
Abstract
Mosquito breeding habitat identification often relies on slow,

labour-intensive and expensive ground surveys. With advances in
remote sensing and autonomous flight technologies, we endeav-
oured to accelerate this detection by assessing the effectiveness of
a drone multispectral imaging system to determine areas of shal-
low inundation in an intertidal saltmarsh in South Australia.
Through laboratory experiments, we characterised Near-Infrared
(NIR) reflectance responses to water depth and vegetation cover,
and established a reflectance threshold for mapping water suffi-
ciently deep for potential mosquito breeding. We then applied this
threshold to field-acquired drone imagery and used simultaneous
in-situ observations to assess its mapping accuracy. A NIR
reflectance threshold of 0.2 combined with a vegetation mask

derived from Normalised Difference Vegetation Index (NDVI)
resulted in a mapping accuracy of 80.3% with a Cohen’s Kappa of
0.5, with confusion between vegetation and shallow water depths
(< 10 cm) appearing to be major causes of error. This high degree
of mapping accuracy was achieved with affordable drone equip-
ment, and commercially available sensors and Geographic
Information Systems (GIS) software, demonstrating the efficiency
of such an approach to identify shallow inundation likely to be
suitable for mosquito breeding. 

Introduction 
Mosquito-borne diseases, a subgroup of and hereafter referred

to as arboviruses, are an increasing threat to global public health.
In addition to the loss of lives, arboviruses directly or indirectly
contribute to significant disease burden through medical costs as
well as through the reduction of human productivity (Mackenzie
and Smith, 1996). Nevertheless, in time, infections are expected to
increase due to faster development of larvae and shorter viral incu-
bation times within varying mosquito species from the effects of
climate change (Bi et al., 2009; Russell, 1998). Increased enroach-
ment into mosquito habitat, particularly wetlands through recre-
ation or development further increases the risk of viral transmis-
sion (Bi et al., 2009; Russell, 1998). 

In South Australia, larvicides are utilised in mosquito control
programs, which breaks larval life-cycles and prevents larvae
from pupating into adults (Government of South Australia, 2006).
Typically, this requires the targeting of suitable breeding habitats
i.e. pools of shallow standing waters often among low vegetation
that are difficult to access, through time consuming, labour inten-
sive and expensive ground surveys organised by local public
health agencies (Dale et al., 1986). 

Satellite imagery has commonly been used to identify breed-
ing habitats, particularly towards malaria mitigation efforts in
developing cities (Clennon et al., 2010; Dambach et al., 2012;
Hassan et al., 2013; Hugh-Jones, 1989). For these studies, moder-
ate spatial resolution imagery (10 – 30 m) were used, which,
although suitable for broad scale regional studies, may fail to iden-
tify small or shallow mosquito breeding pools in localised areas. 

The low cost of drones (< AUD$1000), combined with their
flexibility to be deployed rapidly and acquire real time high-reso-
lution imagery, may therefore be a better remote sensing alterna-
tive (Bergquist and Amer, 2019). The ability for users to execute
autonomous flights at lower altitudes means that drones can be
used to determine potential breeding sites in inaccessible terrain at
higher resolutions and at more appropriate times. This improves
survey efficiency, as demonstrated by Hardy et al. (2017) where
potential breeding sites were identified in rice paddies, ponds, as
well as urban and peri-urban landscapes in Zanzibar using drone-
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derived colour orthomosaics of 7 cm pixels.  Multispectral sensors
that record imagery at various wavelengths have been frequently
used in drone remote sensing applications, such as environmental
monitoring and precision agriculture (e.g. Fernandez-Guisuraga et
al., 2018; Paredes et al., 2017). In principle, through the identifi-
cation of distinctive spectral properties, features such as pools of
water can be differentiated from other land classes (Paine and
Kiser, 2003). For example, Chabot et al. (2018) utilised the spec-
tral differences between water and vegetation to delineate above-
water vegetation from submerged features using a drone-derived
multispectral image, where vegetation is indicated by a higher
reflectance than water features. 

While Carrasco-Escobar et al. (2019) highlights the capability
of multispectral sensor systems to positively detect the presence of
larvae in water bodies at 2 cm pixel resolutions, there has been no
reported studies that determines the depth at which multispectral
sensors are able to accurately discern water features from other
land classes. This paper reports research which aimed to determine
the minimum depth at which multispectral sensors are able to
accurately detect water, through, firstly, the characterisation of
NIR reflectance of water depth and vegetation cover in a controlled
setting, and then applying these findings in a typical coastal salt-
marsh to rapidly map potential breeding habitats using multispec-
tral drone imagery.

Methods 
Laboratory simulations were first implemented to explore the

relationship of water depth and vegetation cover, typical of a South
Australian saltmarsh on rich organic substrate, to NIR reflectance
(Rowbottom et al., 2017). The findings subsequently contributed
towards analyses of multispectral drone imagery that attempted to
map potential breeding areas of focal saltmarsh mosquito species,
Aedes vigilax and Aedes camptorhynchus, known to be vectors of
the Ross River Virus (RRV) in Australia (Johnston et al., 2014).
Assessment of the mapping accuracy was based on in situ observa-
tions collected at the time of drone image acquisition. 

Laboratory trials 
Ross River Virus cases have been associated with coastal or

inland saltmarsh habitat, with epidemics commonly occurring fol-
lowing inundation from tides or rain (Mackenzie and Smith, 1996;
Russell, 1998). For our laboratory trial, we explored the NIR
response of key habitat components, shallow water inundation and
vegetation cover, as well as their combined effects on spectral
response. Water absorbs NIR radiation more strongly than organic
substrate or vegetation, and would be represented in the NIR
imagery as darker pixels of lower relative reflectance (Goward et
al., 1994). To simulate the organic-rich soils in coastal saltmarsh,
Pinus radiata bark was chosen as the substrate for the experiments
as it is dark-coloured and rich in humic materials such as lignin and
cellulose, providing a good spectral analogue to the organic-rich
soils in saltmarshes. 

The multispectral sensor used was the five-sensor MicaSense
RedEdge (MicaSense, 2015), covering the blue (centre wavelength
at 475 nm), green (560 nm), red (668 nm), red edge (717 nm) and
NIR (840 nm) wavelengths. It captures 1280 x 960-pixel images,
at a ground sample distance of 8.2 cm per pixel at 120 m Above
Ground Level (AGL). 

For each trial, the experimental setup involved one set of three

inundated rectangular buckets (57 x 32 x 38 cm), with dark organic
substrate set at the bottom to simulate shallow breeding pools, and
another set of three non-inundated buckets as the control, with
damp organic substrate that simulated pool edges. The sensor was
positioned nadir to each bucket at a height of 1.2 m AGL, imaging
the entire surface area of the simulated environments within each
inundated and non-inundated bucket. The sensor was calibrated
before each experiment using a calibration panel of 98%
reflectance (MicaSense, 2015). For the water depth trial, the water
depth in the inundated buckets (hereafter referred to as treatments)
was varied at 5 cm, 10 cm, 15 cm, 20 cm and 25 cm, and three NIR
images were acquired for both the inundated and non-inundated
treatments at each water depth, totalling 15 images for this trial.
For the vegetation cover trial, a frame of bamboo leaves with vary-
ing covers i.e. approximately 10%, 20%, 50%, 70% and 90% was
placed above the buckets themselves, with water level in the inun-
dated treatments fixed at 15 cm. Bamboo leaves were used for they
were a readily available analogue for photosynthesising wetland
vegetation. The leaves were obtained shortly prior to the com-
mencement of the trial and kept hydrated such that their photosyn-
thetic capacities were conserved. Three NIR images were captured
for each vegetation cover, for both the inundated and non-inundat-
ed treatments totalling 15 images for this trial. 

The Digital Numbers (DNs) from the NIR imagery were then
extracted from the appropriate areas of each image to eliminate the
bucket edges from analysis. This was done through the manual
digitisation of shapefiles for each non-georegistered image in
ArcMap 10.3.1 (ESRI, 2015). The DNs were then converted to
percentage reflectances to control for variable lighting conditions
at the time of image capture using a linear calibration equation
based on the mean DN values of the calibration panel (98%
reflectance) as well as dark images (0% reflectance) (Smith and
Milton, 1999) (see Appendix). We then obtained the mean percent-
age reflectances of all 30 images and used a two-factor ANOVA
with replication to assess for differences between treatments (inun-
dated or non-inundated), variables (water depth and vegetation
cover) or potential interactions. 

Field Trials 
The field study was conducted on 6th September 2016 in an

intertidal coastal saltmarsh located near Port Broughton in South
Australia (33.58° S, 137.94° E), 170 km north-west of Adelaide.
The region is temperate, with a mean annual rainfall of 374 mm
(Bureau of Meteorology, 2019), and dominated by low open sam-
phire (Tecticornia spp.) of various leaf colours on grey clay, organ-
ic-rich soils. It was generally sunny with occasional sparse cirrus
or stratus clouds, and an ambient temperature of 22°C. High tides
and rain the previous day resulted in the presence of many tempo-
rary pools in the area. 

A ground survey was conducted to provide the basis for an
accuracy assessment of the drone image mapping. The area
assessed was approximately 1.7 ha, divided into six quadrats of
approximately 50 x 65 m (Figure 1). Stratified directed sampling
was implemented where we determined habitat cover types before-
hand and then identified a minimum of three samples of each cover
type per quadrat if found. These were i) water; ii) vegetation; iii 3)
soils and iv) algae, divided into nine sub-classes: open water; water
under dead vegetation; water under vegetation; algae under water;
live vegetation; dead vegetation; wet algae; dry algae and bare soil
(Table 1). This was done such that there was a good distribution of
sample cover types across the study area.

                   Article
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Seventy-one homogenous plots were sampled, each covering
approximately 710 cm2 (30 cm diameter). Recorded at each plot
were the dominant cover type, depths of water if present, colour
photographs at nadir, and central plot GPS coordinates with a dif-
ferential GPS (dGPS) of horizontal accuracy better than ± 5 cm. 

Multispectral imagery of the field site was obtained within an
hour and a half of solar noon to minimise shadows using a 3DR
Iris+ mounted with the MicaSense sensor at 40 m AGL. Sixteen
ground control points (GCPs) were placed within the study area for
subsequent georegistration of imagery, and their coordinates
recorded with a dGPS. The GCPs were marked with reflective tape
for them to be subsequently located in the multispectral imagery.

Image Processing
Image processing involved the production of a georegistered

2.7 ha mosaic from 85 images of approximately 2.7 cm/pixel res-
olution, using Pix4DMapper software (pix4d.com). This was fol-
lowed by the analyses of the composite NIR and NDVI imagery in
ArcMap 10.3.1. 

Shallow inundation was defined when the NIR reflectance in
the mosaic, as well as the mean value of pixels within each sample
plot was less than 0.2 based on the results from the laboratory tri-
als. NIR reflectances equal and greater than 0.2 were considered to
be non-inundated, assuming that the NIR spectral response at 1.2
m AGL as in the laboratory trials, and at 40 m AGL as in the field
trials are the same. Vegetation on the other hand, was defined
through a composite NDVI mask, when the NDVI was equal or
greater than 0.4. This value was the minimum NDVI obtained from
the composite imagery found to be vegetation on the ground.
Potential areas for mosquito breeding i.e. shallow inundation with
no overhanging vegetation were therefore defined by NIR
reflectance lower than 0.2 and NDVI lower than 0.4. This concur-
rently reduced the confusion between ‘water’ and ‘vegetation’

                                                                                                                                Article

Figure 1. A) Field study at Port Broughton. The ground survey area was approximately 1.7 ha, divided into six 50 x 65 m quadrats
shown in pink. B) Environmental conditions on the day of survey, where high tides and rain the day prior formed small temporary
pools that may be suitable for mosquito breeding.
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Table 1. Cover types and sub-classes identified during the field
survey. Cover type ‘water’ is considered as inundated, while cover
types ‘vegetation’, ‘algae’ and ‘soil’ are considered non-inundated. 

gh-2020_1 .qxp_Hrev_master  11/06/20  10:32  Pagina 103

Non
-co

mmerc
ial

 us
e o

nly



classes that may be present in the NIR imagery. The 71 field sam-
ples were used to assess the accuracy of the resultant maps using
an error matrix and commonly-used measures of accuracy includ-
ing overall accuracy, Producer’s accuracy, User’s accuracy and
Cohen’s Kappa coefficient. 

Results 

Water Depth 
The two-way ANOVA showed a significant statistical differ-

ence between NIR reflectance of the inundated and non-inundated
treatments (p=0.01, < 0.05), as well as between the different water
depths (p=0.01). It also determined a significant interaction
between the status of inundation and water depth (p = 0.02), sug-
gesting possible confounding factors (Figure 2). 

We then eliminated the variable of minimal depth (5 cm) from
the linear model and ran a second two-way ANOVA. This second
analysis showed no significant interaction between inundation sta-
tus and water depth (p=0.16), suggesting that there were confound-
ing effects at water depths below 10 cm where there was likely
confusion between water and substrate. Moreover, the water depth
trials showed a clear difference in reflectance, with the mean of all
non-inundated treatments having higher reflectances than the inun-
dated at all water depths, all below a mean reflectance of 0.2. This
threshold was thus selected for the subsequent drone image field
trials to define areas of shallow inundation.

Vegetation Cover 
There was a significant statistical difference between percent-

age vegetation cover and NIR reflectance (p<0.01), indicating that
reflectance is strongly attributed to vegetation cover (Figure 2).
There was no statistical significance between inundation status,
and no interaction between inundation status and cover.  There was
however an anomaly at 70 % vegetation cover. This was found to
be due to a mis-calibration, where the maximum percentage
reflectance recorded for this group was much higher than that of
others, thereby affecting its reflectance values (see Appendix).
Regardless, the strong positive effect of vegetation cover on NIR
reflectance, and the lack of statistical significance associated with
inundation status (p = 0.24), as well as between the interaction
between inundation and vegetation cover (p = 0.75), suggests that
vegetation cover even in small amounts, can affect reflectance. We
thus expected possible misclassifications in the subsequent field
trials, where the sub-class of ‘water under vegetation’ may be clas-
sified as ‘vegetation’ rather than ‘water’.

Classification accuracy
The classified map delineating shallow inundation below a

NIR reflectance threshold of 0.2 had an overall mapping accuracy
of 66.2% (Table 2; Figure 3). The Producer’s accuracy, which
illustrates how accurately the samples have been classified in the
image, was 69.6% for the inundated samples, and 64.6% for the
non-inundated samples. The User’s accuracy, the proportion of
each map class that is consistent with ground records, was 48.5%
for inundated samples, and 81.6% for non-inundated samples.
Hence, this signifies a high error of commission (51.5%) i.e. an
overclassification, likely due to a proportion of non-inundated
areas on the ground identified as inundated on the map. The Kappa

coefficient of 0.32 indicated overall poor agreement between the
classified image and field observations. 

The classified map delineating shallow inundation taking into
account vegetation cover had an overall mapping accuracy of
80.3%, a higher classification accuracy than the mapping based on
NIR density slicing alone (Table 2; Figure 3). The Producer’s accu-
racy was 43.5% for the inundated samples, and 97.9% for the non-
inundated samples. The User’s accuracy was 90.9% for inundated
samples, and 78.3% for non-inundated samples. The Kappa coeffi-
cient for this confusion matrix is 0.5, indicating a good agreement
between the classified image and the field observations. 

                   Article

Figure 2. The mean reflectances of the three Near-Infrared (NIR)
images from each inundated and non-inundated treatments were
measured at 5 cm, 10 cm, 15 cm, 20 cm and 25 cm for the water
depth laboratory trials (above), with the error bars indicating one
standard deviation. All of the non-inundated treatments have
higher reflectances than inundated treatments at all water depths,
with the threshold being a mean reflectance of 0.2 (orange dashed
line). The mean reflectances of the three NIR images from each
inundated and non-inundated treatments for the vegetation cover
trials were also measured, at 10%, 20%, 50%, 70% and 90%
(below), with the error bars indicating one standard deviation. We
find that vegetation cover has a strong positive effect on NIR
reflectance.
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The reduction in Producer’s accuracy indicates the higher like-
lihood of a sample being classified as another class on the map
despite it being inundated on the ground. This further suggests the
possibility of vegetation cover having an influence on the accuracy

of classifications, i.e. the sub-class of ‘water under vegetation’
likely being classified as ‘vegetation’ rather than ‘water’, for
example.

                                                                                                                                Article

Figure 3. Near-Infrared (NIR) classified map identifying shallow inundation based on the density slice threshold at 0.2 reflectance (left),
and based on the density slice threshold of 0.2 NIR reflectance and an Normalised Difference Vegetation Index threshold of 0.4 (right),
with the location of the 71 survey plots classed in situ as algae (in yellow), soil (red), vegetation (green) and water (blue).

Table 2. Error matrices for shallow inundation classification from the Near-Infrared (NIR†) map indicating an overall accuracy of 66.2%
and near-infrared-normalised difference vegetation index (NIR-NDVI‡) map indicating an overall accuracy of 80.3%. 

                                                                    Field 
                                                                    Inundated                        Non-Inundated             Total                            User’s Accuracy

                         Inundated                                            16                                                 17                                              33                                         48.5%

                         Non-Inundated                                   7                                                   31                                              38                                         81.6% 

                         Total                                        23                                     48                                   71                                         
                         Producer’s Accuracy                          69.6%                                           64.6%                                                                                      Overall Accuracy 66.2%
NIR-NDVI‡                                                  Field 
                                                                    Inundated                        Non-Inundated             Total                            User’s Accuracy

                         Inundated                                            10                                                 1                                                11                                         90.9%

                         Non-Inundated                                   13                                                 47                                              60                                         78.3% 

                         Total                                        23                                     48                                   71                                         
                         Producer’s Accuracy                          43.5%                                           97.9%                                                                                      Overall Accuracy 80.3%
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Water Sub-class Comparisons
Of the seventy-one sample points, twenty-three were classified

as ‘water’. It was further observed in both maps that the misclassi-
fication of cover types was strongly associated with their particular
sub-classes and water depth. The addition of water depth informa-
tion taken in the field clarified the classifications (Table 3).

The sub-class ‘water under vegetation’ was mainly classified
as inundated in the NIR classified map. While this is an apparently
correct classification, the NIR imagery revealed self-shadowing of
the southern sides of many vegetation clumps upon closer inspec-
tion, resulting in low reflectance values and meeting the requisites
for an inundation classification. 

Nonetheless, ‘water under dead vegetation’ and ‘algae under
water’ were both correctly classified under the broad cover type
‘water’, while the sub-class ‘water under vegetation was mainly
misclassified as non-inundated. The sub-class for ‘open water’ was
divided into three categories; depth shallower than 5 cm, depths
equal to and greater than 5 cm and less than 10 cm, and depths
equal to and greater than 10 cm. This sub-division revealed that
most samples of deeper waters (≥ 5 cm) were correctly classified
as inundated – with the one misclassification likely to be due to the
presence of suspended algae – while those of shallower water (< 5
cm) were mostly misclassified as non-inundated. 

Discussion 
Through laboratory and field trials, we have determined that a

NIR reflectance threshold of equal or greater than 0.2 together with
an NDVI equal and greater than 0.4 was sufficient to determine
shallow inundation that may be suitable for mosquito breeding,
with a high classification accuracy of 80.3%. Moreover, the mini-
mum depth for confident discrimination of inundation and non-
inundation through NIR imagery was determined to be 10 cm,
though sub-class comparison suggests that it may even be possible
to distinguish inundation as shallow as 5 cm. The trials also
revealed that even small amounts of overhanging vegetation can
prevent the confident detection of inundation, as shown in the mis-
classifications of samples in the sub-class ‘water under vegeta-
tion’. This study thus provided an understanding of the capabilities
of drones and the MicaSense multispectral camera to determine
shallow inundation, using a simple image classification approach
that could readily be adopted for rapid mitigation action. 

Sensor response to inundation, water depth and vegetation
The delineation of water from other classes was illustrated in

the laboratory results, where the non-inundated samples had gen-

erally higher reflectance than the inundated samples, and were dis-
tinguishable from one another at the 0.2 reflectance threshold in
the NIR imagery. 

Reflectance was expected to decrease with increasing water
depth due to the reduction in reflectance from the substrate
(Lyzenga, 1981; Zeng et al., 2017). However, in our study, the
increase in water depth did not have any statistical effect on
reflectance after the removal of the 5 cm variable. This is likely
due to the very shallow range of the water depths tested i.e.
between 5 cm and 25 cm, as well as the small intervals between
variables i.e. at 5 cm intervals, unlike the study by Zeng et al.
(2017), which observed depths from 50 cm to a lake bottom. 

Furthermore, the confounding effects observed from the labo-
ratory trials suggests that the sensor was unable to confidently dis-
criminate between inundation and non-inundation at depths less
than 10 cm. This is likely due to the shallow depths, where the NIR
reflectance from the substrate may have outweighed the absorption
of water, leading to confusion in classification. This was further
observed in subsequent classifications where a proportion of inun-
dated field samples were identified as non-inundated on the map,
with all samples having depths of less than 10 cm. 

Similarly, the lack of statistical significance of NIR reflectance
associated with inundation status, as well as interaction between
inundation and vegetation cover was likely a result of vegetation
reflectance considerably outweighing the NIR absorption from
water, which was characteristic of their inherent spectral properties
(Knipling, 1970). 

Field mapping and classification 
Generally, both maps correctly classified algae and soil cover

types as non-inundated. This was expected and likely due to their
higher reflectances in the NIR wavelengths, which allocated them
in the upper threshold of the density slice, delineating them from
inundated habitats. ‘Algae under water’ was classified as inundat-
ed in both maps, despite having photosynthetic activity, as the
NDVI of the algae was 0.34 (< 0.4). Dead vegetation, including the
sub-class ‘water under dead vegetation’, was classified as expected
as inundated, as dead vegetation no longer contains the cellular
structures for internal scattering of radiation resulting in lower NIR
reflectance (Knipling, 1970). 

This however, was a source of commission error for the class
‘dead vegetation’ and affected the overall mapping accuracy of
both maps. In addition, visual inspection showed that the class
‘open water’ frequently included suspended algae in assessments.
This resulted in higher NIR reflectances due to its photosynthetic
capabilities, and thus was classified as non-inundated instead,
affecting mapping accuracies. One of the bigger sources of errors
was the misclassification of ‘open water’ as non-inundated.

                   Article

Table 3. Sub-class comparisons within the cover type 'water' in relation to the near-infrared (NIR†) classified map and the and near-
infrared-normalised difference vegetation index (NIR-NDVI‡) classification. Values are counts of field sample points that are classified
based on the rules for production of each map. 

Map            Status              Open Water        Open Water      Open Water     Water under      Water under dead      Algae Under      Total
                                              (<5 cm)        (5 ≤ x <10 cm)     (≥ 10 cm)        Vegetation             Vegetation                  Water                

NIR†                Inundated                         1                                   5                                 4                               5                                        1                                        1                        17
                        Non-Inundated                5                                   0                                 0                               1                                        0                                        0                         6
NIR-NDVI ‡   Inundated                         0                                   4                                 4                               0                                        1                                        1                        10
                        Non-Inundated                6                                   1                                 0                               6                                        0                                        0                        13
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Through the unpacking of the water sub-class comparisons (Table 3),
this error was revealed to be the confusion between the ‘soil’ class
with ‘water’ in the imagery, where, as with the laboratory trials, the
NIR reflectance outweighs the absorption of water of depths shal-
lower than 10 cm, characterising more soil features in the classi-
fied map . Nevertheless, the sub-class comparison also suggests
that it may even be possible to distinguish inundation as shallow as
5 cm, where 5 out of 5 sites, and 4 out of 5 sites were correctly
classified as inundated in both the classified NIR and the NIR-
NDVI maps respectively. 

The sub-class ‘water under vegetation’ was classified as non-
inundated in the NIR-NDVI map, despite the initial apparent cor-
rect classification in the NIR map due to shadowing. Incorporating
the NDVI mask and setting the vegetation threshold to be equal or
greater than 0.4 instead allocated the sub-class into the upper
threshold of the density slice. This further substantiates the find-
ings from the laboratory trials i.e. that vegetation cover has a very
strong positive effect on reflectance, and can greatly affect the
accuracy of classifications.

An experimental limitation would be that the number of sam-
ples taken within the study site (71 sample plots), as well as the
size of the study site itself (approximately 1.7 ha) was small,
hence, the maps may not strongly represent the broader landscape.
Further trials in a wider range of environments are recommended
to test the broader applicability of our findings. 

Significance to Mosquito Mitigation Efforts
Together with the knowledge of the mosquitoes’ local ecology,

the acquisition of real-time high resolution imagery using low-cost
drones can better target potential breeding sites for effective miti-
gation action. A. vigilax and A. camptorhynchus depend on differ-
ent environmental conditions to breed successfully, despite both
species being found in and close to saltmarsh (Johnston et al.,
2014). A. camptorhynchus tend to breed in cooler months (between
May and September), utilising small pools that are mainly
recharged by rainfall and groundwater. A. vigilax on the other
hand, tend to breed in the warmer months (between December and
March) and rely on small tidal filled pools isolated from predators
for larvae development (Kokkinn et al., 2009; Williams et al.,
2009). Compared to using Landsat imagery for example, the use of
drones immensely improves the spatial resolution (from 30 m to
sub-decimetre pixel resolution depending on the sensor used and
flight altitude) and enables users to obtain imagery whenever
required and as frequently as possible for better, targeted mitiga-
tion. The multispectral sensor further complements this by allow-
ing delineation of small, shallow pools of water that both A. vigilax
and A. camptorhynchus is known to breed in through its spectral
response in the NIR wavelengths. 

Although our main focus was on South Australia’s saltmarsh
species, mosquito breeding has been reported to occur in even
shallower waters (less than 4 cm) (Bennelongia Pty Ltd, 2012),
with species such as Aedes notoscriptus being well known contain-
er breeders (Williams and Rau, 2011). The inability of the sensor
to discriminate between inundated and non-inundated conditions at
water depths shallower than 10 cm, as well as its inability to deter-
mine areas of ‘water under vegetation’ thus highlights the limita-
tion of using NIR sensors to identify potential breeding sites.
Authorities across Australia, nonetheless, advise against creating
wetlands with dense vegetation and of depths less than 60 cm, such
that predators are able to feed on mosquito larvae (Government of
South Australia, 2006; Queensland Government, 2002). 

Nonetheless, while our classification methods may have
demonstrated the potential to effectively map areas of inundation,
even with a map with User’s Accuracy of 90.9%, uncertainties per-
sist and have to be taken into consideration in any mitigation
action. A user relying on a map that overclassifies inundated areas
for larvicide application could lead to scarce resources being wast-
ed on non-target areas. On the other hand, a user relying on an
underclassified map could miss areas of potential mosquito breed-
ing. Hence, decision-makers have to exercise caution when using
such classification maps and consider the cost-effectiveness of
mitigation prior to action. 

Our study was not designed to inform on whether such sites
were productive i.e. having mosquitoes in their immature stage
present in that point in time, whereas the study by Carrasco-
Escobar et al. (2019) positively identified bodies of water that host
mosquito larvae using multispectral drone imagery in Amazonian
Peru for more targeted mitigation. Together with our findings in
regards to NIR response to water and water depths, along with
those of Hardy et al. (2017), there is now better understanding of
the possibility and practicality of using drones and the multitude of
sensors towards efficient and effective mosquito mitigation. 

Future Research 
Drones and their sensors are becoming more accessible and

inexpensive. The rapid advancements in technology – improve-
ments in battery life, integrated sensors (in optical, multispectral,
thermal or hyperspectral wavelengths) and GPS, and better pro-
cessing software – have allowed for the effective monitoring of
potential mosquito breeding habitats, and possibly for active miti-
gation through drone dispersal of larvicide to identified pools
(Huang et al., 2009). Though not yet commercial, such advance-
ments, along with the development of newer technologies and
approaches such as the use of computer vision are encouraging and
could be used towards the mitigation of mosquito-borne diseases
in the near future (Allan et al., 2018; Chen et al., 2014; Mehra et
al., 2016). 

Conclusion
Mosquito-borne diseases can seriously impact human produc-

tivity and quality of life, with potentially significant flow-on
impacts to economies. Current methods for identifying potential
mosquito breeding habitats in South Australia are slow, labour-
intensive and expensive due to the need for ground surveys in areas
that are hard to access. Satellite remote sensing has shown poten-
tial in mapping likely areas of breeding, though at regional scales.
Drones and their available sensors thus fill the operational gaps
with their ability to vary spatial resolutions and acquire timely
imagery. This study thus provided a better understanding of the
responses of the MicaSense RedEdge multispectral sensor to vari-
ous environmental variables, and delineated shallow inundation
with high mapping accuracy through simple remote sensing classi-
fication techniques. The results have proven encouraging, though
potential limitations were flagged. With rapid advancements in
drone and sensor technology, there is great potential for further
refinement for mosquito disease mitigation and monitoring
through passive or active methods, thus directly tackling this glob-
al public health problem. 
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