Gotway and Young, 2002). To
overcome this problem, we applied a 2-stage framework (Choi et
al., 2009). At the first stage, we obtained weather estimates for all
administrative districts through a spatial weather model, to be used
as inputs for the next stage. At the second stage, we applied the
spatio-temporal ZIP model to the scrub typhus data to investigate
the associations between the meteorological factors and scrub
typhus incidence. Finally, the performance of the proposed model
is compared to competing models.

Study region and data
We used monthly datasets in South Korea from 2010 to 2014

covering 251 administrative districts and 60 months. The basic
characteristics of all variables are shown in Table 1. The monthly
scrub typhus dataset obtained from the Korea Centers for Disease
Control and Prevention (http://is.cdc.go.kr/dstat) contains the
number of patients diagnosed with scrub typhus per month in each
administrative area. The zero count of this dataset is about 73%,
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Figure 1. Map of Tsutsugamushi triangle.
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showing that our data are highly zero-inflated. Due to this, we
summarized the incidence data with and without zero counts in
Table 1. The daily precipitation, temperature, and humidity
datasets were obtained from the Korea Meteorological
Administration (http://data.kma.go.kr). Precipitation and tempera-
ture data were collected from 487 monitoring stations (Figure 2A),
and humidity from 95 monitoring stations (Figure 2B). Monthly
averaged values were used for the analysis. Because the number of
scrub typhus cases is related to the population and the proportion
of elderly people (age 65 and over), we also considered these fac-
tors as an offset and a covariate. These datasets were obtained from
the Korean Statistical Information Service (http://kosis.kr). In the
Korean Government system, the total population dataset is collect-
ed monthly, while the elder population dataset is collected on an
annual basis. Thus, the monthly variation of the proportion of
elderly people could be inferred. 

Statistical modelling
We proposed a 2-stage hierarchical framework to overcome

the different spatial data resolutions. At the first stage, we predict-
ed weather values for all administrative districts using a spatial
model in which projected coordinates of longitude, latitude and
weather data are covariates. At the second stage, we fitted a

Bayesian spatio-temporal zero-inflated model to the incidence
data, using the predicted weather values and the proportion of
elderly people as covariates. The detailed framework is shown in
Figure 3.

Stage one: spatial modelling for meteorological data. We
assumed that the spatial model for each weather data is as follows:

W (s,t) = Z(s,t)γ + Ψ (s,t),  Ψ ~ N (0, Σ),                               Eq. 1

where W (s,t) is the observed weather value at monitoring station
s and time t, and Z(s,t) the vector of covariates with the corre-
sponding coefficient vector γ. The vector Ψ with the element Ψ
(s,t) explains the spatial effects and measurement error with the
covariance matrix Σ, in which a Matern spatial covariance struc-
ture (Banerjee et al., 2014) provides the best prediction perfor-
mance. Based on an exploratory data analysis, we used projected
coordinates as covariates for precipitation data. Additional covari-
ates included precipitation for temperature data, and temperature
as well as precipitation for humidity data. The parameters were
assumed to follow non-informative prior distributions to make the
most use of the data at hand and to avoid bias. We obtained the pre-
dicted weather values at each time and location of interest, i.e. a
Kriging (Banerjee et al., 2014) approach.

                                                                                                                                Article
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Table 1. Summary of variables.

Variables                                         Description                                                                     Mean          Standard        Q1            Q3        IQR
                                                                                                                                                                     deviation           

Scrub typhus incidence (yit)                     Monthly incidence in each administrative area                                2.5                        8.7                     0                    1                1
Non-zero incidence (yit)                            Monthly non-zero incidence in each administrative area              9.3                       14.8                    1                  11              10
Precipitation (W1it)                                      Monthly average precipitation (mm)                                                  3.4                        3.7                   1.0                4.2             3.2
Temperature (W2it)                                      Monthly average temperature (°C)                                                   12.3                       9.7                   3.8               21.5           17.7
Humidity (W3it )                                            Monthly average                                                                                     67.2                       9.2                  60.0              74.7           14.7
relative humidity (%)                                  
Proportion of elderly people (Xit)            Proportion of people older than 65 years (%)                                16.0                       7.5                   9.9               21.8           11.9
Q1, first quartile; Q3, third quartile; IQR, Q3-Q1.

Figure 2. Map of monitoring stations and kriging locations for the weather model. (A) Map of temperature and precipitation stations;
(B) Map of humidity stations; (C) Map of kriging locations.
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Here, we estimated the true weather values at about 1,000 loca-
tions for each time point in Figure 2C. The estimated weather
value at administrative area i in month t was averaged by the esti-
mates of true weather values within area i and used as inputs for
the second stage. Stage two: zero-inflated spatio-temporal mod-
elling for scrub typhus incidence data. The incidence of scrub
typhus for administrative area i and month t, yit follows a zero-
inflated Poisson distribution:

                                                                                               Eq. 2

where pit is the probability of structural zeros and Nit the popula-
tion. The logit(pit) is the linear combination of precipitation W1it,
temperature W2it, humidity W3it, and the proportion of elderly peo-
ple Xit. The corresponding coefficients αj, j = 0, 1,…,4 indicate the
effects of the covariates. The log relative risk log(θit) was modelled
with fixed effects and space-time random effects:

log(θit) = β0 + β1W1it + β2W2it + β3W3it + β4Xit + ui + lt + vi + kt + ϕit,
                                                                                               Eq. 3

where the random effects ui ~N(0,σu
2. ) and lt ~ N(0,σ l

2. ) are the spa-
tially and temporally unstructured terms, respectively. The spatial-
ly correlated random effect vi follows a conditional autoregressive
(CAR) model (Besag, 1974),v=(v1,v2,⋯,vl)T~ CAR(σv

2.). Generally
speaking, a CAR model is constructed based on neighbourhood
information. The mean of a specific area is defined as the weighted
average of its neighbours, and the variance is inversely proportion-

al to the number of neighbours. The temporally correlated random
term kt follows a first-order autoregressive AR(1) process (Yule,
1921). Knorr-Held (2000) proposed four different types of the spa-
tio-temporal interaction term ϕit and its covariance can be
expressed as Σϕ=Σs⊗ ΣT using the Kronecker product, where the
matrices ΣS and ΣT indicate covariance matrices of space and time,
respectively. In our data, we found that the temporal pattern for
each area was not identical to that of other areas and the spatial pat-
tern varied from year to year, supporting the fact that considering
a space-time interaction term is reasonable. We used non-informa-
tive priors for the parameters: Normal (0,105) for the coefficients βj

and αj, j = 0,1,…,4, and U (0,100) for the standard deviations σu, σl,
σv, σk, and σϕ.

The WinBUGS statistical package (http://www.mrc-
bsu.cam.ac.uk/software/bugs) was used. Two chains with different
initial values were used to check the sample convergence. Every
50th sample was extracted as a posterior sample. After the burn-in,
2,500 samples for each chain, in total of 5,000 samples, were used
for parameter estimation. We checked the convergence using trace
plots, the Gelman-Rubin statistic (Gelman et al., 1992), and auto-
correlation plots. All outcome Figures in this paper were produced
with open source program R (https://www.r-project.org).

We additionally considered seven competing models. All mod-
els (models 1-8) are listed in the Appendix. Model 1 to Model 4 are
Poisson models, and Model 5 to Model 8 are ZIP models. Models
1 and 5 only consider covariates. Models 2 and 6 additionally con-
tain spatially and temporally uncorrelated terms. Spatially and
temporally correlated random terms were added in models 3 and 7.
Finally, in models 4 and 8, spatio-temporal interaction term was
considered additionally. We investigated the performance of the
proposed model (model 8) and other competing models (models 1-
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Figure 3. Flowchart of the two-stage model. ZIP, zero-inflated Poisson.
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7) in terms of deviance information criterion (DIC) and mean
squared prediction error (MSPE). A model with a smaller MSPE
and DIC value has better performance.

Results

Weather data results
To examine the prediction performance of the proposed spatial

model, we compared the values observed at the monitoring sta-
tions and the predicted values for the administrative district in
which each station is located. We chose three administrative areas
that contain weather monitoring stations: Inje-gun in Gangwon
Province, Youngdong-gun in Chungcheong Province and
Mungyeong-si in Gyeongsangbuk Province. Figure 4 shows that
most points are located close to the line y = x, indicating that the
predicted weather values are similar to the observations from the
stations. We also found that the observed and predicted values for
the other areas were similar. Thus, the proposed spatial weather
model fits the data well. 

                                                                                                                                Article
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Figure 4. Calibration plots of the weather data model for Inje-gun in Gangwon Province (first row), Youngdong-gun in Chungcheong
Province (second row), and Mungyeong-si in Gyeongsangbuk Province (third row). (A, D, G) precipitation; (B, E, H) temperature; (C,
F, I) humidity.
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Scrub typhus data results
Table 2 summarizes the model performances. The MSPE val-

ues of models 4 and 8 decreased to about one-sixtieth and one-
eightieth of those of models 1 and 5, respectively. The DIC values
also decreased dramatically for the spatio-temporal models com-
pared with the non-spatio-temporal ones. Moreover, the space-time
interaction terms not only provide smaller DIC values but also
smaller MSPE values. Overall, the Poisson models (models 1-4)
have larger MSPE and DIC values than the ZIP models (models 5-
8). As more complicated spatio-temporal structures are included in
a Poisson model, its performance becomes more similar to the per-
formance of the ZIP model with the corresponding spatio-temporal
dependency structure. Therefore, space-time random components
explain the over-dispersion in Poisson regression models. Since
model 8 works the best of the eight models in terms of MSPE and
DIC values, the ZIP model with the space-time interaction term
was deemed more suitable for our data than the other models.

We also compared the empirical probability of zero counts
from the real data with the estimated probability from the models.
Around 73% of the incidence had zero values. In Table 2, the esti-
mate of the probability of zero counts was 0.157 in the simple
Poisson model (model 1), but 0.739 in model 8, which is almost
the same as the observed probability of zero. Therefore, using a
spatio-temporal ZIP model significantly improves the ability to
capture zero-inflation. The other models (models 2-7) had similar
values because the space-time random terms explain most of the
zero-inflation.

The parameter estimates of the best model, model 8, are shown
in Table 3. Only the coefficients of humidity and proportion of
elderly people are statistically significant since the 95% credible
intervals did not contain zero. The regression coefficient of humid-
ity was negative and that of proportion of elderly people positive.
The estimated coefficients of precipitation and temperature were
positive and negative, respectively, but not statistically significant.

We compared the observed values with the predicted values
from model 8. In Figure 5, the observed incidence of scrub typhus
and the predicted values are located with the regression line y =
0.94x + 0.15. Figure 6 presents the time series plots of the observed
data and predicted values for two selected areas. Here, Gwanak-gu
in Seoul City, and Ulju-gun in Ulsan City have the highest inci-
dence within Seoul and South Korea, respectively. Figure 7 pre-
sents the observed and predicted maps of the incidence in October
2013 and October 2014. These comparison methods show that the
predicted values were similar to the observed data.

Discussion
Investigating the relationship between weather factors and

scrub typhus has led to the result that humidity is a significant risk
factor, but a negative one. We found that the number of the scrub
typhus cases increases as humidity decreases. This negative asso-
ciation can be explained by the fact that the autumn season is rel-
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Table 2. Model performance.

Distribution                         Model                   Mean square             Deviance                   pD               Deviance information            Est.Pr 
                                                                        prediction error                                                                              criterion                        (Y=0)

Real data                                                                                                                                                                                                                                                                       0.730
Poisson                                            Model 1                                 75.07                                160938                            5.02                                     160943                                    0.157
                                                          Model 2                                 10.65                                 29633                           306.58                                    29939                                     0.739
                                                          Model 3                                 10.65                                 29640                           295.16                                    29935                                     0.740
                                                          Model 4                                  0.96                                  22640                          2122.03                                   24762                                     0.739
Zero-inflated Poisson                   Model 5                                 61.24                                 76150                             4.38                                      76154                                     0.731
                                                          Model 6                                 10.07                                 28330                           357.53                                    28688                                     0.740
                                                          Model 7                                 10.15                                 28410                           366.04                                    28776                                     0.710
                                                          Model 8                                  0.97                                  22320                          2025.35                                   24345                                     0.739
Est.Pr (Y=0): the estimated probability of zero counts.

Table 3. Posterior summaries for the spatio-temporal zero-inflated Poisson model.

                                                        Est.         Standard deviation       Monte Carlo error        2.50%         Median        97.50%    Relative risk

Intercept (β0)                                             -6.883                          0.432                                        0.043                           -7.673               -6.714               -6.285                 0.001
Precipitation (β1)                                       0.023                           0.017                                        0.001                           -0.008                0.022                 0.055                  1.023
Temperature (β2)                                      -0.016                          0.011                                        0.001                           -0.041               -0.017                0.007                  0.984
Humidity (β3)                                              -0.098                          0.007                                        0.001                           -0.110               -0.099               -0.085                 0.907
Elderly people proportion (β4)               0.066                           0.006                                        0.001                           0.054                 0.066                 0.075                  1.068
σu                                                                    0.418                           0.030                                        0.002                           0.365                 0.416                 0.482                      
σ1                                                                    0.263                           0.163                                        0.016                           0.091                 0.211                 0.726                      
σv                                                                    0.770                           0.058                                        0.004                           0.666                 0.767                 0.892                      
σk                                                                    1.525                           0.149                                        0.005                           1.262                 1.514                 1.852                      
σφ                                                                    0.835                           0.020                                        0.002                           0.800                 0.833                 0.871                      
Est.: posterior mean; 2.50% and 97.50%: lower limit and upper limit of 95% credible interval, respectively.
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atively dry and the incidence is mostly centred at that time. This
result is parallel to the negative correlation of relative humidity
and scrub typhus incidence shown by Li et al. (2014) and Wu et al.
(2016). Since both these studies and our own made use of the scrub
typhus incidence during all seasons, the effect of humidity on the
disease might be different if the incidence data were restricted to
the autumn season.

In addition, we showed that the higher the proportion of elderly
people is, the more scrub typhus occurs, which is supported by
Ogawa et al. (2002). Since scrub typhus commonly occurs in farm-
land and farm workers are mostly aged over 60 in South Korea,
this result seems to be reasonable. Also, there is a high chance that
older people have a less vigorous immune system and therefore are
more at risk of scrub typhus infection than young people.

A negative binomial zero-inflated spatio-temporal model as an
alternative for our data can be considered, but as it has larger DIC
and MSPE values (DIC = 25553 and MSPE = 6.44) than the pro-
posed Poisson zero-inflated spatio-temporal model, the latter
would then be better in terms of model performance.

Since most of the hotspots are in rural areas, interventions
specified for those areas can effectively prevent scrub typhus. A
high proportion of the residents in rural areas are senior citizens
who are likely to lack information on scrub typhus. Therefore, a
key approach would be to provide education to all residents in the
endemic areas before peak season. As an example, Koryung
County, South Korea, effectively prevented the disease by educat-
ing its residents, especially the elderly. People who had experi-
enced scrub typhus were invited as guest speakers and as soon as
the first case of the disease occurred, information went out. In
addition, the government of Koryung County distributed tick
repellent and protective clothing to the residents. In doing so, the
incidence of scrub typhus in Koryung County decreased compared
to previous years. The prevention policies should especially be
focused on the autumn season due to ensuing harvest and increased
outdoor activities.

All models in this study used adopted Bayesian methods. In
spite of a high computational cost, they have advantages over fre-
quentist methods. Unlike the difficult interpretation of confidence

intervals in frequentist inference, credible intervals in Bayesian
inference are more straightforward and easy to interpret.
Especially in spatial modelling, the Bayesian framework enables
understanding based on hierarchical models highly intuitive.
Combining prior knowledge with real-world data is another benefit
of Bayesian inference. Here, careful selection of appropriate priors
is required and we used non-informative priors. To understand how
the prior distributions influence the results, we conducted a sensi-
tivity analysis using inverse gamma distributions for variances.
These prior distributions provided almost similar results.

We had a minor support problem in using the weather data as
covariates in this study. As a solution, we used a two-stage model
which can offer location datasets without monitoring stations using
a relatively small number of observed data. Owing to this strength,
statistical analysis can be conducted with the complete covariates
and find the significant risk factors. Based on these results, we
were able to prevent and deal with the disease effectively.
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Figure 5. Calibration plot of the scrub typhus data model (Model 8).

Figure 6. Comparison of scrub typhus incidence and the predict-
ed values for two representative regions. (A) Gwanak-gu in Seoul
City; (B) Ulju-gun in Ulsan City.
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Several further tasks remain to be done. First, the model for
weather data in the first stage is limited to the spatial model in this
study. Adopting a spatio-temporal model for meteorological data
might improve the predictive performance. Also, combining
weather observation values and predicted values from numerical
models might enhance the predictive performance. Second, we
expect to be able to analyze the data using sex- and age-adjusted
individual patient data in the future, but we were unable to obtain

this information with reference to the people diagnosed with scrub
typhus in this study. Third, because scrub typhus occurs mostly in
the autumn, analyzing only autumn data but on a daily basis might
help locate detailed trends. In addition, conducting a spatio-tempo-
ral clustering, might be helpful in deriving interventions for each
season and could lead to a simulation study to investigate the
effects of the interventions.
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Figure 7. Predicted and observed maps of scrub typhus incidence. (A) The incidence of scrub typhus, October 2013; (B) the predicted
values, October 2013; (C) the incidence of scrub typhus, October 2014; (D) the predicted values, October 2014.
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Conclusions
This study is the first attempt to use a Bayesian spatio-tempo-

ral ZIP model for the association between the incidence of scrub
typhus in Korea and the weather and proportion of people older
than 65 years. Our spatio-temporal model dramatically increased
the performance. This supports that spatio-temporal models should
be applied for the data with spatio-temporal dynamics. Given that
many epidemiological data contain spatial and temporal dependen-
cies, our model could be a template for the use of spatio-temporal
models with epidemiological data.
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