
Abstract
The risk of developing lung cancer might to a certain extent be

attributed to tobacco. Nevertheless, the role of air pollution, both
form urban and industrial sources, needs to be addressed.
Numerous studies have concluded that long-term exposure to air
pollution is an important environmental risk factor for lung cancer
mortality. Still, there are only a few studies on air pollution and
lung cancer in Portugal and none addressing its spatial dimension.
The goal was to determine the influence of air pollution and

urbanization rate on lung cancer mortality. A geographically
weighted regression (GWR) model was performed to evaluate the
relation between particle matter10 (PM10) emissions and lung can-
cer mortality relative risk (RR) for males and females in Portugal
between 2007 and 2011. RR was computed with the BYM model.
For a more in-depth analysis, the urbanization rate and the per-
centage of industrial area in each municipality were added. GWR
efforts led to identifying three variables that were statistically sig-
nificant in explaining lung cancer relative risk mortality, PM10

emissions, urbanization rate and the percentage of industrial area
with an adjusted R2 of 0,63 for men and 0,59 for women. A small
set of 8 municipalities with high correlation values was also iden-
tified (local R2 above 0,70). Stronger relationships were found in
the north-western part of mainland Portugal. The local R2 tends to
be higher when the emissions of PM10 are joined by urbanization
and industrial areas. However, when assessing the industrial areas
alone, it was noted that its impact was lower overall. As one of the
first communications on this subject in Portugal, we have identi-
fied municipalities where possible impacts of air pollution on lung
cancer mortality RR are higher thereby highlighting the role of
geography and spatial analysis in explaining the associations
between a disease and its determinants.

Introduction
The beginning of the Industrial Revolution in the United

Kingdom in the 18th century brought about air pollution as a seri-
ous problem which has impacted human society ever since. Until
then, air pollution was limited to volcanic activities, mining and
some domestic tasks involving the use of fuels such as coal (Stern,
2014). The rapid urbanization and industrialization around the
world, resulting in substantial increases in emissions of pollutants
from burning fossil fuels, is not a problem that exclusively affects
the urban populations. In rural areas, local populations are
exposed to the use of solid fuels such as vegetal, wood and coal,
among others (Arbex et al., 2012). Several studies have shown the
link between particulate and gaseous pollutants emitted by differ-
ent sources, and the symptoms of respiratory diseases and the con-
sequent demand for health services and hospitalizations (Arbex et
al., 2012). In 2016, the World Health Organization (WHO) esti-
mated that global air pollution (indoor and outdoor) killed 7 mil-
lion people worldwide (one in nine deaths), a number that has
doubled past estimates, making air pollution a major health risk in
the world (WHO, 2016).

One of the main diseases linked to this type of pollution is
lung cancer, the type of cancer that kills the most and the fifth
leading cause of death in the world: 1.69 million deaths in 2015
(WHO, 2017). At the end of the 19th century and beginning of the
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20th century, it was an almost unknown disease. At the time it rep-
resented only 1% of all cancers identified in autopsies at the
Institute of Pathology at the University of Dresden in Germany in
1878, rising to about 10% in 1918 and more than 14% in 1927
(Witschi, 2001). Over the course of the century, this number
increased further and several causes were identified, including
increased air pollution due to the higher number of motor vehicles
on the roads and exposure to different types of noxious gases dur-
ing World Wars I and II, while smoking was only shown to be asso-
ciated decades later (Witschi, 2001). However, studies associating
these two factors would only appear in the middle of the 20th cen-
tury, after three momentous events of air pollution, or smog, as
they later became known. Such events in 1938 in the Meuse River
Valley, Belgium; in 1948 in Donora, Pennsylvania; and the gravest
of all, in 1952 in London, which killed about 12,000 people, arous-
ing the authorities to the true consequences of prolonged exposure
to harmful material in the air (Witschi, 2001). Even though some
authors claim that given the high percentage of tobacco-related
cases it is difficult to carry out studies proving other factors that
cause the disease (Zamboni, 2002), numerous studies conducted in
various parts of the world have concluded that long-term exposure
to air pollution is an important environmental risk factor for lung
cancer mortality and other respiratory diseases (Pope III et al.,
2002; Katanoda et al., 2011; Rückerl et al., 2011; Hamra et al.,
2014). Diverse methods were used in these studies to analyze the
effects of air pollution on lung mortality. The choice of methods
depended directly on the type of epidemiological study carried out;
some of the adopted methods were: Cox proportional hazards
model (Pope III et al., 2002; Katanoda et al., 2011); Hierarchical
logistic regression models (Hystad et al., 2013) and log-linear
regression model (Samet et al., 2000).

The International Agency for Research on Cancer (IARC) esti-
mates for 2010 indicate that of the total deaths in the world from
lung cancer, around 223,000 (near 13% of the total), were directly
related to air pollution (IARC, 2013). Even though the relative risk
of developing cancer as a result of exposure to air pollution is low,
the attributed risk (the relative risk multiplied by the number of
exposed persons) is high, making air pollution the most significant
environmental risk for lung cancer (Fajersztajn et al., 2013). With
the available study results, in 2013, IARC classified air pollution
as a carcinogen to humans, being included in group 1, a category
used when there is strong evidence of carcinogenicity in humans.
Exceptionally, an agent may be placed in this category when the
evidence of carcinogenicity in humans is less, but there is sufficient
evidence of carcinogenicity in experimental animals and strong
evidence in exposed humans where the agent acts through a rele-
vant carcinogenicity mechanism (IARC, 2013).

Given the current economic and social situation, especially the
increase in urban areas and a context where economic growth is
encouraged, it is to be expected that more and more people will be
exposed to air pollution. Thus, it is essential to determine the con-
tribution of risk factors in the development of the disease, so that
preventive measures may be implemented. With access to informa-
tion, people living in high-risk areas make pressure on public
authorities and stakeholders to act in the name of public health and
the environment. It is important to note that by the year 2050,
exposure to external air pollution is expected to become the lead-
ing cause of premature environmental deaths in the world (OECD,
2012), overcoming malaria and deaths associated with poor water
quality. While everything points to a decrease in deaths because of
these two last causes, pollution should continue to make more vic-

tims each year. Since air pollution is intrinsically associated with
different economic activities, it is crucial to define strategies that
can bring together the various stakeholders in order to solve the
health effects of air pollution.

The Air Quality Report for 2016 estimated 6,640 deaths from
air pollution in Portugal (Cristina et al., 2016). The same report
mentions that Portugal should reduce emissions of nitrogen oxide
and ozone concentrations, especially in urban areas. It also
addresses the excessive use of individual transport as the main
aggravating factor for air quality problems and responsible for the
high levels of air pollution in the cities of Lisbon and Oporto. The
Portuguese Environment Agency (APA) also identifies emissions
from road vehicles as one of the primary sources of PM, highlight-
ing the combustion of biomass by the domestic sector (burning of
fuels such as wood and coal) (Ferreira et al., 2015). However,
there are satisfactory indicators in some points, such as particle
matter (PM)2.5 values lower than those recommended by the WHO,
one of the sharpest decreases in PM10 (Cristina et al., 2016) as well
as a downward trend in the remaining pollutants under analysis
(Ferreira et al., 2015). 

The objective of this study is to investigate the relation
between the relative risk (RR) of lung cancer mortality in mainland
Portugal from 2007-2011 and air pollution. Through a spatial anal-
ysis, we intend to identify municipalities and regions where air
pollution has more impact on the RR of lung cancer mortality.
Using the urbanization rate and the percentage of industrial area
we intend to assess if the source of the pollutants affects the results
or not. This article is organized in five sections. Section 1
(Introduction) introduces the background of this study and
includes a review of the theme and the situation in Portugal.
Section 2 (Materials and Methods) consists of three parts: i) delim-
itation of the study area; ii) data acquisition and procedures; iii)
methods of data analysis; section 3 includes results; section 4 a dis-
cussion about the study and its findings and section 5 presents the
conclusions.

Materials and Methods

Study area
The model was built for mainland Portugal with data from the

2016 Official Administrative Charter of Portugal (CAOP), which
includes all of its 278 municipalities, the second-level administra-
tive subdivision of Portugal (Figure 1).

For data analysis purposes, boundaries of the Nomenclature of
Territorial Units for Statistics level (NUTS) II was used. Lisbon
Metropolitan Area (MA) is simultaneously NUTS II and MA.
Oporto MA, in turn, integrates the NUTS II in the North (the Norte
region). 

Pollution
We focus on the PM10 approach given the various studies that

have linked it to lung cancer and because it is defined as a carcino-
genic agent with sufficient evidence in humans (IARC, 2013).
Other agents like nitrogen dioxide, diesel and arsenic are also iden-
tified with carcinogenic capabilities (Cogliano et al., 2011), but
they were not included in this study due to the lack of data for
Portugal. At first, the pollution data used were provided by the
European Environment Agency (EEA) on its website (EEA, 2018),

                   Article
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based on the values of the stations around mainland Portugal man-
aged by the APA and some in Spain along the Portuguese border.
These values, referring to the concentration of PM10 expressed as
μg/m3, although reliable, were not homogeneous at the temporal
level. Many stations only had values for just a few years, and many
of the interior municipalities did not have a nearby station that
could serve as a reference, leading to the concentration of data on
coastal and urban areas.

We worked with the APA report where the values of PM10

emissions per municipality were available for 2009 (APA, 2011).
These values are represented in ton per square km (t/km2) and
include natural sources (the difference between the inclusion of
natural sources and its exclusion is practically nil). The majority of
the literature gives values in μg/m3 (Guo et al., 2016; Jerrett et al.,
2013), but since the values on the report are from 2009, that is, the
middle of our temporal analysis (between 2007 and 2011), and
encompass all the municipalities of mainland Portugal, we chose to
work with these values in order to guarantee a better consistency
of the results and consequently a more accurate analysis. It is
essential to make a distinction between the emissions and atmo-
spheric concentrations of PM: emissions refer solely to the emis-
sion of particulate matter by sources like industry, traffic or agri-
culture. The concentrations, most often expressed as μg/m³ in open
air, are determined by those emissions and meteorological condi-
tions. There is, however, no linear relation between the emissions
and the concentrations of particulate matter (Fierens et al., 2015).

Relative risk
Lung cancer mortality data were made available as RR by

municipality, for males and females. In this study, the RR was cal-
culated using the Bayesian model of BYM (Besag et al., 1991), a
model often used to estimate spatial risk patterns in the hierarchi-
cal mapping of diseases (Gerber, 2013). This method appears as
the best option when the disease is specific enough. Some fluctua-
tions that may arise in smaller counts imply that maps based only
on raw data may be difficult to interpret and misleading. There are
advantages in applying some form of smoothing, which may or
may not involve a spatial component and provide point and inter-
val estimates for hazards (Besag et al., 1991). 

The BYM model is based on the Poisson regression, where the
observed cases are the dependent variable, the expected cases the
offset and two types of terms of random effects that take into
account both spatial continuity and spatial heterogeneity (López-
Abente et al., 2014). It was computed with INLA (Rue et al.,
2009), using mortality and population data, obtained from
Statistics Portugal (INE). We adopted codes C00 to C97 in data
cancer collection, according to the 10th revision of International
Statistical Classification of Diseases and Related Health Problems
(10th ICD). In terms of period, we considered data aggregated in a
five-year period, 2009-2013, given that it is recommended to use
large populations, and data grouping in several years (Jensen,
1991). To calculate the reference population, we used 2011 data,
the central year of the period and the Census year, multiplied by
five (the number of years). Data were disaggregated by sex and
eighteen age groups were considered: 0-4; 5-9; 10-14; 15-19; 20-
24; 25-29; 30-34; 35-39; 40-44; 45-49; 50-54; 55-59; 60-64; 65-
69; 70-74; 75-79; ≥80 years old. In the model construction, we
adopted the Besag model, the Laplace option and neighbourhood
based on spatial contiguity.

Urbanization rate
For the urbanization rate, we used the Land Use and Land Cover

Map (COS) of 2010, made available by the Directorate-General of
Territory (DGT) (DGT, 2016). The level one class was used –
Artificial Territories – and all its sub-classes, except the sub-class
1.4.1 corresponding to urban green spaces. Then, the percentage of
artificial land use was calculated for all the municipalities of the
country, using the following formula (Eq. 1):

                                                                   
Eq. 1

where UR is the urbanization rate,  the artificialized area of each
municipality andthe total area of each municipality. Afterwards, the
urban area was divided into two: urban area per se and industrial
area. The urban area includes the following subclasses: continuous
urban fabric (1.1.1), discontinuous urban fabric (1.1.2), road and rail
networks and associated spaces (1.2.2), port areas (1.2.3) and air-
ports (1.2.4). In the industrial areas the following classes were
encompassed: industry (1.2.1.01), energy production infrastructures
(1.2.1.05), opencast mines (1.3.1.01), quarries (1.3.1.02), landfill
sites (1.3.2.01) and dumps and scrap yards (1.3.2.02). The aim was
to separate the continuous and discontinuous urban fabric and the
transport networks from the industrial areas and the production and
extraction of aggregates sites, potentially more polluting.

Methods of exploratory data analysis 
Exploratory data analysis methods were applied to consider spa-

tial autocorrelation within spatial data. The first approach involved
the computation of Ordinary Least Squares (OLS) and Global
Moran’s I, which is widely used in Geographic Information Systems
(GIS), having a rather large usefulness in the geographical analysis
of variables in health and epidemiology (Getis et al., 1992; Bui et al.,

                                                                                                                                Article
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Figure 1. Mainland Portugal Nomenclature of Territorial Units
for Statistics level (NUTS) level II and Oporto Metropolitan Area
(MA) which belongs to the Norte Region. Data source: Official
Administrative Charter of Portugal (CAOP), 2016.
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2017). It serves as a complement to a cluster analysis, since the exis-
tence of a geographical pattern may indicate that another geograph-
ical phenomenon may explain the events under study. The OLS, a
linear regression model, shows the deviation of the actual results
from the expected results. However, it presents some limitations,
especially with regard to the spatial question, since it uses a single
equation for all geographic areas (Gutierrez et al., 2012). To explore
the local spatial heterogeneity of the potential relationships between
PM10 and lung cancer, the Geographically Weighted Regression
(GWR) model appears as the best option. Unlike the OLS, the GWR
defines a different equation for each of the geographical areas as it
takes the local geographic variation into account (Gutierrez et al.
2012), since a relation (or pattern) that is applied to one area does not
necessarily apply to the rest (Comber et al., 2011). However, OLS
can be a good tool to indicate a potential problem with global or
local multicollinearity; if the Variance Inflation Factor (VIF) value
for each explanatory variable is large (above 7,5), global multi-
collinearity is preventing GWR from a good performance (Mitchel,
2005). Using GWR, each data point is a regression point that is
weighted by the distance of the point itself. A spatial kernel map fits
the data, and a kernel bandwidth indicates the distance beyond
which neighbouring regions no longer have an influence on local
estimates (Sassi, 2010). The GWR is then an improvement of the
classical regression models (Foody, 2003). GWR extends the global
regression technique by allowing local parameters to be estimated,
instead of global, therefore making it possible to model regional
variations within the data (Fotheringham et al., 2003) (Eq. 2):

                 
Eq. 2

where (ui, vi) are the coordinates for every ith point in space, allowing
a continuous surface of parameter values. An important aspect of
GWR is that spatial autocorrelation is present within the sampled
data. As a result, it is assumed that data near point i will have more
influence regarding the estimation of the continuous function at point
i than data further away from i. This method has a high importance
because it addresses one of the fundamental principles of geographi-
cal analysis: to evaluate the possibility of spatial variability in the sta-
tistical models (Comber et al., 2011). The choice of bandwidth tends
to be very demanding, since n regressions can be used at each step
(Charlton et al., 2009). In the development of this model, an adaptive
kernel type was used instead of a fixed type. With the adaptive type,
the bandwidth distance will change according to the spatial density of
each feature in its input. The bandwidth thus becomes a function of
the number of the closest neighbours, each local estimate being based
on the same number of features. Instead of a specific distance, the
number of neighbours used for the analysis is taken into account
(Charlton et al., 2009). For the analysis of the GWR models, we used
the adjusted R2 results. R2 assumes that each variable explains the
variation in the dependent variable, also indicating the percentage of
variation explained only by the independent variables that actually
affect the dependent variable. The adjusted R2 value is always lower
than R2, as it reflects the complexity of the model (the number of
parameters) relative to the data. As so, the adjusted value of R2 is a

more accurate and reliable measure of model performance (Bui et al.,
2017). As for the individual analysis of each municipality, the chosen
method of analysis fell on the local R2. The local R2 in the GWR
model indicates how well the local regression model fits the observed
values of y. Very low values indicate that the local model performs
poorly and may need more variables to better explain the causes. On
the other hand, higher values indicate a causal relationship. Mapping
the local R2 values to see where the GWR predicts well and where it
predicts poorly can provide clues about important variables that may
be lacking in the developed model. All results were determined by the
Geographically Weighted Regression modelling tool within the
ESRI’s ArcGIS Software.

Results

PM10, urbanization rate and relative risk of lung cancer
mortality maps

Figure 2A shows the map with the emission values of PM10

t/km2 in mainland Portugal. There is a clear distinction between
coastal areas and the interior, particularly in the two main urban cen-
tres and more densely populated areas of the country. This map
almost coincides with the map with the urbanization rate (Figure
2B), where the regions with the highest percentage of urbanized area
correspond to the two metropolitan areas. Regarding lung cancer
mortality RR (Figure 3), there are several differences between males
and females. Although both exhibit high values in the two metropoli-
tan areas, they differ in some parts of the country: the values for
women are smaller in the interior, except in some municipalities in
the Centro region, while in men these values are higher in particular
in the southern regions (Alentejo and Algarve). A comparison with
the data on the percentage of smokers in Portugal is only available
at the NUTS II level (Figure 4). The regions with the highest per-
centage of male smokers match with those where the mortality RR
values are higher in the southern regions; in women, this percentage
is higher in Lisbon MA, where mortality RR values are also higher
and in the South. It should be noted that given the considerable size
of the administrative regions at which variables are available, a more
precise spatial analysis is difficult, so they should only be seen as a
complement to the analysis. For instance, in the Norte region, there
is a considerable difference in mortality RR between the coastal area
and the interior of the region, but it is not possible to make a detailed
analysis regarding the percentage of smokers.

Ordinary least squares model results
In our study, we modelled the relation of the RR of lung cancer

mortality with PM10 emissions, the urbanization rate and the percent-
age of industrial area. VIF results for each variable were: 1,323011
for the PM10 emissions, 1,655088 for the urbanization rate and
1,072336 for the industrial area, which indicates that the model
would not be affected by multicollinearity. Akaike Information
Criterion Corrected (AICc) values, presented in Table 1, show that

                   Article

Table 1. Ordinary least squares Akaike Information Criterion Corrected values.

                                           RR & PM10                      RR, PM10, & TU                            RR, PM10, & PAI                  RR, PM10, TU & PAI

Women                                                 -352                                                  -17                                                               -246                                                       -56
Men                                                       -253                                                  -59                                                               -329                                                       -80
RR, relative risk; PM, particle matter. TU, urbanization rate; PAI, percentage of industrial area.
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Figure 2. (A) Particle matter10 emissions (t/km2); (B) Urbanization rate. MA, metropolitan area.

Figure 3. Lung cancer mortality relative risk for women (A) and men (B) between 2007-2011. MA, metropolitan area.
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the best model for women considers only PM10, while for men it
considers PM10 and percentage of industrial area. 

Relative risk with PM10 emissions
The local coefficients of PM10 and RR were positive in all

municipalities (Appendix Figure A1). For men, higher values were
found to be located in South and northwest. For women, the cluster
in South was smaller than that for men, while the cluster in
Northwest was higher.

This model had an overall adjusted R2 result of 0,62 for men
and 0,58 for women, that is, tends to be successfully predicting
about 64% of the mortality RR variability in men and 59% in
women. However, when the map of local R2 (Figure 5) was over-
laid with the RR map (Figure 2B), we found some differences;
looking at the values for men there was an area to the Southeast
with high RR values that did not have the correspondence with
PM10 values. On the other hand, there seemed to exist a relation in
the Northwest area, were both maps had higher values. For
women, the highest values were scattered, but as for men, they
were more concentrated to the Northwest, so as the RR values.

Relative risk with PM10 emissions and urbanization rate
In this model, the local coefficients of PM10 and RR were pos-

itive in all municipalities (Appendix Figure A2). As in the previous
model, clusters of higher values were located in the South and
Northwest and were more extensive for men than women. It should
be noted that the municipalities of the Lisbon MA was not classi-
fied in the higher class of values, contrary to what happened with 

Figure 6 shows that the model tends to successfully predict

about 65% of the relative risk variability for men and 58% for
women, i.e. a similar result as the situation before: an adjusted R2

of 0,65 and 0,59, respectively. Concerning men, the map revealed
higher values in both MAs and their surroundings, but the south-
eastern hotspot remained without a relationship with the variables
under analysis. The values for women were again higher in the
northern coastal region, with a cluster in the northern central
region. Values around Lisbon MA were lower than with the previ-

                   Article

Figure 4. Percentage of smokers in mainland Portugal by
Nomenclature of Territorial Units for Statistics II. Data source:
Statistics Portugal (INE), 2014. MA, metropolitan area.
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Figure 5. Geographically weighted regression model with particle matter10 emissions values for women (A) and men (B). MA, metropolitan area.
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ous model. With these two variables, 18% of the municipalities
had values above 0,50 for men and 15% for women. 

Relative risk with PM10 emissions, urbanization rate
and percentage of industrial area

The industrial area was separated from urban area (Figure 7
and Appendix Figure A3), which now only includes continuous
and discontinuous urban area, and the transport infrastructures.
Adjusted R2values were 0,59 for women and 0,63 for men.
Regarding men, higher values were found in both MAs, but for
women they were between 0,30 and 0,50 in Lisbon MA. Using
these variables, 20% of municipalities had values above 0,50 both
for men and women. Also, 3% of the municipalities had values
above 0,70 for men.

Relative risk with PM10 emissions and percentage of
industrial area

With the objective of measuring the possible impact of indus-

try, quarries and aggregate extraction sites on mortality RR values
(in particular the hotspot in the south-eastern region in men’s RR)
the urban area was separated from the industrial area (Figure 8 and
Appendix Figure A4). With this model, we were faced with a low
percentage of the municipalities with a local R2 above 0,50; only
8% of municipalities for men and 13% for women, and an adjusted
R2 of 0,48 and 0,46 respectively, the lowest result taking into
account all the variables.

Model comparison
We compared the models in terms of standard errors and AICc

criterion. Standard errors (Appendix Figures A5-A8) measure the
reliability of each coefficient estimate. Confidence is higher when
standard errors are small in relation to the actual coefficient values.
Moran’s I values ranged between 0,2107 (the lowest) and 0,6591
(the highest), and while values over 0,5 point to a trend towards
clusters, it is possible to say that in general, the model does not
tend to clustering (Perrino, 2010; Zhang et al., 2017).

Table 2 presents AICc values for each model. The lowest val-

                                                                                                                                Article
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Figure 6. Geographically weighted regression model with particle matter10 emissions and urbanization rate values for women (A) and
men (B). MA, metropolitan area.

Table 2. Geographically weighted regression Akaike Information Criterion Corrected values.

                                           RR & PM10                      RR, PM10, & TU                            RR, PM10, & PAI                  RR, PM10, TU & PAI

Women                                                  -596                                                -653                                                             -510                                                      -623
Men                                                        -465                                                -468                                                             -457                                                      -467
RR, relative risk; PM, particle matter; TU, urbanization rate; PAI, percentage of industrial area.
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ues correspond to the GWR model, which considers PM10 and the
urbanization rate. However, the model which considers all vari-
ables (PM10 Emissions, Urbanization Rate and Percentage of
Industrial Area) presented very similar values.

Discussion
The results of this study are in line with the hypotheses initially

set. The highest values of correlation are mainly concentrated
around the two metropolitan areas of the country, which are the
regions with higher PM10 emissions, urbanization rate and percent-
age of industrial area. Nonetheless, those values are higher in the
North-western part of mainland Portugal. It was expected that
some of the values of lung cancer mortality RR (Figure 3) were not
related to those obtained in the GWR models mainly in the south-
ern regions, since smoking is a significant risk factor of lung can-
cer (about 90% of cases in men and 55% to 80% of cases in women
are attributed to cigarette smoking; Levi, 1999). Moreover, even
though air pollution is also identified as an important cause of the
disease, its impact is expected to be lower. The GWR results
between the percentage of industrial area and lung cancer mortality
RR represent a lower correlation than the other two variables. A
more detailed analysis is necessary in this matter, but this may
mean that the impact of the industries is smaller in the emission of
PM10 with the origin from motor vehicles being higher. As men-

tioned in the introduction, the use of individual transport is one of
the main aggravating factors for the high levels of air pollution in
both metropolitan areas (Cristina et al., 2016). The use of urban-
ization rate is not new in the study of lung cancer mortality, but
they tend to have a focus on rural-urban differences and socioeco-
nomic aspects (Riaz et al., 2011; Singh et al., 2012), a different
approach from that carried out in this study.

A geographic approach with remote sensing can help to fill in
data gaps that hamper current efforts to study air pollution. A study
by Hu and Baker (2017) shows that there is a significant positive
association between mortality from this type of cancer and PM2.5.
This result was achieved using data from the MODIS satellite sen-
sor and MISR Annual Global Grid PM2.5 data (Hu and Baker,
2017). Nonetheless, the statistically significant association
between lung cancer mortality and presence of PM2.5 may be
indicative of a potential effect of air pollution; the authors suggest
that the same association would require a toxicological approach in
order to observe the adverse biological mechanism of PM2.5 pollu-
tion (Hu and Baker, 2017). The model developed in this study
yielded satisfactory results and is in line with other similar studies
using GWR models (Fu et al., 2015; Ren et al., 2016), or other spa-
tial analyst tools (Bilancia et al., 2009; López-Cima et al., 2011).
Even though the study of cancer’s spatial epidemiology has had a
greater emphasis in the last decade (Roquette et al., 2017), there
are only a few studies on the relationship between lung cancer and
air pollution in Portugal (Slezakova et al., 2011). This study repre-
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Figure 7. Geographically weighted regression model with particle matter10, urbanization rate and percentage of industrial area values
for women (A) and men (B).
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sents one of the first to use RR mortality data along with spatial
regression analysis tools to explore a possible relationship between
both factors in mainland Portugal.

One of the advantages of using GWR is that it accounts for
spatial autocorrelation in the residuals that are usually found in
global modelling. Further, it is possible that a variable that is
insignificant at the global level might be important locally
(Fotheringham et al., 2008). When relationships are consistent
across a study area, an OLS model fits neatly into these relation-
ships; it creates equations that best describe general relationships
of data in each area. However, it is not always like that, so often
these relationships have different behaviours throughout space.
When the exploratory variables exhibit non-stationary relation-
ships (regional variation), the model tends to fail, unless robust
models adapted to this problem are applied. The GWR model
addresses this issue precisely (Mitchel, 2005).

Identifying causes and effectively addressing them can lead to
significant savings in health spending. With the implementation of
rigorous legislation on gaseous emissions, health expenditure
directly linked to air pollution in Europe has been decreasing. It is
estimated that from € 803 billion spent in 2000, it will decrease to
€ 537 billion in 2020 (Brandt et al., 2013). The convergence of the
many studies carried out so far has led to a reconsideration and
updating of health standards and guidelines, leading to new long-
term research programs in order to analyze the effects of particu-
late pollution on health (Brandt et al., 2013). However, it is known

that these changes always have economic and social impacts,
sometimes facing great opposition in certain sectors of society.

Our results sustain the hypothesis that air pollution might be a
risk factor for lung cancer. Indeed, it indicates a higher lung cancer
mortality RR among municipalities where both urban and industri-
al areas are also superior. It demonstrated the benefits of GWR,
both in respect to model performance and by allowing spatial anal-
ysis of the data. Lung Cancer mortality RR was found to be hetero-
geneously related to human factors at the municipality level in
mainland Portugal. Our findings may assist local authorities when
assessing risks, and by helping public health entities allocate
resources and address the issue according to the specific conditions
of each region.

Conclusions
With this research, our objective was not to find the municipal-

ities where people are most likely to die from lung cancer, but
rather to assess the impact of the PM10 emissions in each munici-
pality and to understand the influence of the urbanization rate and
the percentage of industrial area in these values. Furthermore,
including two variables that address the land use may be a new
method of approaching this subject and generate a more realistic
model. As a result, this study contributes to the knowledge of the
effects of air pollution on lung cancer and on the use of local spa-

                                                                                                                                Article
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Figure 8. Geographically weighted regression model with particle matter10 and percentage of industrial area values for women (A) and
men (B). MA, metropolitan area.
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tial analyses in epidemiological studies. Such information can be
used in urban planning to reduce air pollution.

No evident homogeneous pattern distribution association was
found between PM10 emissions and lung cancer mortality RR in
municipalities across mainland Portugal. There is. The relation
between PM10, urban area and industrial areas and lung cancer
mortality rates varies spatially, and there are other agents that may
influence the lung cancer mortality rate in different areas of main-
land Portugal, but we can say that it has a focus on the two
metropolitan areas. Several municipalities tend to show values of
R2 always above 0,50 in all models which represents a positive
relation. It is pertinent to state that the emission of PM10 as the
urbanization rate and percentage of industrial area affect the lung
cancer mortality RR values in those municipalities. The relation of
lung cancer turned out to be higher when the emissions of PM10

were joined by the urbanization rate and the percentage of indus-
trial area (R2 value of 0,63 for men and 0,59 for women). However,
when assessing the industrial areas alone, it was noted that their
impact is lower in the overall results (R2 equal to 0,48 for men and
0,46 for women).

Spatial variation in the relations between lung cancer RR and
air pollution means that in some places PM10 and urbanization rate
have a greater effect on mortality than in other places. In the
municipalities where the values are high, local authorities should
step in to minimize the effects of air pollution and carry out better
planning in order to benefit the public health of the local popula-
tions. We note that the problem is complex, and that further inves-
tigation is needed for a full understanding of this issue.
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