
Abstract
Mapping the malaria risk at various geographical levels is

often undertaken considering climate suitability, infection rate
and/or malaria vector distribution, while the ecological factors
related to topography and vegetation cover are generally neglect-

ed. The present study abides a holistic approach to risk mapping
by including topographic, climatic and vegetation components
into the framework of malaria risk modelling. This work attempts
to delineate the areas of Plasmodium falciparum and Plasmodium
vivax malaria transmission risk in India using seven geo-ecologi-
cal indicators: temperature, relative humidity, rainfall, forest
cover, soil, slope, altitude and the normalized difference vegeta-
tion index using multi-criteria decision analysis based on geo-
graphical information system (GIS). The weight of the risk indica-
tors was assigned by an analytical hierarchical process with the
climate suitability (temperature and humidity) data generated
using fuzzy logic. Model validation was done through both prima-
ry and secondary datasets. The spatio-ecological model was based
on GIS to classify the country into five zones characterized by var-
ious levels of malaria transmission risk (very high; high; moder-
ate; low; and very low. The study found that about 13% of the
country is under very high malaria risk, which includes the malar-
ia-endemic districts of the states of Chhattisgarh, Odisha,
Jharkhand, Tripura, Assam, Meghalaya and Manipur. The study
also showed that the transmission risk suitability for P. vivax is
higher than that for P. falciparum in the Himalayan region. The
field study corroborates the identified malaria risk zones and high-
lights that the low to moderate risk zones are outbreak-prone. It is
expected that this information will help the National Vector Borne
Disease Control Programme in India to undertake improved
surveillance and conduct target based interventions.

Introduction
In India, malaria affects more than a million people annually,

a figure that amounts to about 4% of the global malaria burden
(World Health Organization, 2018). With its extensive geographic
and climatic diversity, the epidemiology of malaria ranges from
endemic areas with perennial transmission to outbreak-prone,
unstable areas. The situation is further complicated due to the
presence of a wide distribution of anopheline vectors transmitting
three major Plasmodium species: Plasmodium falciparum,
Plasmodium vivax, and Plasmodium malariae (Kumar et al.,
2007). Though the share of P. falciparum (66%) is more than P.
vivax (34%) in the country, about 48% of the estimated global
vivax malaria cases in 2017 occurred in India (World Health
Organization, 2018). It is widely acknowledged that geo-ecologi-
cal factors like climate, topography and vegetation characterize
the habitat type of the malaria vectors leading to varying levels of
malaria risk and transmission intensity (Craig et al., 2004;
Lindsay et al., 2004; Kelly-Hope et al., 2009; Cottrell et al.,
2012). In India, of the 36 states and union territories, the states of
Odisha, Chhattisgarh, Madhya Pradesh and Jharkhand contribute
74.1% of the total malaria cases (Ghosh and Rahi, 2019), sig-
nalling the strong role of geo-ecological factors in malaria
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endemicity. To date the spatial distribution of malaria risk in India
has been mapped either based on climate suitability, the number of
malaria cases or the distribution of malaria vectors based on survey
and expert opinion (Bhattacharya et al., 2006; Singh et al., 2013,
2017; Sharma et al., 2015; Srinivas, 2015), while the geo-ecologi-
cal factors have so far been neglected with hotspots referred to as
tribal malaria without further specification (Srivastava et al.,
2009; Sharma et al., 2015).

Remote sensing, geographic information system (GIS) and
other geospatial techniques have helped to analyse the epidemio-
logical and ecological factors in the context of malaria (NASA,
1973; Hay et al., 1998; Mushinzimana et al., 2006; Shirayama et
al., 2009; Yeshiwondim et al., 2009; Chikodzi, 2013; Gebreslasie,
2015). GIS combines spatial datasets with quantitative and quali-
tative databases and supports multi-criteria decision analysis
(MCDA), which has the capability of transforming and integrating
geographic data and expert knowledge to generate relevant infor-
mation for decision-making (Eastman et al., 1995). MCDA, based
on environmental and anthropogenic risk factors have been used in
GIS environment in many countries to produce predictive malaria-
indicative models (Kumi-Boateng et al., 2015). GIS-MCDA can
thus be considered a process that transforms and integrates geospa-
tial data and value judgments to obtain highly specific information.
Weighted linear combination (WLC), a widely used MCDA
method, involves standardization of attribute maps, assigning
weights representing their relative importance of various environ-
mental variables to obtain an overall score (Malczewski, 2004). In
India, this approach is so far limited to only few micro level studies
(Mutuwatte et al., 1997; Bhatt and Joshi, 2009), but has become a
priority since knowledge of the malaria risk in the whole country
is urgently needed.

The present work is an effort to delineate the areas of P. falci-
parum and P. vivax malaria transmission risk in India on the basis
of defined risk categories related to the various climatic, topo-
graphic and ecological indicators in a GIS-MCDA environment.
The report Estimation of True Malaria Burden in India by the
National Malaria Research Institute (NIMR) (ICMR-NIMR, 2008)
suggests that annual parasite incidence (API) generated from a
routine surveillance system is not sufficient to map the malaria
hotspots. The real burden of malaria in India is still not known
(Kumar et al., 2007), and this jeopardizes the desirable outcomes
in spite of extensive planning and resource allocation for malaria
eradication. The study presented here is an attempt to address sus-

pected under reporting of malaria cases in the neglected regions
where the ecological malaria suitability is high, while case detec-
tion is low. The generated ecology-based geo-spatial malaria risk
model should help the identification of hotspots and contribute to
judicious planning and management of the malaria situation in all
potentially endemic areas, which is of particular importance in the
elimination phase.

Materials and Methods

Data
The climatic and environmental attributes/ indicators consid-

ered for malaria risk mapping in the study were temperature, rela-
tive humidity (RH), rainfall, forest cover, soil, slope, altitude and
normalized difference vegetation index (NDVI). Table 1 summa-
rizes the selected indicators.

For validation of the malaria risk map, both primary and sec-
ondary datasets were used. The annual malaria cases by district in
India for 2010-1012 were procured from the National Vector Borne
Disease Control Programme, while the reported malaria outbreak
locations for 1981-2006 were obtained from the NIMR report A
Profile of National Malaria Research Institute (unpublished).

Malaria risk model
The conceptual framework of the malaria risk model is given

in Figure 1. The model was developed on the basis of the GIS-
based MCDA, which included: i) identification of attributes as
malaria risk indicators; ii) data processing and preparation; iii) risk
characterization for relative risk scores; iv) weight assignments
(degree of influence) of the risk indicators according to the
Analytical Hierarchical Process (AHP); and v) combination of the
weighted risk indicators to determine the risk zones.

Data preparation

Temperature and relative humidity
Previous studies (Gill, 1938; Russel et al., 1946) considered

the influence of temperature and humidity on the mosquito to be
inseparable. To understand malaria transmission dynamics, knowl-
edge about the number of months suitable for malaria transmission

                   Article
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Table 1. Metadata for the indicators selected.

Indicator                                                       Data description                                                                       Source

Temperature and relative humidity                            Monthly averages                                                         CORDEX South Asia (domain WAS-44, WAS-44i)
                                                                                    (by district) for 1976-2005                                            multi-model output data under the RCP 4.5 scenario*
Rainfall                                                                      Data for the homogeneous                                 Research Report No. RR-138 ESSO/IITM/STCVP/SR/02(2017)/189
                                                                                            regions 1871-1990                                                                      (Kothawale and Rajeevan, 2017)°
Forest cover                                                               Data by district for 2013                                                                            OGD Platform, India#

Soil                                                                                Soils of India map, 1983                                                            European Digital Archive on Soil Maps§

Slope and altitude                                                          SRTM^ 90 m DEM                                                                                    CSI of the CGIAR$

NDVI                                                                              NDVI data (2012-2014)                                                         Derived from OCM2 sensor of Oceansat-2, 
                                                                                                                                                                                         and the BHUVAN map service of the ISRO**
NDVI, normalized difference vegetation index; RCP, representative concentration pathways; OGD, Open Government Data; SRTM, Shuttle Radar Topography Mission; DEM, Digital Elevation Model; CSI, Consortium for
Spatial Information; CGIAR, Consultative Group for International Agricultural Research; OCM2, Ocean Color Monitor; ISRO, Indian Space Research Organization. *https://sos.noaa.gov/datasets/climate-model-temper-
ature-change-rcp-45-2006-2100/; °http://www.tropmet.res.in/; #http://data.gov.in; §http://eusoils.jrc.ec.europa.eu/esdb_archive/EuDASM/Asia/maps/IN1000_SOTO.htm; ^https://www2.jpl.nasa.gov/srtm/;
$http://srtm.csi.cgiar.org/; **https://bhuvan.nrsc.gov.in/bhuvan_links.php
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windows (TWs) is essential as it governs the perennial risk. This
can be done by fuzzy set theory, which attempts to generate a con-
sistent representation of an inconsistent reality (Fisher and Unwin,
2005) by applying the fuzzy membership function, a curve that
defines the degree of belongingness as varying between 0 and 1
(Zadeh, 1965). Vector capacity estimates for malaria (relying on
temperature) have often been presented by Gaussian/binomial
shapes (Martens et al., 1995; Mordecai et al., 2013). As this study
considers optimum/most suitable range rather than the optimum
point of temperature and RH, a sinusoidal membership function
characterized by four scalar parameters: a, b, c and d was selected
for the classification (Eq. 1):

Eq. 1
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Figure 1. Conceptual framework of the malaria risk model. µ, mean; Pv, Plasmodium vivax; Pf, Plasmodium falciparum; RH, relative
humidity; NDVI, normalized difference vegetation index; DEM, digital elevation model.
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For the temperature index, ‘a’ represents the lower threshold
(18°C for P. falciparum and 16°C for P. vivax), ‘d’ the upper
threshold (32°C for both species) beyond which the membership
function is 0 (unsuitable); whereas, ‘b’ and ‘c’ represents 24°C and
28°C, respectively. This range has been identified as the most suit-
able range for malaria transmission (Bhattacharya et al., 2006;
Mordecai et al., 2013) and the membership function is thus 1.
Similarly, the RH scalar parameters a, b, c and d are 40%, 55%,
80% and 95% humidity, respectively, where the membership func-
tion for range 55% and 80% is 1, i.e. the most suitable. As the
value moves away from the range towards 40% or 95%, the mem-
bership function decreases to 0 representing the least suitable
areas. The extreme limits for humidity was taken as 40% and 95%
because vector survival is the least at humidity levels <40%
(Bayoh, 2001; Yamana and Eltahir, 2013) and mosquito activity is
suppressed at humidity levels >95% (Rudolfs, 1923; Platt et al.,
1958).

Fuzzy-based analysis for temperature and RH was conducted
to capture the gradual change in malaria transmission risk due to
climatic factors and determine the TWs, which were generated in
six stages as follows: i) generation of monthly interpolated temper-
ature and RH maps; ii) determination of the fuzzy membership
functions for both attributes; iii) creation of fuzzy-monthly temper-
ature and RH transmission risk maps; iv) integration by month of
temperature and RH transmission risk maps; v) generation of
annual composite transmission suitability index; and vi) generation
of spatial TWs in months.

On this basis, India was divided into four regions: i) >6 TWs;
ii) 4-6 TWs; iii) 1-3 TWs and iv) 0 TWs.

Rainfall
A uniform hydrological threshold fails to capture the critical

characteristics of malaria epidemiology. Under favourable temper-
ature conditions, small quantities of stagnant water in potholes, dry
river beds, tree holes, leaf axils, elephant hoof prints, discarded
containers, coconut shells, etc. are sufficient for anopheline
mosquito breeding (Sharma, 2014). Precipitation is related to the
variations in the hydrological levels of a region (Olson et al., 2009;
Stefani et al., 2011). In India, the annual summer monsoon rainfall

varies between less than 50 cm in the west and more than 140 cm
in the north-east and south-west. A region with moderate rainfall
and low rainfall variability has a high probability for stable breed-
ing habitats compared to a region characterized by high or extreme
rainfall most of the time. The hydrological dynamics of a region, a
contributor to the abundance and persistence of mosquito habitats,
therefore, can be represented by rainfall variability. On the basis of
the Mean, Standard Deviation and Coefficient of Variation com-
puted for the period 1871-1990 accounting for the Southwest mon-
soon rainfall which takes place from June to September,
Parthasarathy et al. (1995) divided India into five homogeneous
regions i) the Northwest; ii) the West Central; iii) the Central
Northeast; iv) the Northeast and v) the Peninsular (land area sur-
rounded by water from three sides).

Forest cover 
Vegetation influences the behaviour of the vector species both

directly and indirectly (Singh et al., 1996; Gomez-Elipe et al.,
2007). A strong relation between malaria prevalence and forest
cover has been shown by several studies (Gunasekaran et al.,
1989; Kondrashin et al., 1991; Yadav et al., 1997; Singh et al.,
2013; Kar et al., 2014), emphasizing its significant role in malaria
transmission. The forest cover has been assessed by the Forest
Survey of India during 2013 using satellite-generated, remotely
sensed data. The absolute forest acreage by district was converted
to relative percentage for raster-based data compatibility when
mapping the malaria risk. Accordingly, India was classified into
five regions with respect to forest presence: i) >40%; ii) 30-40%;
iii) 20-30%; iv) 10-20% and v) <10% cover.

Soil
Soil, in terms of its composition, texture and water-holding

capacity, has a direct influence on breeding and emergence of adult
mosquitoes and thus affects malaria transmission (Lindsay et al.,
2004; Kankaew et al., 2005). Soils not only influence the vegeta-
tion character of the area but also foster malaria directly if it can
hold surface water and therefore drains slowly. The major soil
types in India, their characteristics and their suitability with regard
to malaria are given in Table 2.

                   Article

Table 2. Soil properties in relation with mosquito breeding.

Major soil type                                                              Properties                                                              Suitability for mosquito breeding 
                                                                                                                                                                                 habitat development

Alfisol (Udalf and Ustalf)           Soils of loamy properties and subsurface horizons of clay accumulation.                                                        Good
                                                          Udalf soils remain moist in most time of the year and are well drained. 
                                                                          However, Ustalf soils have limited moisture retention 
                                                                                                that regains during monsoon.                                                                                                    
Vertisol                                                          Soils with high clays content that undergo considerable                                                           Temporarily good
                                                                            shrinkage by drying, which results in large and deep 
                                                                               cracks which close only after prolonged wetting.                                                                                   
Ultisol                                                   Low-quality soils with subsurface layers of clay accumulation that                                                      Barely useful
                                                                         do not hold water and are therefore vulnerable at high 
                                                                   temperatures and rainfall with alternate wet and dry periods.                                                                       
Aridisol                                                     Dry and porous soils varying from silt made of fine clay loams                                                     Temporarily good
                                                            to coarse sandy grains with limited water holding capacity that reach 
                                                                                      saturation much sooner than clay loams.                                                                                          
Inceptisol                                              Soils that develop over geologically young sediments and where                                                       Barely useful
                                                                                      temporary flooding alters the soil profile
                                                                                               that easily becomes saturated.                                                                                                  
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Slope and altitude
Several studies have shown an inverse relation between alti-

tude and mosquito abundance (Hartman et al., 2002; Ermert et al.,
2013). In contrast to temperature that presents a TW governed by
certain levels (high or low), rain water influences in a general way
by stagnation, infiltration and overflow with flat areas producing a
higher risk of malaria due to water accumulation (Chikodzi, 2013).
In the present study, definition of malaria risk due to slope and alti-
tude was realized by using the GIS approach and overlaying API
map, which shows that this measure decreases with increase in
slope and altitude. Slope and altitude were extracted from the
Shuttle Radar Topography Mission digital elevation model in ARC
GRID, a raster GIS file format developed by ESRI (Redlands, CA,
USA) projected in a latitude/longitude projection with the WGS84
horizontal datum and the EGM96 vertical datum.

The normalized difference vegetation index
NDVI is a measure of vegetation conditions that varies

between +1.00 and −1.00; the higher the NDVI value, the denser
the green vegetation. This index was used in this study as a quan-
titative proxy for the conditions favouring mosquito development
with respect to water presence (both in vegetation and soil) and
maintaining the RH for needed for mosquito survival. NDVI of a
region exhibits the water table status of a region (Chen et al., 2006;
Wang et al., 2011; Zhou et al., 2013) since a water table close to
the surface in the absence of proper drainage during monsoon and
post-monsoon tends to produce a better vegetation cover. Thus, a
higher NDVI value can serve as an indicator of the suitability of
areas for mosquito breeding (Dutt et al., 1980; Sharma and
Srivastava, 1997). Owing to non-availability of water-level data at
the district level, post-monsoon mean NDVI data were used as
substitute for risk mapping of malaria transmission. The state-wise
average NDVI for the post-monsoon period (November) and the
water-level data (expressed in meters below the ground) available
from the Ground Water Year Book for the November months of
2013-14 shows a significantly high negative correlation (correla-
tion coefficient, r=-0.68, P<0.05). 

The mean NDVI for the post-monsoon period was generated
from 2012 to 2014 with the November NDVI values computed
from Ocean Colour Monitor onboard the OCEANSAT-2 satellite
(Chauhan and Navalgund, 2009) measuring the near infrared (ρB8)
and Red (ρB6) bands (Eq. 2):

                                                        

Eq. 2

Risk characterization
Knowledge-based malaria risk characterization of the indica-

tors given above was conducted after a thorough review of litera-
ture and also relying on an expert opinion survey. The relative risk
scores were allotted with the logic that an indicator representing a
higher risk of malaria be given a greater weight. The indicators
were classified into five scores according to their relative risk,
namely very high, high, moderate, low, and very low, which were
given the weights 5, 4, 3, 2, and 1, respectively.

Hierarchical analysis
The AHP relies on the judgments by experts to derive priority

scales and the approach rests on pair-wise indicator comparisons
(Saaty, 2008). When determining the malaria risk, each identified
ecological indicator has a certain degree of influence that needs to
be scaled and prioritized for MCDA processing (Yalcin, 2008). In
this study, AHP was conducted in three steps: formulation of pair-
wise comparison for all risk indicators; establishment of the rela-
tive importance of each risk factor; and finally checking the con-
sistency ratio of the pairing process. As recommended by Saaty
(2008), experts were consulted during the construction of the pair-
wise comparison matrix subsequently deriving the weights by nor-
malizing the eigenvector of the square reciprocal matrix of these
risk factor comparisons. Before accepting the final judgment on
which weight (i.e. standard risk score) of each indicator to apply,
the consistency ratio (CR) was calculated. The CR is a comparison
between the consistency index (CI) and the random consistency
index (RI) (Eqs. 3 and 4):

CR = CI/RI                                                                             Eq. 3

                                                          

Eq. 4

where n is the dimension of the matrix (7 by 7 in this case) and λmax

the maximum eigenvalue of the comparison matrix.
If the CR turned out to be ≤10%, the inconsistency (for esti-

mating weights in the AHP, the eigenvector yields is a way of mea-
suring the consistency of the referee’s preferences arranged in the
comparison matrix. To represent the decision maker’s judgements,

                                                                                                                                Article
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Table 3. Field survey schedule.

State/UTs                                                                District surveyed                                                                        Survey months

Kerala                                                          Palakkad, Kasargod, Mallappuram, Trivendrum and Kannur                                                                    August
Dadra and Nagar Haweli                                                         Dadra and Nagar Haweli                                                                                                    March
Chhattisgarh                                                                                          Dantewada                                                                                                                March
Odisha                                                                                                       Koraput                                                                                                                   March
Rajasthan                                                                   Barmer, Jaisalmer, Bikaner, and Jodhpur                                                                                 September
Uttarakhand                                                                   Nainital, Almora, Udham Singh Nagar                                                                                    September
Punjab                                                                                            Mansa and Bhatinda                                                                                                         June
Assam                                                                                                  Karbi-Anglong                                                                                                               June
Jharkhand                                                                                                  Ranchi                                                                                                                    March
UT, Union territory.                                                                                        
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the criterion of accepting/rejecting matrices depends upon the con-
sistency/inconsistency of the referee’s preferences) was accepted.
Based on Saaty’s table (Saaty, 1980) and n=7, we used a RI=1.32. 

Determination of the risk zones
On generating the weights for each malaria risk indicator, all

the indicators selected were combined to obtain the overall malaria

transmission risk zone. Several techniques, such as Boolean inter-
section, WLC and ordered weighting average, can be used to com-
bine the risk factors and determine the risk zone (Rafiee et al.,
2011). In the present study, we applied the WLC method, which we
found conveniently calculates the summation of the relative risk
score of each risk indicator giving the percentage of influence (Eq.
5):

                   Article

Figure 2. Classified malaria transmission risk indicators. NDVI, normalized difference vegetation index; Pv, Plasmodium vivax; Pf,
Plasmodium falciparum.
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Eq. 5

where S is the spatial unit value on the output map (the malaria risk
zone); Wi the weigh t of the ith indicator map (the malaria risk indi-
cator map); and Xij the ith spatial class (the malaria risk score) of the
jth indicator map.

Model validation
The model was validated through both primary and secondary

data sets. Considering the problem of underreporting malaria, we
undertook a primary survey in randomly selected districts among
the five identified risk zones except in the state of Rajasthan for the
years 2012 and 2016 (Table 3) in addition to the secondary data
sources (mean API by district for 2010-2012 and the districts expe-
riencing malaria outbreak in the period 1981-2006). Furthermore,
blood microscopy was carried out to assess the true malaria inci-
dence and the results overlaid the mean API values for 2010-2012
and the malaria outbreak districts between 1981 and 2006.

Results

Characterization of the risk indicators
The spatial composite temperature and RH suitability for trans-

mission showed maximum malaria TWs in the southern and east-
ern parts of India both for P. vivax and P. falciparum, while the
TWs in the states in the West and North were shorter with the min-
imum reaching <4 months (Figure 2). 

The vegetation components, i.e. forest cover and NDVI
showed high to very high relative risks mainly concentrated in the
Himalayan, western Ghat and eastern plateau regions, while there
were lower values in the western arid states with negligible vege-
tation cover. The topographic components comprising soil, slope
and elevation showed high to very high relative malaria risk in
major parts of Peninsular India. Figure 2 provides a detailed spatial
distribution of these relative risk scores ranging from 1(very low
risk) to 5 (very high risk).

Malaria risk zone delineation
The P. vivax and P. falciparum risk maps (Figure 3), generated

after combining all the physical and ecological risk indicators
using the weighted sum function in the GIS environment (Tables 4
and 5), showed the complete spatial distribution of malaria risk in
India. According to these findings, about 28% of the country is
under high risk with as much as approximately 13% under very
high risk, while nearly 40% of the area is under moderate risk and
the rest under low to very low risk. This means that high and very
high malaria transmission risk are common in the districts of the
eastern states, including Chhattisgarh, Odisha and Jharkhand, and
the north-eastern states, i.e. Tripura, Assam, Meghalaya and
Manipur, while the districts of Madhya Pradesh, Maharashtra,
Uttarakhand, Bihar, Karnataka, Telangana, Andhra Pradesh, Tamil
Nadu, West Bengal and the rest of the north-eastern states are
under moderate to high risk.

The states Uttar Pradesh, Himachal Pradesh, Jammu and
Kashmir, Kerala, and Sikkim are under moderate malaria transmis-
sion risk, and remaining states, including Punjab, Haryana, Gujarat
and Rajasthan, are characterized by low and very low risk for
malaria. This inevitably shows that all these districts are vulnerable

                                                                                                                                Article
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Figure 3. The overall malaria risk in India.
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to malaria, though at different levels. P. vivax malaria transmission
suitability was found to be more intensive than P. falciparum in
Uttarakhand, Arunachal Pradesh, Meghalaya, Telangana and the
interior of Karnataka.

In the Western Himalayan region, the Uttarakhand state is most

ecologically suitable for P. vivax and P. falciparum transmission.
In Eastern Himalayan region, most of the states are generally
strongly ecologically suitable for perennial malaria transmission of
both species. It should, however, be noted that P. vivax suitability
is more pronounced than P. falciparum in Arunachal Pradesh. In

                   Article

Table 4. Weights resulting from the Analytical Hierarchical Process (AHP) pair-wise comparison AHP.

Indicator                         Soil        Forest            Temperature and RH          Rainfall          NDVI            Slope        Altitude          Weight

Soil                                                1                  2.5                                          1                                          3                         3                          2                        3                         0.25
Forest                                         0.4                  1                                           2                                          2                         2                          3                        3                         0.20
Temperature and RH                1                  0.5                                          1                                         0.5                        2                        1.5                      5                         0.15
Rainfall                                      0.33                0.5                                          1                                          1                         3                        1.5                      5                         0.15
NDVI                                           0.33                 1                                          0.5                                      0.33                      1                          2                        2                         0.10
Slope                                           0.5                0.33                                      0.67                                      0.2                        2                          1                        2                         0.10
Altitude                                      0.33              0.33                                       0.2                                       0.2                      0.5                       0.5                      1                          0.5
SUM                                            3.9                6.17                                      6.37                                     7.23                    13.5                     11.5                    21                         1.0
λmax=7.7172; consistency index=0.1195; random consistency index=1.32 (for 7 indicators); consistency ratio=9.06 (≤10% - acceptable). RH, relative humidity; NDVI, normalized difference vegetation index.

Table 5. Weight determination of malaria risk indicators for multi-criteria analysis.

Sl. no.                   Factor                                Influence (% weight)              Classification or range        Rank      Degree of vulnerability

1                                  Soil (type)                                                            25                                                      Ustalf                                       5                              Very high
                                                                                                                                                                              Udalf                                        4                                  High
                                                                                                                                                                            Vertisol                                     3                             Moderate
                                                                                                                                                                            Aridisol                                     2                                   Low
                                                                                                                                                                             Ultisol                                      1                               Very low
                                                                                                                                                                          Inceptisol                                   1                               Very low
2                      Forest (% distribution)                                                20                                                        >40                                         5                              Very high
                                                                                                                                                                               30-40                                        4                                  High
                                                                                                                                                                               20-30                                        3                             Moderate
                                                                                                                                                                               10-20                                        2                                   Low
                                                                                                                                                                                <10                                         1                               Very low
3      Climate suitability index (no. of months)                                15                                                         >6                                          5                              Very high
                                                                                                                                                                                 4-6                                          4                                  High
                                                                                                                                                                                 1-3                                          3                             Moderate
                                                                                                                                                                                  0                                            1                               Very low
                                                                                                                                                              µ                SD       CV                              
4           Rainfall (mm) Homogenous region                                      15                                    1002             112      11.2                            5                              Very high
                                                                                                                                                            933              125      13.5                            4                                  High
                                                                                                                                                           1419             121       8.6                             3                             Moderate
                                                                                                                                                            659               98       14.9                            2                                   Low
                                                                                                                                                            490              132      27.0                            1                               Very low
5            NDVI (post-monsoon, November)                                      10                                                        >0.6                                        5                              Very high
                                                                                                                                                                              0.5-0.6                                       4                                  High
                                                                                                                                                                              0.4-0.5                                       3                             Moderate
                                                                                                                                                                              0.3-0.4                                       2                                   Low
                                                                                                                                                                               <0.3                                        1                               Very low
6                     Slope (degree per km2)                                                10                                                         0-5                                          5                              Very high
                                                                                                                                                                                5-10                                         4                                  High
                                                                                                                                                                               10-15                                        3                             Moderate
                                                                                                                                                                               15-20                                        2                                   Low
                                                                                                                                                                                >20                                         1                               Very low
7                               Elevation (m)                                                         05                                                       0-250                                        4                                  High
                                                                                                                                                                            250-750                                      5                              Very high
                                                                                                                                                                           750-1250                                     4                                  High
                                                                                                                                                                          1250-1750                                    3                             Moderate
                                                                                                                                                                          1750-2250                                    2                                   Low
                                                                                                                                                                              >2250                                       1                               Very low
µ, mean; SD, standard deviation; CV, coefficient of variation; NDVI, normalized difference vegetation index.
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the peninsular part of India, the prevailing climate makes the
whole region highly suitable for stable malaria transmission; how-
ever, the east coast more so than west coast due to topographic
characteristics. The interior peninsular region is characterized by
moderate suitability, though Telangana suits P. vivax better than P.
falciparum.

Model validation
The mean API for the years 2010-2012, the malaria outbreak

districts over the 25-year period 1981-2006 and the positive rates
of the microscopy survey support the resultant ecological risk map
(Figures 4 and 5). The distribution of API isolines is mainly con-
centrated over the areas defined as having high to very high risk,
while the outbreak sites were scattered over the low to moderate
malaria risk regions. Similarly, analysis of field data suggests that
Chhattisgarh and Assam, which are situated in high risk region,
showed a >10% microscopy positivity rate, while a limited number
of areas in the moderate risk region Odisha and Jharkhand had a 5-
10% positivity rate; Kerala, Dadra and Nagar Haveli, Uttarakhand
and Punjab in the region classified as moderate to low risk had a
<5% positivity rate by microscopy. Exceptionally, the state of
Rajasthan in the low risk region showed a positivity rate of nearly
10% and an average API of about 4. 

Discussion
Our aim was to generate a spatial ecological malaria risk map

for India. The GIS-based ecological modelling helped to classify
the country at the district level into five transmission zones of var-

ied risk, which were validated through both primary and secondary
data sources to mark the relevance in context of the malaria elimi-
nation programme. The findings of the present study would also
serve as a baseline for understanding the changing receptivity of
malaria in view of climate change. 

The zones representing the highest risk includes hotspots for
endemic P. vivax and P. falciparum transmission. This risk zone
was found to be spread over the districts in states of Chhattisgarh,
Odisha, Jharkhand, Tripura, Assam, Meghalaya, and Mizoram,
which is not surprising as these areas have perennially transmis-
sion of malaria throughout the year. These regions are character-
ized by forested areas with dense forest cover, warm climate and
small streams to stagnant bodies of water, which encourages high
vector density, longevity and hence high infection rates (Sahu et
al., 1990; Nanda et al., 2000; Lindsay et al., 2004). According to
the blood microscopy survey, parts of the states of Odisha and
Jharkhand were categorized as moderate malaria risk areas though
they are rather in the high-risk zone, which may be explained by
the survey being undertaken in the month of March when malaria
is not at its peak. High risk regions encompass areas within close
proximity to the very high-risk regions, while the risk gradient
decreases steeply towards the western states that are characterized
by arid climatic conditions and dry sandy soil. Similarly, the north-
ern most districts of Jammu and Kashmir also have very low risk
because of high altitude and periglacial conditions. The reason of
high slide positivity rate (10%) in the survey undertaken in
Rajasthan may be attributed to most suitable month of survey,
while in the states of Chhattisgarh, Jharkhand and Odisha, the sur-
veys were undertaken in the month of March.

It should be noted that certain districts in the states of
Uttarakhand, Himachal Pradesh, Bihar, Karnataka, and Nagaland

                                                                                                                                Article
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Figure 4. The malaria risk map with annual parasite incidence and outbreak values superimposed. Pv, Plasmodium vivax; Pf,
Plasmodium falciparum; API, annual parasite incidence.
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had a low API in spite of very high ecological suitability. This dis-
crepancy may be due to underreporting, and the malaria eradica-
tion programme may have to intervene here to find out more. 

The low to moderate risk zones, mainly spread over the north-
ern, western and western-coastal states of India, needs a close anal-
ysis as these regions, e.g., Kerala, Shimla and Rajasthan, have
experienced some major malaria outbreaks in the recent past.
Though these regions are not endemic due to one or more unsuit-
able ecological factor(s), they often face outbreaks due to external
causes that may create new breeding habitats due to anthropogenic
activities such as storage of water. Other reasons are unexpected
heavy rainfall with stagnated water in its wake. Rajasthan falls
under low malaria risk zone, because of less than 4 months of suit-
able climatic TWs. It has often faced outbreaks when receiving
more than normal rainfall (Gupta, 1996; Akhtar and McMichael,
1996). The scenario is similar also in other states, for example
Gujarat, west Maharashtra and north Karnataka. Outbreaks in
Uttar Pradesh and Haryana have been reported due to heavy rain-
fall, disrupted surveillance and poor intervention (Dhiman et al.,
2001; Shukla et al., 2002; Salve et al., 2014). 

Conclusions
Understanding the patterns of malaria transmission risk is an

essential component for a country like India, where resources are
limited and elimination campaign has to be targeted cost-effective-
ly. In this context, the presented spatio-ecological modelling, based
on multi-criteria analysis in a GIS environment, has efficiently
mapped the malaria risk zones in India at the district level. This
should help the National Vector Borne Disease Control
Programme to judiciously take decisions related to improved
surveillance and conducting target based interventions. 
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