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Abstract

Typhoid disease continues to be a global public health burden.
Uganda is one of the African countries characterized by high inci-
dences of typhoid disease. Over 80% of the Ugandan districts are
endemic for typhoid, largely attributable to lack of reliable knowl-
edge to support disease surveillance. Spatial-temporal studies
exploring major characteristics of the disease within the local pop-
ulation have remained limited in Uganda. The main goal of the
study was to reveal spatial-temporal trends and distribution pat-
terns of typhoid disease in Uganda for the period 2012 to 2017.
Spatial-temporal statistics revealed monthly and annual trends of
the disease at both regional and national levels. Results show that
outbreaks occurred during 2015 and 2017 in central and eastern
regions, respectively. Spatial scan statistic using the discrete
Poisson model revealed spatial clusters of the disease for each of
the years from 2012 to 2017, together with populations at risk.
Most of the disease clustering was in the central region, followed
by western and eastern regions (P <0.01). The northern region was
the safest throughout the study period. This knowledge helps
surveillance teams to i) plan and enforce preventive measures; ii)

Correspondence: Kamukama Ismail, Makerere University, P.O. Box
7062 Kampala, Uganda.

Tel.: +256.772.374841, +256.703.374841.

E-mail: Kamukama@cis.mak.ac.ug

Key words: Spatial; temporal; trends; patterns; typhoid; Uganda.

Acknowledgements: The research is being sponsored by Makerere-
SIDA Phase (iv) Programme and supported by Kyambogo University.
Uganda Ministry of Health provided clinical data and Uganda Bureau
of Statistics provided population data and Uganda shape files.

Contflict of interests: The authors declare no potential conflict of interests.

Received for publication: 29 January 2020.
Accepted for publication: 18 August 2020.

©Copyright: the Author(s), 2020
Licensee PAGEPress, Italy
Geospatial Health 2020, 15:860
doi:10.4081/gh.2020.860

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (CC BY-NC 4.0) which permits any
noncommercial use, distribution, and reproduction in any medium, pro-
vided the original author(s) and source are credited.

[page 326]

[Geospatial Health 2020; 15:860]

effectively prepare for outbreaks; iii) make targeted interventions
for resource optimization; and iv) evaluate effectiveness of the
intervention methods in the study period. This exploratory
research forms a foundation of using Geographical Information
Systems (GIS) in other related subsequent research studies to dis-
cover hidden spatial patterns that are difficult to discover with
conventional methods.

Introduction

Typhoid disease remains a worldwide public health burden
with a high mortality and with varying epidemiological character-
istics across the globe (Marks et al., 2017). It is estimated that 17.8
million cases of typhoid fever occur each year in low- and middle-
income countries (Antillon et al., 2017). The highest incidence
numbers are seen in Africa and central, southern and south-eastern
parts of Asia (Lee et al., 2016; WHO, 2017). In Uganda, over 80%
of the districts are endemic for typhoid with those in the central
and western regions topping the list (Agwu, 2012; Walters, ef al.,
2014), making Uganda only second to Nigeria in Africa with
respect to typhoid (Jong-Hoon, 2017). New cases continue to be
registered every day in many hospitals and clinics, and outbreaks
are reported in different parts of the country (Kabwama et al.,
2015; Mirembe et al., 2019). The disease is caused by a Gram-
negative bacterium called Salmonella enterica serovar typhi,
whose main route into the body is with drinking unsafe water or
eating contaminated food as a result of poor sanitation and
hygiene (Tiwari and Nayak, 2017; Mirembe et al., 2019).

Many research studies associate disease with location and
time due to certain environments and weather conditions, such as
rainfall, high temperatures, flooding and humidity being con-
ducive for the survival and growth of disease-causing organisms
(Lee et al., 2016; Gu et al., 2017). Conditions change from season
to season with direct influence on health and the issue of location
influencing health is not new. Already, Hippocrates (around 400
B.C.E) in his book Airs, waters and places discovered that loca-
tion can influence health and this is supported by many later
research studies holding that diseases tend to occur in some places
and not in others (Rajabi, 2015; Adams, 2017; Malone et al,
2019). Dr John Snow famously used this concept to discover the
source of cholera after an outbreak in London in 1854 (Smith,
2002). This was the first work on what is now called spatial epi-
demiology, which is the description and analysis of geographic
variations in diseases with respect to demographic, environmental,
behavioural, socio-economic, genetic and infectious risk factors
(Elliott and Wartenberg 2004; Bergquist and Rinaldi, 2010;
Agboola and Mataimaki, 2017). As the nature of disease charac-
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teristics are spatial and temporal in nature, they require spatio-tem-
poral statistics to be explored. Such statistics has been used to ana-
lyze events in the two-dimensional trait of place and time
(Baaghideh et al., 2016). Knowledge that can be revealed by spa-
tio-temporal studies include incidence rates, trends, disease distri-
butions as well as attributes, such susceptible population groups
including low and high-risk areas. This knowledge is essential in
disease surveillance (Ahangarcani ef al, 2019), as it enables the
study of populations at risk through the use of surveillance teams
that can i) plan and enforce preventive measures; ii) effectively
prepare for outbreaks; iii) make targeted interventions for resource
optimization; iv) explore possible factors influencing disease
occurrence; and v) evaluate effectiveness of intervention methods
(Mirembe et al., 2019).

The current disease surveillance in World Health Organization
(WHO) member states is based on an Integrated Disease
Surveillance and Response (IDSR) framework and includes imple-
mentation of International Health Regulations (IHR). IDSR was
developed and adopted in 1998 for Africa as a complete health
approach to detect, confirm, and respond to high-priority diseases
(WHO, 2015). According to IDSR and THR, data are collected
from treatment centres (health centres and hospitals) and then sub-
mitted to district level databases. The district authorities then sub-
mit the data to national databases on a weekly basis. If the data
reflect that a disease is posing a serious health threat, it is remitted
to WHO regional office database for WHO recommendations
(Kasoro et al., 2013). Much patient data has been accumulated
under this framework but without a strict spatial component (geo-
graphical coordinates) attached, which makes in-depth data analy-
sis difficult. The data collected cannot be fully utilized as they

wﬂeu

often leave out spatio-temporal characteristics of the diseases,
which eventually makes surveillance costly and inefficient
(Mubhindo et al., 2016).

Geographical Information Systems (GIS) and spatial statistics
can reveal important epidemiological characteristics, e.g., by intro-
ducing centroids of spatial units. The main objective of our
research was to use GIS to explore epidemiological characteristics
of typhoid disease in the Ugandan population using district cen-
troids together with archived data for the period 2012 to 2017. This
knowledge is as essential in disease surveillance as it is for effec-
tive planning, decision-making and resource optimization. The
research forms a foundation for the future use of GIS in research
to explore hidden spatial patterns in the data that are difficult to
discover with conventional methods.

Materials and methods

Study area

Uganda is an African country with a current population of
approximately 44.27 million people and 241,038 km? of land
(WPR, 2020). As of 2012, the administrative units in Uganda con-
sist of 112 districts composing four larger territories, i.e. the cen-
tral, eastern, northern and western regions (UBOS, 2012). The cen-
tral region is composed of 24 districts, the eastern of 32 districts,
the northern of 30 districts and the western of 26 districts (Figure
1). The central region is highly urbanized with high population
densities involving multi-ethnicities with different social and cul-
tural behaviours (UBOS, 2016).

)
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Figure 1. Map of Uganda and showing regions and districts. A) The 112 districts of Uganda; B) The four regions of Uganda.
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Data sources

A total of 1,263,923 clinically confirmed typhoid disease cases
from all 112 districts organized by month and covering the period
2012 to 2017 were obtained from Uganda Ministry of Health
(MOH). To avoid breach of patients’ data confidentiality law, the
data were first aggregated and then organized per district. Average
rainfall data from 2012 to 2017 was obtained from Uganda
National Metrological Authority (UNMA). The weather data are
collected by 18 weather stations that are well distributed nationally
to represent all parts of the country. Ugandan shape files and pop-
ulation data were obtained from Uganda Bureau Of Statistics
(UBOS). According to UNMA, Uganda has a bi-model climate
type, which means a rainy season from March to May and another
from November to December with dry seasons from January to
February and from June to September. The central Region always
receives the highest amount of rainfall, which results into exces-
sive floods with poor drainage (Thieme and Jacobs, 2012). This
fact is confirmed by the amounts of rainfall in the country as seen
in Figure 2. After the heavy rains, some districts in the central
region, including Nakeseke, Nakasongola and neighbouring areas,
experience long droughts every year, which cause serious water
scarcity.

Materials and methods

Mapping and analysis were done using ArcGIS software, ver-
sion 10.1, (ESRI, Redlands, CA, USA) and SatScan free software
package (SaTScan, 2019). Additional analysis and graphing of dis-
ease trends were done using Microsoft Excel, Office 2016. The
disease cases were aggregated per district, per month and per year
from 2012 to 2017. They were then aggregated per region for the
entire study period.

The data were analyzed with respect to each of the four
regions and for each of the years from 2012 to 2017. They were
further analyzed at national level. The total number of typhoid
cases in each region was computed for each of the six years. The
monthly totals per region were expressed as percentages of the
respective annual totals. The monthly totals for the entire six-year
period were expressed as percentages of the overall total number
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of cases. The correlation of typhoid incidence with average rainfall
was determined using Pearson’s correlation coefficient (r).
Incidence maps were used to explore spatio-temporal disease dis-
tribution using districts as the spatial unit for each of the years
from 2012 to 2017. Spatio-temporal clusters were determined at
the 95% level of confidence using the spatial scan statistic method
as presented by Prates ef al. (2014). A cluster was defined as when
at least two neighbouring spatial units both have high Relative
Risks (RRs) of the disease. Due to low and discrete disease num-
bers of incidence, the discrete Poisson model was accorded for
spatial clustering analysis. According to Prates et al. (2014), the
model uses a circle of varying radius and a predefined upper limit.
To detect clusters this circle is moved across the map of the study
area while varying its radius. If the study map is named 4 and the
circle of interest Z, the likelihood of a cluster in Z is (L) according
this model is determined by the following equation:

N, “[n-nN, T
LZ=[Z} [ - Z} 1IN, >E,)

E N-E,

z

(Eq. 1)

where N is the total number of disease cases in the study area in
question, with IV, and E, the observed and expected number of dis-
ease cases in circle Z.

L
The circle with the maximum likelihood ratio [L_Z] forms a
0

candidate cluster, where L, is the likelihood of a cluster under the
null hypothesis (nonexistence of a cluster).

If the RR in circle Z can be expressed A, as by equation 2:

(Eq.2)

where E(Y.) is the expected value of the Poisson random variable

P

of counts within circle Z and P
Total

N where P, is the population

within circle Z and P, the total population at risk in map A.

Rainfall Performance for May 2018

Rainfall{mm)

Figure 2. The average rainfall over Uganda to the rainfall for April and May 2019 (NEMA, 2009; UNMA, 2019).
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If 2.= 1, then the RR is as expected, i.e. neither a very high number
of cases nor a very low one compared to historical, known values.
If 2.<l, there is relatively low risk in Z and if 1. >1, there is rela-
tively high risk in Z.

As the model can be severely affected by excess zeros in the
data and give misleading results (Weaver et al., 2015), the data
were aggregated from monthly to annual level analysis in order to
achieve at least a non-zero value for every district.

~"

Results

Spatio-temporal trends of typhoid disease

The overall trend of typhoid in Uganda during the study period
had a high peak in April-June 2015 (Figure 3). Taking also the spa-
tial component into account, we present the spatio-temporal trends
of typhoid disease using three approaches, the first of which pre-
sents monthly disease trends at the regional level for each of the
study years. The second approach presents monthly disease trends
at the national level for the entire period from 2012 through 2017,
while the third approach presents trends and the correlation of
typhoid incidences with average rainfall during both rainy and dry
seasons for the entire study period.

Monthly trends of typhoid disease at the regional level

The monthly trends of typhoid disease at the regional level for
each of the study years is summarized and presented using graphs
(Figure 4). From this figure, it is evident that the central region had
the highest percentage of typhoid incidences throughout the study
period. The northern region had the least number of incidence dur-
ing the same period. Figures 4D and 4F show that the central and
eastern regions experienced disease outbreaks in 2015 and 2017,
respectively. In almost all of the study years, and all regions, the
disease incidence began to increase from March to May, peaking
between June and July to become lower in the period from August
to September. Disease incidence again increased from September
showing relatively lower peaks in October and November to final-
ly fall back in December. The annual proportions of typhoid dis-
ease at the regional level from 2012 to 2017 are presented in Figure
S, which further confirms that the central region had the highest
proportion of disease incidence followed by the western and east-
ern regions for all years investigated. The northern region had the
least disease throughout the study period.

Monthly typhoid disease trends at the national level

The typhoid disease cases were aggregated at the national level
to determine the monthly proportions from 2012 to 2017. The
monthly trends are shown in Figure 4, from which it is evident that
the disease incidence peaked at every June-to-July junction and
registered a low in the August-September period every year. Figure
4 again confirms outbreaks of the disease during 2015 in the cen-
tral region and in 2017 in the eastern region. It is also evident that
no reduction of the infection took place at the national level.

Trends of typhoid disease incidence in relation to rainfall

As research generally associates environmental conditions
with typhoid disease (Walters et al., 2014; Gu et al., 2017,
Mirembe et al., 2019), we explored its association with the average
rainfall during the study period. It was observed that the number of
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typhoid cases always started to raise during the rainy season of
March to May, when some places with poor drainage and risk of
flooding created conducive environments for bacterial survival and
growth. Between May and June, the use of contaminated water
commonly continues and resulting into elevated disease rates. Two
outbreaks occurred in the central and eastern regions, one in 2015
and one in 2017. The former occurred between February and April
(Figure 4D) and the latter between April and June (Figure 4F).

The season-based correlation was carried out using Pearson’s
correlation coefficient (r), and the results are presented in Table 1,
from which it can be seen that the typhoid disease incidence usu-
ally has a medium-size positive correlation in the central region
during the rainy seasons (r = +0.37), with a smaller one occurring
during the dry seasons (r = +0.15). The eastern region showed
minor positive correlations, both for the rainy (r = 0.12) and the dry
seasons (r = 0.30). In the two other regions, the typhoid disease
generally had a very small association with rainfall. The variations
of the two variables are graphically presented in Figure 6, which
confirms the medium-size positive association of the disease with
average rainfall, both in the central and in the eastern region for the
study period.

Spatio-temporal distribution patterns of typhoid disease

In this section, we describe and present the spatio-temporal
distribution patterns of typhoid disease using disease incidence
maps and cluster maps, which enable a clear visualization of dis-
ease characteristics in the two-dimensions of space and time.

Disease incidence maps

Figure 7 presents the typhoid disease incidence maps for the
study period, one for each year. As can be seen in Figure 7A, the
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Figure 3. Typhoid disease trends at the national level from 2012
to 2017.

Table 1. Pearson’s Correlation coefficient of typhoid disease inci-
dences with average rainfall for each region and season from 2012
to 2017.

Central 0.37 0.15
Eastern 0.12 0.30
Northern -0.05 0.23
Western 0.00 0.10
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disease was mainly concentrated in the central region districts dur-
ing 2012. However, in the following year, high incidence numbers
were observed in a few districts in the eastern region. This was
repeated during the remainder of the study period, with high inci-
dences in districts distributed in almost all regions. This confirms
again that the central region consistently registered the highest
typhoid incidences over the entire study period, while the northern
region registered the lowest.

Spatio-temporal clustering

Using the SatScan software package, spatial and temporal
typhoid disease clusters were observed. Figure 8 shows the spatial

clusters for each of the study years. Figure 8A envisages four clusters
in 2012, two of which in the central region, with one cluster each in
the eastern and western regions. The disease was even more highly
clustered during 2013 (Figure 8B). At this time, one of the two central
clusters and the eastern one from 2012 remained the same, while the
western region had two additional clusters (P <0.01), while one of the
central clusters had grown and moved further south. During the fol-
lowing four years, the central region maintained its two clusters
(Figure 8C-F) in more or less the same districts. Although two other
smaller clusters were observed in the eastern region during 2016 and
2017(P <0.01), there were fewer clusters in the period 2014-2017
overall. The results are summarized in Table 2.

Table 2. Spatio-temporal clusters of typhoid disease from 2012 to 2017.

2012 4 (i) Bukwo, Kween and Kapchorwa Eastern 6.53 253448 <0.01
(ii) Nakaseke, Kiboga, Nakasongola, Luwero, Kyankwanzi and Mityana Central 2.25 1279562 <0.01
(i) Sheema, Bushenyi, Mbarara, Buhweju and Mitooma Western 1.35 1295793 <0.01
(iv) Mpigi, Butambala and Wakiso Central 1.31 1608433 <0.01
2013 6 (i) Bukwo, Kween and Kapchorwa Eastern 6.88 303300 <0.01
(i) Isingiro and Mbarara Western ~ 2.74 886900 < 0.01
(iii) Kiboga, Nakaseke and Mityana Central 2.75 686100 < 0.01
(iv) Bushenyi, Mitooma and Sheema Western ~ 1.53 681400 <0.01
(v) Kalangala, Masaka, Rakai, Lwengo, Bukomansimbi, Kalungu, Central 1.84 15197500 < 0.01
Mpigi, Gomba, Butambala, Lyantonde and Sembabule
(vi) Kyenjojo and Kabarole Western 115 819400 <0.01
2014 3 (i) Sembabule and Lyantonde Central 3.20 346350 <0.01
(ii) Nakaseke, Kiboga, Nakasongola and Luwero Central 1.89 984344 <0.01
(iii) Masaka and Kalungu Central 1.25 480236 <0.01
2015 2 (i) Nakaseke, Kiboga, Nakasongola and Luwero Central 1.91 1010895 <0.01
(i) Masaka and Kalungu Central 1.27 488869 <0.01
2006 3 (i) Nakaseke, Kyankwanzi, Kiboga and Kibaale Central 2.31 754100 <0.01
(i) Gomba, Kalungu, Bukomansimbi, Mubende, Butambala and Sembabule ~ Central 1.50 1608400 <0.01
(iii) Bukwo, Kween and Kapchorwa Eastern 2.07 306900 <0.01
2007 3 (i)Buikwe and Jinja Eastern 1.65 939300 <0.01
(i) Nakaseke, Kyankwanzi, Kiboga and Kibaale Central 1.86 1553100 < 0.01
(iii) Masaka, Kalungu, Bukomansimbi, Rakai, Lwengo, Kalangala, Central 1.35 1960600 <0.01
Mpigi, Butambala and Sembabule
"
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Figure 5. Typhoid disease incidence for the period 2012-2017: annual proportions.
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Overall, most disease clustering was seen in the central region
(P <0.01). The clusters in the eastern region involved the districts
Bukwo, Kween and Kapchorwa and had the highest RRs: 6.53 in
2012, 6.88 in 2013 and 2.07 in 2016, which means that more than
300,000 people were at risk (P <0.01) these years. Though the cen-
tral region showed a lower RR than the eastern region, it had much
higher population at risk.

Discussion

Spatio-temporal statistics can expose disease incidence trends,
disease distribution patterns, high-risk areas and the population at
risk, both at the regional and the national level. We were able to

reveal spatio-temporal trends and distribution patterns of typhoid
disease from 2012 to 2017 in Uganda, including its association
with rainfall in different regions and seasons. The study results also
showed that the incidence of this disease varies considerably from
month to month and from season to season. During the dry season
from June to September, there is water scarcity in many places
forcing people to share the few available sources, some of which
may be contaminated. If so, it will eventually lead to spread of
typhoid infections that commonly peak between July and August.
However, people also consume water of variable quality from
shared sources during dry season that leads to an increased risk of
disease transmission as reported by Kabwama et al. (2015) as
water sources become contaminated as a result of poor disposal
and poor drainage, which creates environments conducive for bac-
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Figure 6. Typhoid disease trends at the re(ijonal level and average rainfall for the period 2012-2017. A) Trends in the Central Region;

B) Trends in the Eastern Region; C) Tren

in the Northern Region; D) Trends in the Western Region.
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Figure 8. Spatio-temporal clustering of typhoid disease for the period 2012-2017. A) Spatial clustering 2012; B) Spatial clustering 2013;
C) Spatial clustering 2014; D) Spatial clustering 2015; E) Spatial clustering 2017; F) Spatial clustering 2017.
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terial growth. The two outbreaks in 2015 and 2017 referred to
above both coincided with the rainy season. The source of the 2015
outbreak was confirmed and reported by WHO to be the consump-
tion of contaminated water (WHO, 2015). The 2017 outbreak was
similar but this time exacerbated by mudslides displacing people
into temporary camps. The poor sanitary conditions in the camps
are believed to be the major cause of this outbreak (Mir and Ochen,
2016). These occurrences are a direct consequence of the positive
correlation between rainfall and typhoid disease as shown by our
study, especially in the central and eastern regions. Indeed, the
Central and Eastern regions receive the highest rainfall compared
to other regions every year (Nsubuga et al., 2014). This implies
that rainfall is a major factor influencing typhoid disease occur-
rence within these regions, while other factors influence the dis-
ease more strongly in the northern and western regions. However,
the consistent low disease incidence throughout the study period in
the much dryer northern region further emphasizes the role of rain-
fall for the development of typhoid.

The research further revealed that most of the disease cluster-
ing occurred in the central region, followed by the western and
eastern regions. The high multi-ethnic population densities with
different social and cultural behaviours here lead to congestions in
markets, schools, streets and hospitals. In the process of competing
for the few available resources, water in particular, it does not help
that people’s sanitation and hygiene is generally poor. In addition,
the monitoring of the street water quality is not strongly enforced
by the MOH and vendors sometimes sell unsafe water (Kabwama
et al., 2015), which we believe is a key driver of typhoid transmis-
sion thus y contributing to the consistent disease clustering in this
region.

One of the clusters in western region covers the districts
Isingiro and Mbarara. The area is characterized by the presence of
two big, long-term refugee camps, Nakivale and Oruchinga
(UNHCR, 2020). The United Nations High Commissioner for
Refugees (UNHCR) reports that these camps are in an area of
raised water table with poor and loose soils, which do not support
proper latrine construction (UNHCR, 2014). Inside these camps,
there is also congestion of people with poor waste disposal, sanita-
tion and hygiene (Wamono, 2015). In these camps, as of 2019, the
MOH has reported outbreaks of cholera, an infection with similar
drivers as typhoid, which confirms the prevailing poor hygiene. In
addition, prolonged droughts in the area and neighbouring areas
usually result into water scarcity. Sharing the few available water
sources creates a strong chance of contamination. It is thus hardly
surprising that this kind of situation contributes to disease trans-
mission explaining the disease clusters we observed there, and we
believe that a combination of the causes mentioned are driving the
disease clustering.

Our results also revealed a consistent cluster in the eastern
region composed of the districts Bukwo, Kween and Kapchorwa.
As pointed out by Mir and Ochen (2016) in an OXFAM report,
these are some of the districts surrounding Mount Elgon that
receive high amounts of rainfall every year, which affects the tem-
porary camps established there. This results in heavy flooding and
mudslides, which have caused population displacements and per-
manent relocations, a fact confirmed by the United Nations
Environment Programme (UNEP) and UNMA and is obvious
when consulting the rainfall charts shown in Figure 2. In our opin-
ion, the poor living conditions in this part of the country are
responsible for the consistent clusters found in the area.

The low rainfall (UNMA, 2016) and low urbanization level in
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the northern region are likely to be major factors in keeping this
part of the country free of typhoid clusters and making it stand as
the safest area throughout the study period. As our results show
that typhoid disease is rainfall-dependent, this is not surprising.

Limitations of the study

The following were limitations of the study: i) Some health
centres and clinics may not have submitted their clinical data to the
national MOH databases. Missing out such data in the study could
have affected the results; ii) some people resort to self-medication
without reporting to any health facility, and such cases could have
been missed; iii) due to limited data, the study looked only at rain-
fall as a risk factor of the disease. Other environmental and social-
economic risk factors were not investigated this time.

Conclusions

The use of GIS is recommended to reveal hidden spatial pat-
terns difficult to discover by other methods. The disease clustering
in the central region is caused by poor drainage, unplanned urban-
ization and poor monitoring of the quality of water and food items
being sold on the streets. In the eastern region clustering was found
to be due to strong rainfall causing flooding and mudslides; in the
western region it was caused by poor living conditions in refugee
camps in addition to strong rainfalls followed by prolonged
droughts. The northern region was the safest part of the country
throughout the study period.

Knowledge of the kind presented here is essential for efficient
planning of resource optimization with respect to disease surveil-
lance. All water sources must be protected from contamination.
Exploration of additional risk factors of typhoid disease at the local
level should be carried out in the future.
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