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Space and time predictions of schistosomiasis snail host population dynamics across hydrologic
regimes in Burkina Faso

1. Remotely sensed estimates of environmental covariates
Remotely sensed data were used for the regionalization of predicted population dynamics of snail
intermediate  hosts  throughout  the  country.  The  choice  of  covariates  for  inclusion  in  the  spatial
models of snail ecology considered both model identification results from Perez-Saez et al. (2016) as
well as the availability of relevant remotely sensed products providing estimates at suitable spatial
and  temporal  resolutions.   Among  the  6  environmental  covariates  investigated  in  2016  (air
temperature,  water temperature,  conductivity,  level,  precipitation amounts and number of intense
rainfall  events),  only  precipitation  and  air  temperature  were  retained  due  to  their  systematic
appearance in the model identification process and the availability of the corresponding remotely
sensed  products.  For  both  covariates,  available  remotely  sensed  products  were  selected  among
possible candidates, corrected against ground measurements and their uncertainty characterized by
fitting the appropriate error models. Following common approaches in hydrology for rainfall-runoff
models (Hong et al., 2006; Moradkhani et al., 2009), the latter step is necessary to account for the
propagation of uncertainty in measured and estimated environmental covariates into the outputs of
snail demography models. Covariate extraction and aggregation to monthly steps were done using
Google  Earth  Engine  API  (https://developers.google.com/earth-engine).  Given  different  temporal
coverages of the remotely sensed products, the extraction was made from January 2003 to December
2017. 

Precipitation
Among possible remotely sensed products regarding precipitation the Climate Prediction Center's
Rainfall Estimate, v. 2.0 (RFEV2), a decadal estimate at ≈ 10km spatial resolution (Xie et al., 1997)
was retained as it has been singled out as the product with the highest correlation with rain gauge
measurements  over  Burkina  Faso  (Dembélé  et  al.,  2016).  Indeed,  the  estimates  of  monthly
precipitation  correlate  well  (R2  =  0.92)  to  ground  measurements  obtained  from  the  10
Meteorological  agency stations of Burkina Faso (Direction Générale  de la Météo,  Ouagadouguo,
Burkina Faso) for the period 2006-2016. The agreement between the data observed at station i, and
satellite data was further evaluated in terms of the average monthly bias Bm(i):

Bm (i )=
1

nm
∑γ

m
(Pobs,i (t )−Pest,i (t ) ) , Eq. 1
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where m ∈ [1, 12] is the month index;  γm the set of dates  t  that have month  m;  Pobs,i and  Pest,i the
observed and estimated monthly precipitation sums at station  i; and nm the number of non-missing
datapoints  in  γm.  The  bias  correction  was  extended  to  the  rest  of  the  dataset  by  geographical

differentiation analysis  (GDA) (Cheema  et al.,  2012).  The estimated monthly bias  B m
*
(i)  in the

precipitation estimates at each pixel i was computed through inverse distance weighting (IDW) of the
observed biases Bm(j) at each gauging stations j as:
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*
(i , p)=∑ j=1
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Bm( j) Eq. 2

where p is a parameter; ns = 10 the number of available gauging stations; and dij  the Euclidean 
distance between pixel i and station j (Babak et al., 2009). Parameter p was calibrated through leave-
one-out cross-validation by minimizing the sum of squared differences between the observed and 
IDW-predicted biases at each station
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The  uncertainty  in  the  satellite  precipitation  estimates  was  quantified  by  fitting  the  candidate
probability density function to the observed monthly errors. Here, we used the multiplicative error
model on the unbiased precipitation estimates according to McMillan  et al. (2011) and Tian  et al.
(2013):

P̂est,i ( t ) =Pobs,i ( t )×e
ϵ i,t Eq. 3

ϵ i,t=log(
P̂est,i ( t )

Pobs,i ( t ) ) Eq. 4

where P̂est,i (t )  is the unbiased rainfall estimate; and 
ϵi , t  the multiplicative error term.

Due to climate-dependent  differences  in estimation errors,  the available  rain-gauge stations were
subdivided into three latitude regions accounting for the South-to-North precipitation gradient by
performing a k-means clustering for both the latitude and mean annual precipitation of each pixel
(Figure A1). For each month (January through December) and each latitude region, the normal and
the asymmetric  Laplace  (ASL)  distributions  were  fitted  to  the  precipitation  estimation  errors  by
maximum likelihood estimation, and the one with the best (smallest) Akaike information criterion
(AIC) was retained. Initially proposed for quantile regression, the ASL distribution reads: 

f ( x;μ,σ,pμ,σ,p )=
p (1−p )

σ
exp(− x−μ

σ
[ p−I ( x μ⩽μ ) ]) Eq. 5

where µ ∈ (−∞, +∞) is the location parameter; σ > 0 the scale, p ∈ (0, 1) the skew; and I(·) is the
indication  function  (Yu  et  al.,  2005).  As  opposed  to  the  normal  distribution,  it  is  suitable  for
describing data that present more peaked and skewed distribution than the former would assume (Yu
et al., 2005).
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Figure A1. Map of precipitation gauging stations used for the ground-truthing of the remotely
sensed  estimates.  Grey  tones  indicate  the  latitude  and  precipitation  clusters  used  for  the
partitioning of stations for error model fitting.

Air temperature
The results by Perez-Saez et al. (2016) highlighted the link between air and water temperature for the
ecological dynamics of both genera of snails across habitats. More particularly, air temperature was
systematically  selected  in  the  ephemeral  habitats,  whereas  water  temperature  was  more  often
retained in the permanent habitat, especially for B. pfeifferi. Given the national scale of the analysis,
predicting water  temperature  in the whole river  network is  well  beyond the scope of this  work.
Instead, we used the mean maximal and minimal air temperatures (available from the Burkina Faso
National Meteorological Agency) here. Different global scale modelling estimates of temperature at
daily  to  monthly  resolutions  are  available,  including  the  MODIS Aqua/Terra  temperature  8-day
composites at 1-km spatial resolution (MYD11A2) as done by Wan (2015), and the 3-hour state
variable outputs of the Global Land Data Assimilation system (GLDAS)-1,  i.e. the 3-hour model
output  at  0.25º  resolution  (Rodell  et  al.,  2004).  Given  the  discrepancies  between  the  field
measurements  and  remotely  sensed  temperature  estimates,  a  temperature  correction  process
following methods applied to mapping malaria transmission suitability at national and continental
scales  was  used.  Indeed,  the  spatio-temporal  estimation  of  daily  maximal  and  minimal  air
temperature based on remotely sensed data has been the subject of numerous studies in the field of
malaria given its importance for in the ecology of the mosquito vector, and for the development of
the  parasite  within  it  (Garske  et  al.,  2013;  Weiss  et  al.,  2014).  Here,  we followed the  method
proposed by Garske  et al. (2013), which consists in multivariate regression analysis allowing for
random slopes and intercepts on the temporal covariates.
Specifically, the mean monthly maximal and minimal observed temperatures (To

max, To
min) were first

modelled as a linear combination with random slopes of the MODIS time series (TM) of the mean
daily temperature range (Tday - Tnight), the MODIS daily 1-km resolution enhanced vegetation index
(EVI) (Huete et al., 2002), the estimated daylight hours (Forsythe et al., 1995) and the precipitation
(cf. preceding section). All covariate combinations were tested and the best one selected using the
AIC separately for day and night temperatures.  In a second step, the random slopes and intercepts in
these best fitting models were estimated as a function of all possible combinations of fixed (non-
temporal)  covariates,  which  included  longitude,  latitude,  mean  annual  EVI  and  mean  annual
precipitation (for details see Garske et al., 2013). The models from step 2 with the lowest AIC were
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retained for the prediction of monthly day and night temperature. The same approach for quantifying
the  uncertainty  in  the  errors  in  the  estimated  precipitation  was  applied  to  the  residuals  of  the
multivariate temperature regression models, except that the error models were fit per station and
separately for the rainy (June through September) and dry (October through May) seasons, instead of
a monthly basis as done for the precipitation data.

2. Uncertainty models for remotes-sensing covariates

Precipitation
RFEV2 has a systematic bias in, generally over-estimating rainfall during the dry season and under-
estimating it during the wet season (Figure A2). Of importance for snail population dynamics is the
general over-estimation of rainfall in the month of May which can lead to erroneous predictions of
snail population bursts. The bias correction methodology successfully reduced bias as excepted, but
also slightly reduced the overall error between observed an estimated precipitation (Figure A2). The
normal ASL distribution was retained in 5/36 (31/36) month/latitude error partitions, and captured
adequately the distribution of precipitation estimation errors (Figure A3).

A B

Figure A2. Bias correction of precipitation remote sensing estimates. A) The monthly bias of
remote sensing precipitation estimates is non-stationary with systematic over-estimation in the
dry season (October through May) and over-estimation in the rain season (June-August). No
systematic relationship can be drawn between bias and latitude (point colour). B) Agreement
between  the  estimated  and  observed  precipitation  in  terms  of  root  mean  squared  error
(RMSE) bias, Nash–Sutcliffe coefficient and linear regression slope with 0 intercept (slope)
before  bias  correction  (green)  and  after  (red)  partitioned  by  season  (rainy  vs wet).  Bias
correction successfully reduces bias as expected and also reduces the estimation error slightly.
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Figure  A3.  Error  models  of  remotely  sensed  precipitation  estimates.  The  frequency
distribution of the errors in the raw dataset (black ticks and blue density lines) are shown
against the normalized density of the bias-corrected dataset (red) and the best-fitting error
model (blue) - either the normal or the ASL distribution, by latitude/precipitation zone (low ≈
latitude <13, mid =13 < latitude < 14, high = latitude >14).

Temperature
The  best  fitting  temperature  models  were  in  good  agreement  with  observed  day  and  night
temperature at all three monitoring stations (R2>0.95, Figure A4). Interestingly, both the GLDAS
and MODIS temperature estimates were retained in the best-fitting models. As for the precipitation
estimates, both the normal and the ASL distribution were retained (respectively in 9 and 3 of 12 data
partitions by day/night and season), and represent well the observed error distributions (Figure A5).

Figure A4. Multivariate regression of day and night temperatures. Day and night 
temperatures are modelled as a function of time-varying (precipitation, vegetation 
indices, daylight hours) and fixed (latitude, longitude, covariate means) covariates.
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Figure  A5.  Error  models  of  temperature  regression  estimates.  The  frequency
distribution of the errors of the multivariate linear regression model (black ticks and
green density lines) are shown against the best-fitting error model (red), by latitude
zone (low = Panamasso, mid = Lioulgou, high = Tougou) and season (wet vs dry).
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