
Abstract
Various ticks exist in the temperate hilly and pre-alpine areas

of Northern Italy, where Ixodes ricinus is the more important. In
this area different tick-borne pathogen monitoring projects have
recently been implemented; we present here the results of a two-
year field survey of ticks and associated pathogens, conducted
2009-2010 in North-eastern Italy. The cost-effectiveness of differ-
ent sampling strategies, hypothesized a posteriori based on two
sub-sets of data, were compared and analysed. The same two sub-
sets were also used to develop models of habitat suitability, using
a maximum entropy algorithm based on remotely sensed data.
Comparison of the two strategies (in terms of number of ticks col-
lected, rates of pathogen detection and model accuracy) indicated
that monitoring at many temporary sites was more cost-effective
than monthly samplings at a few permanent sites. The two model
predictions were similar and provided a greater understanding of
ecological requirements of I. ricinus in the study area. Dense veg-
etation cover, as measured by the normalized difference vegeta-
tion index, was identified as a good predictor of tick presence,
whereas high summer temperatures appeared to be a limiting fac-
tor. The study suggests that it is possible to obtain realistic results
(in terms of pathogens detection and development of habitat suit-
ability maps) with a relatively limited sampling effort and a well-
planned monitoring strategy.

Introduction
In Europe, the tick Ixodes ricinus (L.) is one of the most

important vectors of viruses, bacteria and parasites, responsible
for the spread of many zoonotic diseases (e.g., tick-borne
encephalitis, Lyme disease or borreliosis, rickettsiosis, human
babesiosis and human granulocytic anaplasmosis). In recent years
a general increase in the geographical range and incidence of these
zoonotic diseases has been observed in Europe (Gray et al., 2009,
2010; Medlock et al., 2013; Bergquist et al., 2018). In Italy, I. rici-
nus is reported throughout the peninsula, particularly in temperate
hilly and pre-alpine northern areas, where some ticks and tick-
borne pathogens (TBPs) monitoring projects have been imple-
mented recently (Piccolin et al., 2006; Nazzi et al., 2010; Capelli
et al., 2012; Ceballos et al., 2014). 

Correspondence: Rudi Cassini, Department of Animal Medicine,
Production and Health, University of Padua, viale dell’Università 16,
35020 Legnaro (PD), Italy.
Tel.: +39.049.8272777.
E-mail: rudi.cassini@unipd.it

Key words: Ixodes ricinus; Italy; Species distribution models; Remote
sensing; Ticks. 

Acknowledgements: the authors thank Alessandra Mondin for the tech-
nical support with molecular analyses.

Contributions: MS, RC study design; MS, ASS, MD, FM, RC data col-
lecting and analyzing; MS, ASS, RC manuscript writing; ASS, MD, GS,
FM, MM manuscript reviewing and reference search.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: the work was supported by a grant from the University of
Padua “Integrated surveillance of vector-borne diseases using
Geographic Information Systems (GIS)” - Project code CPDA083110.
ASS is grateful to Knud Højgaards Foundation for supporting the
Research Platform for Disease Ecology, Climate and Health and thanks
the Danish National Research Foundation for its support of the Center
for Macroecology, Evolution and Climate (grant no. DNRF96).

Conference presentation: part of this paper was presented at the
International Congress “One World – One Health – One Vision”, 2015,
October 14-16, Sarajevo, Bosnia and Herzegovina, and at the 4th Italian
Congress on Wildlife Eco-pathology, 2017, October 11-13,
Domodossola, Italy.

Received for publication: 16 October 2018.
Revision received: 28 November 2018.
Accepted for publication: 28 November 2018.

©Copyright M. Signorini  et al., 2019
Licensee PAGEPress, Italy
Geospatial Health 2019; 14:745
doi:10.4081/gh.2019.745

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (CC BY-NC 4.0) which permits any
noncommercial use, distribution, and reproduction in any medium, pro-
vided the original author(s) and source are credited.

Towards improved, cost-effective surveillance of Ixodes ricinus ticks 
and associated pathogens using species distribution modelling
Manuela Signorini,1 Anna-Sofie Stensgaard,2 Michele Drigo,1 Giulia Simonato,1
Federica Marcer,1 Fabrizio Montarsi,3 Marco Martini,1 Rudi Cassini1
1Department of Animal Medicine, Production and Health, University of Padua, Legnaro (PD), Italy; 
2Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, 
University of Copenhagen, Copenhagen, Denmark; 3Istituto Zooprofilattico Sperimentale delle Venezie,
Legnaro (PD), Italy

[page 46]                                                              [Geospatial Health 2019; 14:745]                                                   

                                Geospatial Health 2019; volume 14:745

gh-2019_1.qxp_Hrev_master  17/05/19  13:26  Pagina 46

Non
-co

mmerc
ial

 us
e o

nly



Due to the complexity related to the emergence of vector-borne
diseases, an integrated approach to surveillance is encouraged
(Braks et al., 2011). A prime objective of surveillance of TBPs is
to assess the panel of pathogens occurring in a given area, estimat-
ing their prevalence both in tick populations and in reservoir hosts.
Secondly, information on tick distribution, density and seasonal
dynamics should be acquired (Capelli et al., 2012). Ticks are
strongly influenced by climatic and environmental variables, such
as temperature, relative humidity, rainfall and vegetation cover
(Ruiz-Fons et al., 2012; Estrada-Peña et al., 2013), something that
contributes to the changing geographical patterns of the TBPs
(Dantas-Torres et al., 2012).

A better understanding of the climatic and habitat characteris-
tics that determine the patterns of tick distribution can be obtained
through ecological studies and modelling, and can subsequently be
used to predict their current distributions over continuous surfaces.

Species distribution models (SDMs), widely used in biodiver-
sity research for modelling species geographic distributions based
on correlations between known occurrence records and the envi-
ronmental conditions at those localities (Elith and Leathwick,
2009), have also proven to be a useful tool in disease epidemiolo-
gy. In fact, SDMs have been widely used in biogeographical and
ecological studies of vectors and vector-borne diseases (Illoldi-
Rangel et al., 2012; Mughini-Gras et al., 2013; Mwase et al., 2014;
Signorini et al., 2014). 

In the present study, using data from a 2-years field monitoring
activity of ticks and tick-associated pathogens conducted in a lim-
ited area of north-eastern Italy (Drigo et al., 2011), we set out to
determine the optimal approach to the surveillance of ticks and

associated pathogens; we did so by: i) comparing the cost-effec-
tiveness of different sampling strategies for detection of ticks and
associated pathogens using two different sub-sets of field data; ii)
developing and comparing the outputs of two species distribution
models (MaxEnt) based on remotely sensed environmental vari-
ables and the two field data-subsets.

Materials and Methods

Study area
The study area comprised the Colli Euganei Regional Park

(45°13’-45°24’ N; 11°13’-11°48’ E), a hilly area of volcanic ori-
gin, located in the central part of Veneto Region, North-eastern
Italy (Figure 1). The Park occupies a small area of approximately
180 km2. The area has near-Mediterranean environmental and cli-
matic characteristics and human activities in the park include agri-
culture, tourism and recreation. Due to these characteristics, there
is a potential risk for I. ricinus presence and infections associated
with this tick. The altitudinal ranges from 0 to 601 m above the
mean sea level. The climate is characterized by mild winters (min-
imum -6°C) and moderately hot summers (maximum 36°C). The
annual mean amount of precipitation is 850 mm characterized by
two peaks, one in spring (April) and one in autumn (between
October and November) and two minima in summer (July) and
winter (between January and February). On average, there are 80
days with precipitation per year.

                                                                                                                                Article
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Figure 1. Study area and tick dragging sites.
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The territory spans a wide range of vegetation types (e.g.,
Mediterranean scrub, arid meadows, woodlands mainly consisting
of chestnut, oak and Robinia) harbouring a diverse wildlife (e.g.,
fox, weasel, badger, small insectivorous mammals, rodents, fallow
deer and wild boar) that may act as hosts and/or provide blood
meals for I. ricinus ticks. 

Tick collection and molecular analyses
The study is based on field data collected during the tick activ-

ity seasons in 2009 and 2010. Collections were performed by drag-
ging a 1 m white flannel cloth along a transect of 100 m and exam-
ining it at 5-m intervals. Collected specimens were pooled together
in vials keeping them alive, identified according to morphological
features in the laboratory (Manilla and Iori, 1992; Cringoli et al.,
2005) and then stored at -20°C, for further molecular detection of
TBPs. Overall, 52 sites were monitored during the two years, with
a total of 188 sessions of dragging (Figure 1). During the first year
(2009), 52 sites were identified and sampled between April and
October to assess the tick distribution in the study area: four out of
the 52 sites, were sampled on a monthly basis for 7 months, where-
as all other 48 sites were visited only once that year. Then, in 2010,
to better examine ticks seasonality, 16 of the original 52 sites were
randomly selected and monitored monthly from April to October
(112 drags). Each site was geo-referenced using GPS (Juno SB
Trimble, USA). 

Molecular analyses were performed on single adult ticks and
on pooled sampled of nymphs (1 to 10) and larvae (1 to 20), fol-
lowing the methodology described in detail in Drigo et al. (2011).
Briefly, a multiplex real-time polymerase chain reaction (PCR) test
was performed with the aim to detect Anaplasma phagocytophilum
and Borrelia burgdorferi s.l., using primers and probes described
by Courtney et al. (2004) in the Roche LightCycler. Rickettsia spp.
detection was conducted with a conventional PCR targeted at gltA
gene, as described by Regnery et al. (1991).

Comparison of monitoring strategies 
Two different monitoring strategies were hypothesized a pos-

teriori, based on two sub-sets of data. Strategy 1 included the 16
permanent sites sampled monthly from April to October 2010 (112
dragging sessions), while Strategy 2 included only one annual
sampling of the 52 sites monitored (52 dragging sessions) in 2009.
For each strategy, the sampling effort (number of sampled sites;
number of dragging) and the relative output (number of positive
sites; number of ticks collected; prevalence of pathogens) were
calculated and compared.

Modelling tick distribution and habitat suitability
To investigate environmental and/or climatic predictors of tick

occurrence and to produce maps of tick habitat suitability, one of
the most commonly used programmes for modelling species distri-
butions from presence data only, MaxEnt, was chosen (Phillips et
al., 2006). This approach is based on a machine-learning algorithm
that estimates the distribution across geographic space combining
a set of environmental data with presence localities and back-
ground records (pseudo absences) sampled from the overall study
area (Phillips and Dudik, 2008). 

Two different models were fitted, using the sub-set of occur-
rence data of strategies 1 (Model 1) and 2 (Model 2), to compare
the impact of the different sampling strategies on the model output
in terms of predicted tick distributions. We used MaxEnt software,
version 3.3.3k (http://www.cs.princeton.edu/schapire/maxent/)

with its default settings, but only the linear and quadratic features
were employed (Phillips et al., 2004). The MaxEnt model outputs
were set to logistic, which returns an estimated relative probability
of species presence at a given location ranging from 0 (low proba-
bility) up to 1 (very high relative probability). We used a 10-fold
cross-validation and assessed predictive performance using the
area under the receiver operating characteristic curve, to measure
the ability of the model predictions to separate presence from the
background (pseudo-absences). For model validation, the leave-
one-out or jackknife procedure, proposed by Pearson et al. (2007),
was used as this approach has been demonstrated to be effective
when only small numbers of occurrence localities are available. In
this method, each observed locality is excluded once from the
dataset used to build the model, and its predictive performance is
assessed based on the ability of the model to predict each single
locality excluded in turn. It requires the application of a threshold,
for dichotomizing the continuous map output surface into presence
and absence values, to assess the model performance by predicting
the single excluded presence point from the training dataset. The
10th percentile training presence threshold was used. It sets as
threshold the value that excludes the 10% of the predicted loca-
tions having the lowest predicted values, as these may represent
recording errors and/or ephemeral populations (Morueta-Holme et
al., 2010; Radosavljevic and Anderson, 2014). The predictive abil-
ity of models was compared using the test suggested by Pearson et
al. (2007). The functional relationship between I. ricinus presence
and the input environmental variables was evaluated and compared
through inspection of the MaxEnt response graphs. The relative
importance of each environmental variable in the models was eval-
uated by jackknife testing of the variable importance procedure, as
implemented in MaxEnt. Finally, differences between Model 1 and
Model 2 outputs were assessed by quantifying niche overlap, using
the Ecological Niche Modelling Tools (ENMTools) (Warren et al.,
2010). Niche overlap was calculated using Schoener’s D statistic
index. The metric ranges from 0 (species having completely dis-
cordant predicted distribution) to 1 (species with identical predict-
ed distribution) (Warren et al., 2008).

Environmental variables
Based on the biological and ecological knowledge on I. ricinus

requirements, an initial set of environmental factors was chosen as
potential explanatory variables of tick distribution. The variables
initially included were altitude (obtained from the United States
Geological Survey), slope, aspect (derived from ArcGIS® soft-
ware), land cover (extracted from the Corine Land Cover 2006
raster map), and rainfall (downloaded from the WorldClim
database that reports average monthly rainfall data at a 1 km2 res-
olution, based on interpolated climate data from weather stations).
Finally, normalized difference vegetation index (NDVI), and day
and night time temperature were derived from the Moderate
Resolution Imaging Spectroradiometer (Table 1).

To reduce issues related to over-fitting and collinearity in the
environmental variables, only a subset of potential predictors was
chosen from the full set to reduce the number of variables (Elith et
al., 2010). An initial explorative analysis was performed to exclude
the variables with the lowest variability in the study area. The cor-
relation among the variables was tested using Pearson’s correlation
analysis (software IBM SPSS statistics 20). Among those highly
correlated (R2≥0.80), only the most meaningful ones from a bio-
logical point of view were selected for inclusion in the models. 

                   Article
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Results

Tick collection and detection of pathogens
I. ricinus was observed at 28 (53.8%) out of 52 monitored

sites. Besides, 63 (33.5%) out of 188 dragging sessions were pos-
itive for this species. Overall, 341 specimens were collected: 54
adults, 95 nymphs and 192 larvae, with an overall average density
of 2.05 ticks/100m2. Molecular analysis showed a high prevalence
of Borrelia burgdorferi s.l. (15/54 positive adults, 5/35 positive
pools of nymphs and 2/29 positive pools of larvae) and of
Rickettsia spp. (11/54 positive adults, 10/35 positive pools of
nymphs and 9/29 positive pools of larvae).

Comparison of tick monitoring strategies
The results of the comparison among the different monitoring

strategies and the results obtained from the complete dataset are
shown in Table 2. Strategy 1 permitted collection of more speci-
mens than Strategy 2, but a lower number of pools were analysed
at the end with this strategy. This was due to the occasional recov-
ery of many larvae (n=120) in two samplings (July and August
2010) at one single site, and all these larvae were grouped in a few

pools according to the defined methodology. The occurrence of the
two pathogens (Borrelia burgdorferi s.l. and Rickettsia spp.) was
detected using both strategies and their prevalence values were not
significantly different from those obtained using the complete
dataset. However, Strategy 1 estimated a higher prevalence than
Strategy 2; for Rickettsia spp. this difference was significant. 

Tick habitat suitability model
Based on the exploratory and correlation analyses (Pearson

correlation test was used to exclude highly correlated environmen-
tal predictors, retaining only those with the perceived highest bio-
logical meaningfulness for ticks) the final set of predictor variables
included the following variables for the two models: the NDVI
seasonal averages for spring and autumn and the land surface tem-
perature during the light hours (LSTday) in the summer.

The MaxEnt produced tick habitat suitability maps (binary and
continuous outputs) for Model 1 and 2 are shown in Figure 2. Both
models performed well as measured by the leave-one-out valida-
tion approach, i.e. 10 out of 12 excluded points predicted for
Model 1 (P<0.01) and 21 out of 24 for Model 2 (P<0.001). The
overlap among the model continuous outputs was high (Schoener’s
D=0.93) indicating that the model predictions did not change sig-
nificantly with respect to the input training dataset (12 and 24

                                                                                                                                Article
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Table 1. Preliminary set of environmental variables selected for developing the models.

Variable                             Source

Altitude                                         Digital Elevation Model (DEM) GTOPO30, obtained from United States Geological Survey (USGS) Earth Resources Observation 
                                                       and Science (EROS) Data Center  (http://rda.ucar.edu/datasets/ds758.0/)
Aspect, Slope, Hill shade          DEM GTOPO30, obtained using the spatial analyses toolset of ArcGIS® software version 10.2 (ESRI, Redlands, CA, USA)
Land Cover                                   Corine Land Cover 2006 raster map (CLC), obtained from the European Environment Agency 
                                                       (http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-clc2006-100-m-version-12-2009#tab-gis-data)
NDVI*                                                                        Moderate Resolution Imaging Spectroradiometer (MODIS)
LSTday°                                           onboard the Terra satellite (https://lpdaac.usgs.gov/)
LSTnight

#                                          
BIO                                                WorldClim database (http://www.worldclim.org)
12-14 and 16-19§                          
*The average seasonal normalized difference vegetation index (NDVI) for 2009-2010 (MOD13Q1); °LST, land surface temperature. The average seasonal day and night land surface temperature for 2009-2010
(MOD11A2); #The average seasonal day and night land surface temperature for 2009-2010 (MOD11A2); §BIO 12 = Annual precipitation;  BIO 13 = Precipitation of the wettest month; BIO 14 = Precipitation of the driest
month; BIO 16 = Precipitation of the wettest quarter; BIO 17 = Precipitation of the coldest quarter; BIO 18 = Precipitation of the warmest quarter; BIO 19 = Precipitation of the driest quarter.

Table 2. Number of positive sites, ticks, pools and pathogens prevalence according to different monitoring strategies.

Site/Collection/Outcome                                                    Complete data                             Strategy 1*                                 Strategy 2° 
                                                                                              2009-2010                                    2010                                            2009 

Sampled sites                                                                                               52                                                                 16                                                                52
Number of dragging sessions                                                                   188                                                               112                                                              52
Positive sites                                                                                                28                                                                 12                                                                24
Number of collected I. ricinus                                                                 341                                                               200                                                             96 
(adults/ nymphs/larvae)                                                                             (54/95/192)                                                 (15/25/160)                                               (30/57/9)
Number of pools analysed                                                                        118                                                               46                                                                50
Borrelia burgdorferi s.l.                                                                              22/118 (18.6)                                              11/46 (23.9)                                              5/50 (10.0)
Positive/analysed pools (%) (95% CI)                                                    (CI: 11.6-25.7)                                            (CI: 11.6-36.2)                                          (CI: 1.7-18.3)
Rickettsia spp.                                                                                             30/118 (25.4)                                              19/46 (41.3)                                              8/50 (16.0)
Positive/analysed pools (%) (95% CI)                                                    (CI: 17.6-33.3)                                          (CI: 27.0-55.5)                                          (CI: 5.8-26.7)
*Model 1: permanent sites - April to October; °Model 2: temporary sites - April to October.
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points of occurrences, respectively). 
The jackknife test of variable importance showed that

NDVIspring was the most influential variable, in both models, indi-
cating that NDVI is the most important predictor for tick distribu-
tion in the current study. It was also the environmental variable that
decreased the gain (a measure of goodness of fit closely related to
deviance) the most when omitted, which therefore is a reflection
that this variable in isolation is the strongest contributor (Table 3).

The set of response graphs produced by generating a model
using only the corresponding variable, were similar for the two
models and showed that the highest relative probability of I. rici-
nus presence was predicted in areas with more dense vegetation
cover during autumn and spring resulting in higher NDVI values
(>0.85 and >0.78, respectively) and lower LSTday values
(T°<24°C).

                   Article

Figure 2. Habitat suitability maps of I. ricinus in Colli Euganei Regional Park, Italy obtained by two models. The upper images repre-
sent the continuous outputs of model 1 (A) and model 2 (B), the lower images show the binary outputs and the training points used
for developing model 1 (C) and model 2 (D). Darker colors indicate higher habitat suitability.

Table 3. The results of jackknife test of variable importance as measured by the regularized training gain for I. ricinus for the two
MaxEnt models.

                                                 Training gain*                                              Training gain°
Variable                                    Without variable         With only variable                      Without variable                       With only variable

LSTday in summer                                0.42                                         0.04                                                             0.27                                                           0.05
NDVI in spring                                     0.30                                         0.40                                                             0.12                                                           0.27
NDVI in autumn                                   0.40                                         0.30                                                             0.27                                                           0.12
LSTday, Land Surface Temperature during light hours; NDVI, normalized difference vegetation index. *Model 1: 12 sites, area under the curve = 0.78 (averaged over the replicate runs); °Model 2: 24 sites, area under
the curve = 0.73 (averaged over the replicate runs).
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Discussion
Ixodes ricinus was found to be the most prevalent tick species

in the study area, but at low density (about 2 ticks/100m2) com-
pared to pre-alpine areas of North-eastern Italy (Nazzi et al., 2010;
Tagliapietra et al., 2011). This may be due to environmental char-
acteristics that are not the optimal for this tick species, and to lim-
ited presence of wild ruminants.

The comparison between the two sampling strategies in the
present study suggests that monitoring temporary sites only
once/year (Strategy 2) allows the discovery of more positive sites
and seems to ensure more cost-effectiveness in term of number of
pools analysed: 50 pools with 52 dragging sessions in Strategy 2 vs
46 pools with 112 sessions in Strategy 1. The more pools available
for pathogens detection, the more significant the results of molec-
ular analyses. Strategy 1 seems to over-estimate the true preva-
lence and this may be due to sites with many positive ticks that are
repeatedly sampled. However, both strategies detected the
pathogens circulating in the area and the estimated prevalence was
not significantly different from what was estimated using the com-
plete dataset. Of note, Strategy 2 obtained this result with about
one-fourth of the dragging sessions of the whole survey. Clearly, a
reduction in sampling effort corresponds to an abatement of sam-
pling-costs (reduction of travel and operators costs), which are one
of the more relevant expenditures of monitoring, as previously
demonstrated (Capelli et al., 2012). Monitoring fewer permanent
sites (Strategy 1) may help in a sound description of tick species
seasonality, but it represents an additional cost when the main
objectives of surveillance activity are the development of a risk
map (habitat suitability) and the detection of TBPs. 

Overall, the models demonstrated a good predictive ability,
which increased with the number of sites used to train the model,
confirming the outcome of previous studies (Hernandez et al.,
2006; Pearson et al., 2007; Wisz et al., 2008). However, the
MaxEnt predictions based on the two sub-sets of data obtained a
high niche overlap index and both produced realistic distribution
maps, even the one with a low number of presence sites (n=12) as
input.

The SDM approach identified a number climatic and other
environmental conditions suitable for I. ricinus and, as such,
reflects the known ecological requirements of the I. ricinus
species. The most important variable for development of the mod-
els was NDVIspring, followed by the NDVIautumn. Spring corresponds
to the period of peak tick activity, whereas autumn represents both
the period of the second peak and the beginning of diapause,
according to climatic condition of northern Italy (Piccolin et al.,
2006; Ceballos et al., 2014). These results are consistent with the
biological and ecological requirements of ticks, which are sensitive
to desiccation during the environmental phases of their life cycle
and therefore can survive only in areas with good vegetation cover,
which provides relatively high moisture levels (Gray, 1998).
Furthermore, the results are consistent with previous studies
demonstrating that NDVI is a good predictor for I. ricinus ticks,
being a measure of photosynthetic activity of vegetation and there-
fore a good proxy for soil moisture (Wang et al., 2007; Ruiz-Fons
et al., 2012; Estrada-Peña et al., 2013; Ceballos et al., 2014). We
also found that that low day-time summer temperatures were asso-
ciated with higher relative probability of I. ricinus presence. This
finding confirms the hypothesis generated by our previous prelim-
inary ecological analysis, based only on field-collected environ-
mental data (Drigo et al., 2011), that a significant association

between the presence of adult ticks and relatively low temperatures
exist. These results suggest that the main limiting factor in this area
is represented by the degree of heat during summer and dryness
during spring and autumn, in place of the cold winter of the pre-
alpine environment.

Conclusions
The implementation of cost-effective sampling strategies may

serve to optimize available resources, achieving an efficient and
cost-effective tick and TBP surveillance. In this study the analyses
of tick data collected during a 2-year field investigation demon-
strated that TBP detection and map development can be obtained
in the study area with a reduced sampling effort. Based on our find-
ings, we suggest that the most cost-effective approach is to monitor
tick presence only once, at an appropriate number of sites relative
to the study area, and then use the positive sites to develop tick
habitat suitability maps, by means of an SDM-remote sensing
approach. A wider application of this kind of integrated approach
is foreseen, but needs to be tested in other areas at risk of ticks’
infestation, to prove its effectiveness in large-scale survey plans.
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