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to predict the spatiotemporal spread of COVID-19 at global scale
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Abstract

As of February 27, 2020, 82,294 confirmed cases of coron-
avirus disease (COVID-19) have been reported since December
2019, including 2,804 deaths, with cases reported throughout
China, as well as in 45 international locations outside of mainland
China. We predict the spatiotemporal spread of reported COVID-
19 cases at the global level during the first few weeks of the cur-
rent outbreak by analyzing openly available geolocated Twitter
social media data. Human mobility patterns were estimated by
analyzing geolocated 2013-2015 Twitter data from users who had:
1) tweeted at least twice on consecutive days from Wuhan, China,
between November 1, 2013, and January 28, 2014, and November
1, 2014, and January 28, 2015; and ii) left Wuhan following their
second tweet during the time period under investigation. Publicly
available COVID-19 case data were used to investigate the corre-
lation among cases reported during the current outbreak, locations
visited by the study cohort of Twitter users, and airports with
scheduled flights from Wuhan. Infectious Disease Vulnerability
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Index (IDVI) data were obtained to identify the capacity of coun-
tries receiving travellers from Wuhan to respond to COVID-19.

Our study cohort comprised 161 users. Of these users, 133
(82.6%) posted tweets from 157 Chinese cities (1,344 tweets) dur-
ing the 30 days after leaving Wuhan following their second tweet,
with a median of 2 (IQR= 1-3) locations visited and a mean dis-
tance of 601 km (IQR= 295.2-834.7 km) traveled. Of our user
cohort, 60 (37.2%) traveled abroad to 119 locations in 28 coun-
tries. Of the 82 COVID-19 cases reported outside China as of
January 30, 2020, 54 cases had known geolocation coordinates
and 74.1% (40 cases) were reported less than 15 km (median = 7.4
km, IQR=2.9-285.5 km) from a location visited by at least one of
our study cohort’s users. Countries visited by the cohort’s users
and which have cases reported by January 30, 2020, had a median
IDVI equal to 0.74. We show that social media data can be used to
predict the spatiotemporal spread of infectious diseases such as
COVID-19. Based on our analyses, we anticipate cases to be
reported in Saudi Arabia and Indonesia; additionally, countries
with a moderate to low IDVI (i.e. <0.7) such as Indonesia,
Pakistan, and Turkey should be on high alert and develop COVID-
19 response plans as soon as permitting.

Introduction

On December 30, 2019, pneumonia cases of unknown etiolog-
ical origin were reported in Wuhan, China (WHO, 2020a). We
now know that these cases were due to a coronavirus (i.e. Severe
Acute Respiratory Syndrome Coronavirus 2 [SARS-CoV-2]); the
disease has been named coronavirus disease 2019 (COVID-19).

Coronaviruses are RNA viruses distributed broadly among
humans, other mammals, and birds. Six coronavirus species are
known to cause human disease (Su et al., 2016). Although most
coronavirus infections are considered mild, two coronaviruses—
Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)
and Middle East Respiratory Syndrome Coronavirus (MERS-
CoV)—resulted in 10,590 cumulative cases in the past two
decades, with mortality rates of 9.6% and 34.4%, respectively
(WHO, 2003; WHO, 2019). As with SARS-CoV and MERS-CoV,
SARS-CoV-2 is probably of zoonotic origin and human-to-human
transmission has been confirmed (Chan et al., 2020). Early studies
of hospitalized patients with confirmed COVID-19 reported that
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severe illness was seen in 32% of cases and case fatality rates
ranged between 11-15% (Huang et al., 2020); as more cases
became confirmed some of these figures have been revised down-
wards (Wu et al., 2020). On January 30, 2020, WHO declared
COVID-19 a public health emergency of international concern
(WHO, 2020d). At that time, there had been 8,235 (8,124 [98.7%)]
in China) confirmed cases of COVID-19, including 171 deaths.
Cases had been reported in Wuhan and 31 other provinces in
China, as well as in 18 countries, including the Philippines, Sri
Lanka, France, Germany, Finland, Canada, and the USA (WHO,
2020c; Kraemer, 2020). Following the rapid spread of cases within
China, the Chinese authorities decided on January 23, 2020, to ban
travel from and to Wuhan.

Given the potential of SARS-CoV, MERS-CoV, and other
viruses to rapidly spread nationally and globally by commercial air
travel (Findlater ez al., 2018) we sought to characterize the possible
spatiotemporal spread of COVID-19 during the first period of the
outbreak by applying human mobility models and estimates
derived from user activity of the social media platform Twitter. The
objective of this study was to show how geolocated Twitter data
allows to predict the spatiotemporal spread of infectious discase
agents such as SARS-CoV-2 and to rapidly identify geographies at
high risk of SARS-CoV-2 introduction.

Methods

This observational study analyzes the movement of people
from Wuhan and the global spread of SARS-CoV-2 until January
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30, 2020. This cut-off was used because at that time two main
events happened which would affect SARS-CoV-2 spread: Wuhan
was de facto quarantined by Chinese authorities and WHO
declared COVID-19 a public health emergency of international
concern. We therefore assumed that most of the COVID-19 cases
reported outside China were linked to exposure that originally had
occurred in Wuhan.

CPress

Epidemiological data

We used publicly available COVID-19 case data and aggregated
to the town level (population > 50,000 people) on a weekly basis
from December 31, 2019, to January 30, 2020 (Kraemer, 2020).

In total, 8,235 confirmed cases recorded at the global level by
January 30, 2020, were included in our analyses. Data on a coun-
try’s Infectious Disease Vulnerability Index (IDVI) was obtained
from Moore et al. 2017; the IDVI is a validated metric of a coun-
try’s capacity to prepare for and respond to infectious disease
threats.

Human mobility data and analytical approach

We applied an analytical approach previously used to study
urban transmission dynamics of dengue (Kraemer et al., 2018).
Briefly, we used a convenience sample of openly available Twitter
data from 2013-2015 to estimate human mobility patterns in
2019-2020 in Wuhan; the data was already cleaned and ready to be
analyzed, and—given the unfolding COVID-19 pandemic—we
felt it was important to be able to share our analyses in a timely
manner. Also, at a global scale mobility has shown to be fairly sta-
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Figure 1. Analytical approach with Twitter activity of three illustrative users. Obtained Twitter database was filtered to only include users
who posted at least two tweets on consecutive days within the city of Wuhan between November 1, 2013, and January 28, 2014, and
November 1, 2014, and January 28, 2015, to ensure that the user was physically in Wuhan for at least 24 hrs. To characterize the possible
spatiotemporal global spread of SARS-CoV-2, we then followed-up the Twitter activity of these users for 30 days post second tweet (i.e. up
to February 28 of either 2014 or 2015) and determined whether these users travelled outside of Wuhan; we chose this 30-day follow-up
period as we presumed that it would cover any COVID-19 pre-patent period if exposure would have happened prior to the users’ second
tweet. Using the geographic fingerprint of users’ tweets, we estimated the locations visited by each user included in the study cohort by
linking all tweets to the closest city. For movement of users within China, we also calculated the mean distance from Wuhan by averaging
the maximum distance of each user based on their Twitter activity and the geographic fingerprint of their tweets. We used the Wilcoxon’s
rank test to compare the distance of visited locations and major airports connected to Wuhan from confirmed COVID-19 cases with known
location (significance threshold set to p<0.05). See illustrative examples of Twitter users in the figure, showing the Twitter activity, their
respective location when tweeting, and the geotagged Twitter data that was included in our analyses.
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ble over long periods of time (Schneider et al., 2013). Our database
consists of global tweets (spatial search windows: latitude —90 to
90 latitude and -180 to 180 longitude) posted from November 1,
2013, to February 28, 2014, and from November 1, 2014, to
February 28, 2015. Human mobility patterns were then estimated
by analyzing the data from Twitter users who had: i) tweeted at
least twice on consecutive days from Wuhan, China, between
November 1, 2013, and January 28, 2014, and November 1, 2014,
and January 28, 2015 (i.e. the possible exposure to SARS-CoV-2);

and ii) left Wuhan following their second tweet during the time
period under investigation (i.e. the possible spread of SARS-CoV-
2 following exposure in Wuhan). The time period was chosen as it
represents the months that the current SARS-CoV-2 outbreak
occurred over until travel outside of Wuhan became severely
restricted due to the quarantine imposed by the Chinese authori-

ties; the period also includes a 30-day follow-up period covering
any COVID-19 pre-patent period if exposure would have hap-
pened prior to the users’ second tweet in Wuhan by January 28 .

Table 1. Locations visited by the study cohort of Twitter users who were followed-up for 30 days after having tweeted at least two times
on consecutive days from Wuhan between November 1, 2013, and February 28, 2014, and November 1, 2014, and February 28, 2015.
The table reports: (1) the visited countries; (2) the number of cohort users traveling within the identified country; (3) the number of
major cities (population > 50,000 people) visited by cohort users in each identified country; (4) the country IDVI; and (5) the date of
first COVID-19 case reported up to one day after the declaration of public health emergency (30" January 2020).

China 135 157 [Not listed] 0.663 December 30, 2019
USA 10 16 Allen, Atlanta, Chicago, Houston, Grand Prairie, Los Angeles, 0.924 January 16, 2020
Mesquite, New York, Palo Alto, Pasadena, Richardson, San Diego,
Santa Monica, San Mateo, Toledo, Washington DC
Saudi Arabia 7 4 Al-Madinah, Jiddah, Mecca, Riyadh 0.736 /
Thailand 7 8  Ayutthaya, Bangkok, Khlong Luang, Lam Luk Ka, Pak Kret, 0.713 January 5, 2020
Phra Pradaeng, Samut Prakan, Saraburi
Australia 6 5  Brishane, Geelong, Gold Coast, Melbourne, Sydney 0.912 January 15, 2020
Japan 5 20 Akita, Aomori, Beppu, Chitose, Dazaifu, Hachioji, 0.926 January 3, 2020
Hakodate, Hino, Iwamizawa, Kitahiroshima, Musashino,
Nagaoka, Oita, Saga, Sagamihara, Sakata, Sapporo, Tokyo,
Tomakomai, Tomisato
UK 5 9 Cheadle, Doncaster, Edinburgh, Esher-Molesey, 0.89 January 31,2020
London, Manchester, Sheffield, Staines, Woking-Byfleet 0.761 January 25, 2020*
Malaysia 4 9 Banting, George Town, Kajang-Sungai Chua, Klang,
Kuala Lumpur, Petaling Jaya, Seremban, Subang Jaya, Sungai Ara
Canada 3 5 Edmonton, Hamilton, Saint Catharines-Niagara, Toronto, Vancouver 0.973 January 22, 2020
Indonesia 3 8  Bandung, Ciamis, Cibeureum, Kadungora, Klaten, Sukabumi, 0.562 /
Tangerang, Tasikmalaya
Singapore 3 1 Singapore 0.877 January 21, 2020
Barbados 1 1  Bridgetown 0.681 /
Brazil 1 7 Cacapava, Caieiras, Cotia, Diadema, Franco da Rocha, Guarulhos, Sao Paulo 0.716 /
Cambodia 1 1 SiemReap 0.355 January 26, 2020
France 1 1 Paris 0.855 January 18, 2020
India 1 1 Bommanahalli 0.499 January 30, 2020*
Ireland 1 2 Dublin, Limerick 0.906 /
Italy 1 2 Modena, Verona 0.821 January 31, 2020
Mexico 1 1 Mexicali 0.734 /
New Zealand 1 3 Auckland, Christchurch, Wellington 0.916 /
Pakistan 1 2 Faisalabad, Lahore 0.308 /
Philippines 1 1 Davao 0.544 January 30, 2020*
Puerto Rico 1 2 Carolina, San Juan 0.924 /
Spain 1 3 Barakaldo, Bilbao, Getxo 0.875 January 31, 2020
Taiwan 1 1 Taichung 0.709 /
Turkey 1 4 Bozuyuk, Eskisehir, Istanbul, Sultanbeyli 0.677 /
United Arab Emirates 1 1 Dubai 0.765 January 29, 2020*
Vietnam 1 1 Ho Chi Min City 0.626 January 17, 2020

‘/ no reported cases; a the date of onset symptoms; *confirmation date; IDVI, infectious disease vulnerability index
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Our analytical approach is further illustrated in Figure 1. Each population in the study period (Schneider et al., 2013).
tweet has a unique user ID, latitude, longitude, and date (year,
month, hour, second). Obtained Twitter data is restricted to 1% of
tweets posted globally during that time period (Kraemer et al.,
2018); as previously shown, the amount of Twitter users with geo-
located information would have represented 1% of the total global During the time window selected to estimate people movement

Results
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Figure 2. South East Asia locations visited by the study cohort of Twitter users who were followed-up for 30 days after having tweeted
at least two times on consecutive days from Wuhan between November 1, 2013, and February 28, 2014, and November 1, 2014, and
February 28, 2015. The figure includes airports with scheduled flights from Wuhan; locations of reported COVID-19 cases by January
30, 2020; and IDVI of countries visited by the study cohort.
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Figure 3. Location visited by visited by the study cohort of Twitter users who were followed-up for 30 days after having tweeted at least
two times on consecutive days from Wuhan between November 1, 2013, and February 28, 2014 and November 1, 2014, and February
28, 2015. The figure includes airports with scheduled flights from Wuhan; locations reporting SARS-CoV-2 cases by January 30, 2020;
and IDVI of countries visited by the study cohort.
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(i.e. November 1, 2013 to February 28, 2014, and November 1,
2014 to February 28, 2015), the number of Twitter users who post-
ed tweets from Wuhan was 1,344 for a total 313,286 geolocated
tweets (median = 6, interquartile range [IQR] = 1-30). Among the
selected users, 307 (22.8%) posted tweets in locations outside
Wuhan (24,649 [7.9%] tweets; median = 10; IQR= 3-38), with 161
users (12.0%) posting more than two tweets from Wuhan between
November 1 and January 28—our study cohort. Of these users,
133 (82.6%) posted tweets from 157 Chinese cities (1,344 [71.9%]
tweets) during the 30 days after leaving Wuhan following their sec-
ond tweet (Figure 2, Table 1), with a median of 2 (IQR= 1-3) loca-
tions visited and a mean distance of 601 km (IQR= 295.2-834.7
km) traveled. The most visited cities were Beijing (29 users, 18%),
Shanghai (29 users, 18%), Guangzhou (25 users, 15.5%), and
Nanjing (11 users, 6.8%).

As per Twitter activity of our user study cohort, 60 (37.2%)
traveled abroad to a total 119 locations in 28 countries (Figure 3,
Table 1). The countries with the highest number of visiting users
were the USA (10, 16.3%), Thailand (7, 11.4%), Saudi Arabia (7,
11.4%), and Australia (6, 9.8%) (Table 1). The most visited cities
were Bangkok (7 users), Mecca (5 users), London (5 users),
Sydney (4 users), Kuala Lumpur (4 users), and Los Angeles (4
users); 15 users (25%) visited more than one city, with two users
reaching a maximum of 5 cities visited. For those COVID-19 cases
reported by January 30, 2020, for which the city was available, we
compared the distance to the locations visited by our study cohort
and the airports connected to Wuhan. Locations visited by our
cohort users were statistically closer to reported cases than airports
with the median distance being 20.1 km (IQR= 3.6-95.4 km) and
75.9 km (IQR=25.1-187.8 km), respectively (Wilcoxon’s rank
test, p<0.01). Of the 82 cases reported outside China, 54 cases had
known coordinates and 74.1% (40 cases) were reported less than
15 km (median = 7.4 km, IQR=2.9-285.5 km) from a location vis-
ited by at least one of our cohort’s users.

The countries visited by the cohort’s users and which have
cases reported by January 30, 2020, have a median IDVI equal to
0.74 (IQR = 0.67-0.89) (Table 1). In total, 14 countries (50%) out-
side China visited by the cohort’s users have reported cases.
Among the 10 countries visited by more than one user, 7 reported
multiple cases before January 26, 2020 (Table 1).

~"

Discussion

Using an analytical approach that has previously been used to
understand local spread dynamics of dengue (Kraemer et al.,
2018), we sought to characterize the spatiotemporal spread of
SARS-CoV-2. We decided to use geolocated tweets instead of data
already used to predict SARS-CoV-2 spread such as flights, census
surveys, internet traffic, and mobile phone activity(Lai et al.,
2020), as these approaches do not necessarily allow to identify
travelers’ intermediate or final destinations (e.g. flight data only
capture the flight route but not visited cities; mobile phone data do
not capture overseas trips).

Based on 2013-2014 and 2014-2015 Twitter user data, and
given that major travel routes only marginally changed during the
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last 5 years, we analyzed the mobility of a cohort of people who
had i) tweeted at least twice from Wuhan between November 1 and
January 28; and ii) left Wuhan between November 1 and January
28 following their second tweet. Our findings show that human
mobility of these Twitter users is substantial, with a defined study
cohort of 161 users travelling outside of Wuhan. Of these, 133
travelled to 157 locations in China and 60 travelled to 119 loca-
tions in 28 countries. Of the 157 locations within China, 87
(55.4%) had—as of January 30, 2019—reported confirmed cases;
of the 5,930 COVID-19 cases with known location reported within
China, 4,176 (70.4%) occurred in a location visited by at least one
of our cohort’s users. Of the 119 overseas locations, 15 (12.6%)
had—as of January 30, 2019—reported confirmed cases; similarly,
of the 54 COVID-19 cases reported outside China with known
location, 40 (74.1%) occurred in locations visited by at least one of
our cohort’s users.

During the week after January 30, 2020, first reporting of
COVID-19 cases occurred in 5 additional countries. Among these
newly reporting countries, we predicted that SARS-CoV-2 would
spread to United Kingdom (January 31), Spain (January 31), and
Italy (January 31) (Table 1); Sweden (January 31) and Russia
(January 31) were not identified by our analyses.

Limitations

A limitation of our study is that using geolocated Twitter data
to model human mobility could be biased towards a population
that has access to a smartphone and use of the application; while
this may be true, we note that the same population is also likely to
have greater economic means for mid -and long-distance travel, a
critical factor if assessing the global spread of an infectious disease
agent such as SARS-CoV-2. It is also likely that access to smart-
phones and Twitter since 2015 by the population in Wuhan may
have changed, but it is less clear whether the human mobility pat-
terns would have changed significantly—an issue which needs fur-
ther investigation.

Conclusion

On January 30, 2020, WHO declared COVID-19 to be a public
health emergency of international concern (WHO, 2020d). The
response to contain the COVID-19 outbreak has been evolving
daily since then: in China several major cities were quarantined for
weeks, with severe limitations on people’s movements; interna-
tionally, airlines cancelled flights to China and countries (e.g.,
USA, United Kingdom, Italy) evacuated their nationals as well as
screening travelers coming from China at major ports of entry. On
March 11, WHO declared COVID-19 a pandemic. As of April 21,
2020, 2,314,621 confirmed confirmed cases of COVID-19 have
been reported, including 157,847 deaths, in 210 countries (WHO,
2020b).

Based on our analyses, we anticipated that several locations
that had yet to report COVID-19 cases by January 30, 2020, were
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expected to have cases or report cases soon (Table 1). Of immedi-
ate concern for outbreak containment were—besides all identified
cities in China—Ilocations in countries in Central and South East
Asia, i.e. cities that were easily accessible via direct flights, by
road or sea from Wuhan and other Chinese cities (Table 1).
Globally, we anticipated cases to be reported in early February in
Saudi Arabia and Indonesia, all countries where more than one
user from our study cohort travelled to within 30 days after having
tweeted a second time from Wuhan during our study period; addi-
tionally, countries with a moderate to low IDVI (i.e. <0.7) such as
Indonesia, Pakistan, and Turkey should have been on high alert
and develop COVID-19 response plans as soon as permitting.
Surprisingly, our map did not identify users who travelled to
Africa. This result highlighted a possible low probability of impor-
tation of the virus there during the early phases of the outbreak.
Although many suspected cases had been tested, until February 26,
2020, no confirmed COVID-19 case had been reported in Africa.

The results of our study show that geolocated Twitter data can
be used to describe human mobility and the possible spread of a
novel disease agent such as SARS-CoV-2. Moreover, such
approach could be used to predict spread within countries once ini-
tial introduction has occurred. Twitter data could also be merged
with other data that capture human movement (e.g., flight traffic,
mobile phone, and census data) to create a global and local alert
system to improve the international and national response to novel
public health treats such as SARS-CoV-2.
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