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Abstract

In numerous practical applications, data from neighbouring
small areas present spatial correlation. More recently, an extension
of the Fay-Herriot model through the Simultaneously Auto-
Rregressive (SAR) process has been considered. The Conditional
Auto-Regressive (CAR) structure is also a popular choice. The
reasons of using these structures are theoretical properties, compu-
tational advantages and relative ease of interpretation. However,
the assumption of the non-singularity of matrix (I, ,w) is a prob-
lem. We introduce here a novel structure of the covariance matrix
when approaching spatiality in small area estimation (SAE) com-
paring that with the commonly used SAR process. As an example,
we present synthetic data on grape production with spatial corre-
lation for 274 municipalities in the region of Tuscany as base data
simulating data at each area and comparing the results. The SAR
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process had the smallest Root Average Mean Square Error
(RAMSE) for all conditions. The RAMSE also generally
decreased with increasing sample size. In addition, the RAMSE
valuess did not show a specific behaviour but only spatially corre-
lation coefficient changes led to a stronger decrease of RAMSE
values than the SAR model when our new structure was applied.
The new approach presented here is more flexible than the SAR
process without severe increasing RAMSE values.

Introduction

Sample surveys have for a long time been employed as a cost-
effective remedy for data gathering. Such require proper statistics
to effectively assess entire populations but need also to produce
reliable outcomes for subpopulations, mostly entitled domains or
areas, which are said to be “small” if the domain-specific sample
size is not large sufficient to produce a direct estimate with acca-
ble precision. Because of the increasing demand for reliable esti-
mates for these areas, Small Area Estimation (SAE) techniques are
exposed to growing popularity in survey sampling (Rao, 2003;
Rao and Wu, 2009; Soltani-Kermanshahi et al., 2017a; 2017b).

A direct estimate of a small area parameter(s) depends entirely
on the samples from that area which is usually not reliable.
However, much of the popularity and usefulness of SAE tech-
niques can be attributed to model-based techniques, now widely
used and with a growing application during the past three decades.
These approaches take strength from neighbouring areas and use
proper techniques that connect direct estimates from the small
areas. When an area-level summary of covariate variables exists,
we can usefully utilize these models. A fundamental area-level
model was first proposed by Fay and Herriot (1979) and followed
up by others (Rao, 2003; Waller and Gotway 2004; Rao and Wu,
2009; Soltani-Kermanshahi et al., 2017a; 2017b).

In numerous practical applications, data from neighbouring
small areas present spatial correlations. In these instances, unless
enough auxiliary variables are accessible, between-area correla-
tions should in some way be illustrated in the covariance structure
of the model. Nevertheless, the establishment of a structure of
dependence between small areas requires a serious conceptual dif-
ference with regard to the traditional structure of independent
small areas, where the entire covariance matrix is block-diagonal
(Prasad and Rao, 1990; Molina et al., 2009; Gharde et al., 2012).
Cressie (1991) already employed a model with spatially correlated
random effects in the context of SAE. More recently, an extension
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of the Fay—Herriot model through the simultaneously autoregres-
sive (SAR) process has been considered (Singh et al., 2005;
Petrucci and Salvati, 2006; Pratesi and Salvati, 2008). The model
has the following form:

Y=XpB+vt+e (Eq. 1.1)

where Y is the vector of design-unbiased direct estimator available
for each of the small areas (from 1 to m); X the vector of area-level
auxiliary covariates; e the vector of independent sampling errors;
and v the result of a SAR process with the unknown autoregression
parameter p (with range -1 to 1) and proximity matrix W (Anselin,
1988; Cressie, 1993). Then v can be expressed as:
v=~I,-pW)'u (Eq. 1.2)

Here, u = (u,, ..., u,,)" and has mean 0 and covariance matrix
6> 1,,, where I, denotes the m x m identity matrix and ¢’ is an
unknown parameter (Anselin1988; Molina et al., 2009).

The Conditional Auto-Regressive (CAR) structure is also a
popular choice and, in some papers, more common than the CAR.
The SAR structure is known as a subset of CAR structure (Arab et
al., 2017). The reasons of using these structures are due to their
theoretical properties, computational advantages and ease of inter-
pretations (Cressie, 1993; Yasui and Lele, 1997; Arab et al., 2017;
Li et al., 2009).

Regrettably, the application of traditional covariance-based
spatial statistical models is in many cases either inappropriate or
computationally inefficient. Moreover, conventional methods are
often incapable of allowing the researcher to quantify uncertainties
corresponding to the model parameters since the space parameters
of most complex spatial and spatio-temporal models are very large
(Arab et al., 2017). A problem of the SAR structure is the assump-
tion of non-singularity of the matrix (I, ). Singularity of that
matrix leads not to real solutions for all of the equations, so we
cannot use the entire situation of that matrix (Molina et al., 2009).
Another problem of the SAR model is the estimation of p. Since,
one reason for using SAE techniques is the small sample size, then
we have a low precision in estimation of p.

A widely adopted choice for this correlation function is the
Mat'ern function, i.e.

[2n\v d) ¥ K, 2\ d))/[2Y T(v)] (Eq. 1.3)
where 1 measures the correlation decay with the distance; v a
smoothness parameter; ['(.) the conventional Gamma function; and
K, (.)the modified Bessel function of the second kind of order v.
Special cases of the Mat'ern function include the exponential
model:
p(d)=exp(-d) (Eq. 1.4)
when the smoothness parameter v = 0.5, the ‘decay parameter’ n =
1 and d is the distance between two areas (Waller and Gotway,
2004; Li et al., 2009).

In this paper, we used geographic information such as latitude
and longitude to increase the precision of p estimation. We intro-
duce a novel structure in covariance matrix by using spatiality in
SAE and compare it with the commonly used SAR process. In the
first part of this research, we applied a new perspective of structure
in the covariance matrix of v in Eq.1.1 by using an exponential
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model in the Mat'ern function to predict household food expendi-
tures (HFE) in urban areas of Iran. In the second part of the study,
we conducted a simulation study based on grape production data in
Tuscany, Italy to compare the effects of two methods of spatiality
on the precision of estimations.

~"

Statistical approach

Suppose that we have M areas in the population and only m
areas are sampled. The SAR model with spatial dependence in
SAE has the linear form (Eq. 1.1). Then the co-variance of v has
the following form as described by Molina et al. (2009):

G(®) = 62 [(Ly— pW)" (I~ pW)]" (Eq, 2.1)
where the vector of variance components is denoted by w.
Alternatively, we used a new structure in the v covariance matrix
(Eq. 1.1) by using an exponential model in the Mat ern function as
follows:

U= (U ey ) ~ MVN (0, V), €= (0.6, vy = 02 p(dy)ij=1.2....m
(Eq, 2.2)

where V is a variance-covariance matrix with elements v;; and
correlation function p(.), an isotropic correlation function that
decays as the Euclidean distance d;;=([s;-s; || between two individ-
uals increases. In the exponential model p(.) has the form
describe by Eq. 1.4. In this study, we used Restricted Maximum
Likelihood (REML) and Spatial Empirical Best Linear Unbiased
Prediction (SEBLUP) to estimate o,> and B’s, respectively.
P<0.05 was considered as significant.

Real data analysis

The data used were collected by the Statistical Center of Iran
(SCI) in 2013. The sample size was optimum at the province level
but not at the district level (SCI, 2013). The Iranian Rural and
Urban Household Expenditures and Income Survey (IRUHEIS) are
carried out annually by SCI. The sampling design was three-stage
with stratification. In the first stage, the census areas were deter-
mined and selected; in the second, the urban blocks and rural settle-
ments were selected and at the third, the sample households were
selected. We analyzed urban data of IRUHEIS 2013, collected
between 21 April 2013 and 20 April 2014.

In 2013, a total of 387 districts were selected by IRUHEIS
out of 429 districts of Iran’s urban arecas. Of the 18,876 house-
holds that participated in IRUHEIS 2013, we analysed complete
data consisting of 18,850 households. The highest and lowest
sample sizes belonged to Tehran (998 samples) and Narmashir (5
samples) districts, respectively. The HFE includes all payments
made to purchase the needed nutritious and essential food items
including meat, dairy products, cereal and bean, bread and flour,
biscuits and cakes, oil and butter, fruits and vegetables, nuts,
sweets and sugar, additives and dressings, as well as cigarettes
and tobacco (SCI, 2013). We also took into account some socioe-
conomic factors that may potentially affect the HFE. These vari-
ables have been measured at the area level rather than the indi-
vidual one. The data were extracted from reports disseminated by
the Iran Ministry of Interior and also by SCI.

We considered district-level variables emanating from Iran’s
census of 2011that included the Average Number of Households
(ANH); the average number of rooms of each household; sex
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ratio; the Proportion of Male Households (PMH); the proportion
of the active population employed; the proportion of population
of the following age groups: >65 years, 25-64 years, 15-24 years
and <15 years; and the Proportion of Higher Education (PHE),
(SCI, 2011). We also considered the Gross Domestic Product
(GDP); the proportion of households that had joined a charity
organization; the distance from province capital; the per capita
income for municipalities; and the migration rate. These data had
been produced by the Ministry of Interior in a project conducted
for identification of less developed regions of the country. We
also used geographic information such as latitude and longitude
of each area capital to calculate exponential correlations (Iranian
Noojum, 2018).

In order to reach the highest correlation with dependent vari-
ables, an appropriate transformation of independent variables
(power for continuous variables and logarithm for proportion
variables) was used. We also utilized the Variance Inflation
Factors (VIF) to assess the collinearity among independent vari-
ables, with VIF>5 or coefficients of multiple determination with
respect to other independent variables more than 0.8, which indi-
cates serious multicollinearity for the predictor (Besley et al.,
1980). The forward selection method was used to establish the
final model. In the forward method, independent variables
(ordered by their correlation with dependent variable) are insert-
ed into the model serially where only significant variables
remain.

According to VIF values, the variable proportion of popula-
tion at 25 to 64 years was omitted (Supplementary file S1).

CPpress

Simulation with grape production data

To investigate the effects of spatiality on precision of estima-
tion a simulation study was carried out using the new structure pro-
posed in this paper. We used synthetic data based on grape produc-
tion in the region of Tuscany, Italy with a spatial correlation for
274 municipalities. That dataset used included a frame with 274
observations of the following variables: 1) the direct estimators of
the mean agrarian surface area used for production of grape (in
hectares) for each Tuscany municipality (grapehect); ii) the agrar-
ian surface area (in hectares) used for production (area); iii) the
average number of working days in the reference year 2000 (work-
days); and iv) the sampling variance of the direct estimators for
each Tuscany municipality (var). We also added longitudinal and
latitude for each area to that data. Population data come from the
Italian Agricultural Census for the region of Tuscany in the year
2000 (Pratesi et al., 2013; Molina and Marhuenda, 2015). We gen-
erated data for each of the 274 areas by the following approach: 1)
Multivariate normal distribution with mean and co-variance of the

correspondent real data was used, i.e., for the new structure 62 was
165 and d; calculated from the following equation:

dyj = J &G —1D% + (4 — )2 (Eq. 4.1)

where i and j are the latitude and longitude of areas. This gives a
62 of 101 and the autoregression parameter p 0.2 for the SAR
structure. ii) The sample size at each area was closely mimicked
the real data to make the simulation as realistic as possible; iii)
Data generation was repeated 1000 times at each of 274 small
areas and mean and variance of every area were computed; iv) To
achieve small area estimations, we took advantage of the auxiliary
variables included in the continues variables of area (in hectares)
and workdays from Tuscany in the year 2000, as they were found
to be significant in real data analysis. v) We fitted the SAR and
exponential structure spatial model to each of 1000 generated
datasets and saved the estimates for each area. vi) To assess the
precision of SAEs, we employed Root Average Mean Square
Errors (RAMSEs) for small area estimates:

274
RAMSE = |3 MSE, /274
i=1

(Eq. 4.2)

Table 1. Results of spatial (exponential) model on households’
food expenditures.

ANH 4.59x10° 1.98x10? 0.021
PMH 5.45x10° 9.36x10° <0.001
PHE 6.20x10° 1.48x10? <0.001
0% =131x10° AIC=13619

ANH: Average Number of Household; PMH: proportion of Male Households (headed by a male);
PHE: Proportion of Higher Education; SE=Standard Error; AIC=Akaike Information Criterion.

Table 2. Descriptive statistics of variables in the Tuscany data.

Grapehect 0.25 343.00 69.51 49.45
Area 35.81 2890 639.20 571.89
Workdays 22.15 497.70 149.60 67.49

Table 3. Root Average Mean Square Error of small area estimates with area sample size and spatiality correlation coefficient changes in

two types of spatiality structures by simulation.

20% reduction SAR 219.42 219.19 219.30
ﬁ Exponential 222.19 222.32 222.21
= Real SAR 218.79 218.87 218.87
g Exponential 222.11 221.76 221.70
w2
20% increase SAR 218.67 21827 218.51
Exponential 221.59 221.52 221.67
SAR: Simultaneously Auto-Regressive process.
OPEN 8Accsss [Geospatial Health 2020; 15:872] [page 367]



where has the following form:

1000

1
MSE; = 1000 qu (Biq — Bim)? (Eq. 4.3)

where g ;.\, is the estimate of g; based on real data with the two
models (M) and g, shows the estimated g; at run q (Soltani-
Kermanshahi ez al., 2017a; 2017b). For better assessment, we used
sample size and correlation sensitive analysis using the real sample
size and correlation as well as 20% above and below of it. All cal-
culations used utilized the R package SAE (Molina and
Marhuenda, 2015) and the codes given in Supplementary files S2
and S3).

i
_ | 27385-41410TR
I 41410- 50677 TR
I 50577 - 59261 TR
I 59261 -69036 TR
I 59036 - 84241 TR

'TR: 1000 Rials

2

S

Simulation results

The Tuscany data had 274 areas and the descriptive statistics
of the three variables used are shown in Table 2. The results of
RAMSE with sample size and spatiality correlation coefficient
sensitivity are shown in Table 3 and Figures 2 and 3. Accordingly,
SAR process approximately had smallest RAMSE for all condi-
tions. Also, with increasing sample size, RAMSE roughly
decreased. The increase in accuracy powerfully related to areas
sample size. In addition, with increasing spatiality correlation
coefficient, RAMSEs have not specific behavior but in most times,
they decreased, approximately.

223
.____,—-r"’—-""’". 212E
221 5
&
——SAR 220 §
~&— Exponential 7'—¢ 2193
218 2
217 3

1216

20% increase Real 20% Reduction
SAR: Simul ly Auto-Regressive process.

223
| 222 E
221 Z
=—+—SAR H
220 i
=B Exponential E
* - = 219 5
218 E

T T 217

20% increase Real 20% Reduction
SAR: S Auto-Reg) process.

Figure 2. Root Average Mean Square Error of small area estimates
with area sample size changes in two types of spatiality structures
by simulation.

Figure 3. Root Average Mean Square Error of small area estimates
with spatiality correlation coefficient changes in two types of spa-
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Discussion and conclusions

This paper proposes a new structure in the covariance matrix
of v (see Eq. 1.1) by using an exponential model in Mat'ern func-
tion (Cressie, 1993; Li et al., 2009) after considering a Fay—Herriot
model with correlated random area effects according to the SAR
process. Our study shows three significant variables, ANH, PMH
and PHE, had a significant effect on HFE (Table 1), the zoning of
which showed that the border districts, especially those on the
western border of Iran, had a higher HFE than in other parts of the
country (Figure 1). Although we had expected the highest HFE in
the districts of the capital, our findings showed the opposite. One
reason for this could be the way Iran has developed economically.

From a purely statistical point of view, the position of the small
area is related to modelling of its parameters and further improve-
ment in the EBLUP estimator can be achieved by including prob-
able spatial interaction among random area effects as discussed
previously (Petrucci and Salvati, 2004; Pratesi and Salvati, 2009).
Indeed, the inclusion of ancillary variables to obtain the spatial
effects may be beneficial even when the strength of the spatial link
is weak (Petrucci et al., 2005).

The simulation study with sensitive analysis used to compare
the RAMSE values of the SAR and the proposed new structure
showed that that sample size changes have a higher impact on
RAMSE than spatiality correlation coefficient changes. One poten-
tial problem with SAE is small subdomain samples. The expected
increased precision with increased sample sizes (Soltani-
Kermanshahi et al., 2017b) was corroborated by our observation of
decreasing RAMSE values with bigger samples. In our simulations
process, there were no areas without sample data. For such areas,
for which the values of the covariates at the area-level are available
from any other data source, possible estimators are Y";, =X; B
(Molina et al., 2009). In addition, our results showed that only spa-
tially correlation coefficient changes lead to a stronger decrease of
RAMSE values than SAR model when our new structure was
applied.

The SAR process had the smallest RAMSE values for all condi-
tions in relation to the new process. Even if SAR has appealing the-
oretical properties, computational advantages and provides ease of
interpretation (Cressie, 1993; Yasui and Lele, 1997; Li et al., 2009),
it assumes non-singularity of matrix (I,,— pW), which can be avoid-
ed by the new process. In general, the RAMSE values were
increased about 1.5% without the assumption of non-singularity of
matrix (I,— pW) by the new process. The new process is also more
flexible than the SAR process without severe increasing in
RAMSESs. With high spatial correlations in the study variables, spa-
tial EBLUP with correlated random area effects following a SAR
process, works better (Petrucci et al., 2005; Pratesi and Salvati,
2009). However, in our work the RAMSE values increased in certain
situations with increasing spatiality correlation coefficients.

The biggest difference of our study related to similar studies
was the insufficient number of households in some districts, but
the degree of weakness decreased by using the SAE approach. At
least we could find the admissible model to predict the HFE in
urban areas of Iran. Furthermore, one of the basic limitations in
SAE methodology is the inclusion of highly correlated variables
with dependent variables. In this study, we tried to find those vari-
ables and gain access to them.
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