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Using object-based image analysis to map commercial poultry operations
from high resolution imagery to support animal health outbreaks and events
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Abstract

Precise locations of commercial poultry operations are impor-
tant to planning and response for animal health outbreaks and
events. These data are not available nationally or uniformly in the
United States. This project uses machine learning capabilities to
identify and map commercial poultry operations from aerial
imagery in seven south-eastern states in the United States. The
output protocol uses an Object-Based Image Analysis (OBIA)
approach, which identifies objects based on spectral signatures
combined with spatial, contextual, and textural information. The
protocol is a semi-automated and user-assisted process, meaning
that the object identification routines require minimal user inputs
or expertise. Using the protocol, we produced locations of likely
commercial poultry operations in up to two counties in one work-
day, about two times faster than manual digitisation. The resulting
datasets provide an estimate of the number and geographic distri-
bution of commercial poultry operations to assist outbreak
response by augmenting available knowledge in affected areas.
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Introduction

Infectious diseases in farmed animal populations have major
economic implications on United States (U.S.) food systems and
global trade. For example, a recent U.S. outbreak of Highly
Pathogenic Avian Influenza (HPAI), a zoonotic disease that infects
both animals and humans, required the depopulation of almost 50
million birds in the poultry industry, with the cost of control mea-
sures exceeding $870 million (Johnson et al., 2016). Commercial
poultry farm locations are an important dataset used in preventing
the introduction and spread of disease. However, the only compre-
hensive national dataset of poultry operations in the United States
is the United States Department of Agriculture (USDA), National
Agricultural Statistics Service (NASS), Census of Agriculture
(CoA), which is conducted every five years. United States law
requires information from individual census respondents to
remain confidential, so NASS publishes aggregated data by state
and by county only if there are sufficient respondents in a county
to avoid identifying individual or farm-specific data.

Other possible means to acquire locations of poultry opera-
tions include manual digitisation of aerial imagery. Manual digiti-
sation methods allow actual operation locations to be identified by
visual inspection of aerial imagery. Manual identification is time-
consuming; however, for small outbreaks it may be appropriate.
As the size of the area affected increases, this manual process
quickly becomes impractical.

Additionally, models such as the Farm Location and
Agricultural Production Simulator (FLAPS) have been developed
to simulate locations of farms, however they do not output actual
farm locations. These models are intended for coarse estimation of
farm size and location and are used for planning and research
(Burdett et al., 2015). A need exists to rapidly identify commercial
poultry barns over large areas for efficient planning and response
to poultry health events and outbreaks.

A faster and more efficient method is presented here using
Object-Based Image Analysis (OBIA) software to identify com-
mercial poultry barns in satellite or aerial imagery and map their
locations. This OBIA approach is feasible for large geographic
areas due to the increasing availability of high resolution remote-
ly-sensed imagery and faster processing speeds to handle this
imagery (Blaschke et al., 2000). The OBIA approach works by
identifying objects based on their spectral signatures combined
with spatial, contextual, and textural information (Blaschke,
2010).

Previously, OBIA for building identification was applied to
high-density settings like urban areas or refugee camps (Freire et
al., 2014; Sprohnle et al., 2014). Identification of individual build-
ings from imagery has focused on small geographic areas
(Caggiano et al., 2016). Software companies incorporated OBIA
tools into their commercial software programs allowing identifica-
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tion of buildings in natural and human-made settings and process-
ing of large geographic areas. Programs including the Feature
Analyst extension for ArcGIS (Textron Systems, Providence,
Rhode Island), eCognition (Trimble, Westminster, Colorado), and
the ENVI Feature Extraction Module (by Harris Geospatial
Solutions, Broomfield, Colorado). These programs combine vari-
ous Machine Learning (ML) algorithms in an ensemble model, a
technique which often produces a more accurate result than any
one learning algorithm run individually (Opitz and Blundell, 2008;
Seni and Elder, 2010).

For many years, OBIA has been employed for land cover clas-
sification. For example, the United States Forest Service used
Feature Analyst to identify clumps of invasive Russian olive trees
from aerial photography in the Fishlake National Forest in Utah
(Hamilton et al., 2006). In Wake County, North Carolina, classifi-
cation of a landscape into pervious and impervious surfaces
allowed assessment of the effect of growing impervious surface
area on aquatic fauna (Miller ef al., 2009). More recently, OBIA
has been applied for feature extraction in urban environments. In
Lisbon, Portugal, Feature Analyst was used to extract urban build-
ings to update municipal maps and databases (Freire et al., 2014).
In addition, OBIA was used to identify non-traditional buildings at
a refugee camp in Somalia. Data about the number of these struc-
tures combined with an assumed density of people per square
meter allowed aid workers to size relief resources for the camp’s
inhabitants (Spréhnle ez al., 2014). In another example, analysts
created a process for mapping human-made structures that would
need protection in the event of wildland fires (Caggiano et al.,
2016).

For this study, the objective was to develop a protocol that uses
a repeatable, semi-automated, user-assisted ML process to identify
and map commercial poultry barns from aerial imagery across a
variety of poultry production types in the United States. The pro-
tocol identified locations of commercial poultry operations in up to
two counties in one day. It is semi-automated and user-assisted,
meaning the object identification routine runs with minimal user

inputs. A well-documented workflow allows a GIS technician to
implement it in any county in the United States with little or no
specialised training. The resulting dataset of locations provide an
accurate estimate of the number and distribution of commercial
poultry operations facilitating rapid planning and response during
disease outbreaks.

Materials and methods

Study area and imagery

The project’s study area consisted of clusters of three or four
counties in areas with large commercial poultry populations
(USDA-NASS-CoA, 2015b). We chose five southern states with
the highest poultry sales in 2012 (Figure 1): Alabama, Arkansas,
Georgia, Mississippi, and North Carolina (USDA-NASS-CoA,
2015a). For testing the OBIA protocol broadly, these five states
provided diversity in ecosystems, poultry operation sizes, and
poultry production types (e.g., broilers, layers, pullets, and
turkeys). We ran the protocol in three counties in Louisiana, a state
with a smaller commercial poultry industry to test it in areas with
lower farm densities. In addition, during the project’s develop-
ment, a HPAI outbreak in two states (Tennessee and Alabama) pro-
vided an opportunity to run the protocol in an emergency response
situation. While incident data were not available for validation, the
protocol’s speed and ease of use were tested.

We used three-band, true-colour National Agriculture Imagery
Program (NAIP) aerial imagery gathered between 2014 and 2016
(USDA-FSA, 2019). The 1-m resolution provided sufficient detail
to detect an individual poultry barn. An advantage to using NAIP
imagery is that it is published at a county-level as Compressed
County Mosaics (USDA-NRCS, 2020), which makes downloading
casy and mosaicking unnecessary.
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Figure 1. The study area included 11 clusters of counties across seven states.
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Object-based image analysis protocol

We used the Feature Analyst extension (Overwatch Systems,
2010b) for ArcGIS (Environmental Systems Research Institute,
2016) to extract commercial poultry barns from the NAIP imagery.
Feature Analyst uses a supervised ML algorithm to identify objects
in imagery, driven by user-defined samples and inputs. (Blundell et
al., 2008). This supervised learning routine requires the analyst to
develop a training data set and select an input pattern (Figure 2). For
the training set, an analyst selects features in the imagery that repre-
sent the range of the target objects, including size, shape and spectral
signature. An analyst then chooses an input pattern that reflects the
type of object (e.g., linear, land cover, building). Feature Analyst
provides a list of input patterns and suggests choices for given types
of target objects (Overwatch Systems, 2010a). Based on these
inputs, the Feature Analyst extension decides on which ML algo-
rithms to apply and combines them in an ensemble model.
Candidate algorithms in Feature Analyst include artificial neural net-
works, decision trees, Bayesian learning, and K-nearest neighbor
(Opitz and Blundell, 2008). The extension knows which algorithms
have proven successful in identifying similar objects and with simi-
lar imagery. After examining the results of the first pass, an analyst
can select examples of correct and incorrect features to refine the
training set and repeat the processing to improve the results. (Opitz
and Blundell, 2008). When Feature Analyst runs, it creates a Feature
Model of the process including references to the imagery used, the
training samples, the input pattern, the supervised learning algo-
rithm, and the retraining steps (Figure 2). In addition, the model also
contains the automated ML algorithms run during the procedure.
The model can be applied to other images using the Batch
Processing capability in Feature Analyst.

Inputs

Resampling each county’s NAIP imagery from a 1-m to 2-m
resolution sped up processing while still providing enough detail
to identify poultry barns. Then, we reviewed the imagery of the
county and digitized barns as training samples which reflected a
range of barn sizes and roof spectral signatures. The regular rect-
angular shape and consistent spectral signature of the typical
metal roofs of poultry barns provided distinctive targets for iden-
tification in imagery. We selected an input pattern that works well
for detecting large residential and commercial buildings
(Overwatch Systems, 2010a).

Supervised learning and filtering features by geometry

~"

After defining these inputs, we ran Feature Analyst’s OBIA
routine. The output was a vector-based file of polygon features.
This output included false positive features like strips of motorway
and square buildings. The next step filtered these results using geo-
metric criteria. The range of dimensions of typical barns used by
any production type in the poultry industry are 90 - 183 m in length
by 12 - 20 m in width (Figure 3; Bell and Weaver, 2002; Fairchild,
2005). Length, width, and length/width ratio fields were computed
for each feature.

Some output features captured only part of the barn roof or
included bare ground around the barn. In order to retain these valid
features, we defined the range of features to delete as the typical
dimensions stated above, plus a buffer. Features with lengths of
less than 50 m or greater than 200 m were deleted (Figure 4). Also,
as shown in Figure 4, commercial poultry barns tend to be a rect-
angular shape with a long length and short width. Given that the
typical length/width ratio of a barn is between 2.0 and 10.0, all fea-
tures not meeting this shape criteria were deleted.

Retraining and removing false positives

The output feature set still included false positives like features
that were not buildings, for example, sand bars on rivers, and patches
of bare ground. The next step was to eliminate additional false pos-
itives from the results using Feature Analyst’s Remove Clutter by
Shape tool. This tool improved the next iteration of the learning
algorithm by analysing correct and incorrect example features and
refining the learning model of the target objects (Figure 5). The tool
repeated the classification deleting features that did not conform to
the target objects. Of the options in the Remove Clutter by Shape
tool, three were the most useful for gathering information about the
shapes of buildings: Area, Second Order Moments, and Invariants.
We applied these options in one iteration of the Remove Cluster by
Shape tool because together they identified and deleted features that
fell outside the limits of area, shape, and orientation expected of
commercial poultry barns.

The final step of the OBIA protocol converted the barn features
to operation points. Barn centroid points within 100 m of one
another were combined into one operation (Figure 6).

After this step, the results for a county consisted of a few hun-
dred points which we manually validated by visually inspecting
cach point on top of the aerial image. Additional false positives
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Input
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Figure 2. The protocol consisted of steps using the Feature Analyst extension plus manual steps to identify commercial poultry operations.
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were visually identified and manually removed, and missing oper-
ations not captured by the protocol were manually added to the
results. The final output was a geodatabase for each state contain-
ing results of all the counties we processed, as well as a state model
that can be applied to any other counties in the state.

~z

Time-cost estimates

A key objective of this study was to develop a semi-automated
protocol that was faster than manual barn identification. Three GIS
analysts tested the protocol during development. Each analyst

applied the protocol to a county in the study area. Each analyst
recorded the time each step took and the number of features it pro-
duced. These statistics were added to those gathered by the lead
author as input to a calculation for estimating the time-cost of run-
ning the protocol. We then explored the influence of various fac-
tors on the time required to complete our automated barn-identifi-
cation process. First, we transformed all variables by their natural
logarithm. Second, we examined, at a county level, the correlation
between the number of barns detected and the number of opera-
tions reported by the CoA. Finally, we created several candidate

Figure 3. Aerial views of typical commercial poultry barns are shown with dimensions labelled for use in filtering OBIA results.

{a) 50m < Length < 200m

{b) 2.0 < Length/Width ratio < 10.0

Lengrh=50.53m
Bam retamed

L/W=38/28=1.4

Building deleted

L/W=286/12=238

Road segment deleted

Figure 4. Panel (a) shows features that met the length criteria of a commercial poultry barn and were retained. Panel (b) shows features

that violated the length-to-width ratio and were deleted.

Figure 5. Correctly and incorrectly identified features were digi-
tised to retrain the results.
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Figure 6. An example of the protocol’s results - identifying poly-
gons for individual barns, point locations for individual barns,
and a single point (centroid) for the operation.
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models and used simple and multiple linear regressions to explore
the relationship between processing time and three covariates: 1)
the number of barns detected during the process; ii) the area of the
county; and iii) the number of operations reported for the county in
the CoA. We evaluated our candidate models with information-
theoretic inference, ranking them by their Akaike Information
Criterion (AIC) and AAIC values.

Model validation

We performed an accuracy assessment on a subset of the study
area using the best available ground truth data to validate the out-
put of our OBIA protocol. We obtained validation datasets of
known locations of poultry operations for three counties in North
Carolina (Anson, Richmond, and Union counties) and three coun-
ties in Arkansas (Benton, Carroll, and Washington counties). For
North Carolina, the validation dataset used was the state’s Light
Detection and Ranging (LiDAR) building-footprint dataset
(NCFMP, 2018). We identified poultry barns from this LIDAR
data using the same constraints on the length and the length/width
ratio used in the protocol, followed by visual inspection by an ana-
lyst. The Arkansas GIS Office (AGO) provided the poultry barn
validation dataset from their GeoStor dataset (AGO, 2014), which
we manually updated, adding or deleting barns based on recent
imagery. In both states, we aggregated clusters of barns within 100
m of one another into individual operations. These validation
datasets served as our expected output, and the protocol’s final
dataset served as our observed output.

We used a 500-m grid to define congruence between our
expected and observed datasets. We found that commercial poultry
operations were greater than 1 km from adjacent operations. This
grid size minimized the chance of multiple operations occurring
within a single grid cell. We first overlaid the expected dataset with
the 500-m grid in ArcGIS to identify those grid cells that contained
a known poultry operation. Cells containing an actual poultry oper-
ation defined the number of Positive cases (P), whereas cells that
did not contain an actual poultry operation defined the number of

Y  Operation centroid

0 250 500m
L 1 ]

@‘

Negative cases (N). We then performed the same procedure with
our observed dataset. Lastly, we used ArcGIS to relate the number
of positive and negative cases between both the expected and
observed datasets and defined values for the number of True
Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN), (Table 1). We used the values for P, N, TP,
TN, FP, and FN in a confusion (or error) matrix to quantify several
derived values to assess the accuracy of our modelled output pre-
dicting the location of poultry operations. The derived values
included: 1) sensitivity, or true positive value, ii) specificity, or true
negative value, iii) precision or positive predictive value, iv) neg-
ative predictive value, v) accuracy, vi) quality index, vii) omission
rate, viii) commission rate, and ix) commission error.

Results

Study area

Using the OBIA protocol, we successfully identified and
mapped commercial poultry operations from 35 poultry-intensive
counties in seven south-eastern states (Figure 7). Commercial
poultry operations were clearly identifiable on the landscape. An

Table 1. Positive and Negative grid cells are defined and they relate in
four possible ways from overlaying the expected and observed datasets.

Results

P Positive Grid cell contains an actual poultry operation

N Negative Grid cell does not contain an actual poultry operation

TP True Positive  An expected positive that is also an observed positive

TN True Negative ~ An expected negative that is also an observed negative
FP False Positive  An expected negative that is an observed positive

FN False Negative An expected positive that is an observed negative

Figure 7. The results of the protocol are shown here for one of the 35 counties in the project. The overview map shows many of the
operations identified by OBIA and the main map shows the accuracy of the locations for three separate operations.
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individual operation often consisted of multiple barns (from two to
more than 20), although operations with single barns also occured.
The stars represented the centroids of the operations. The inset
map shows the distribution of operations in a portion of a county.
The specific county shown is not identifed to preserve the privacy
of individual operations.

Figure 8 displays the number of operations successfully iden-
tified in all seven states in the study. For each state Table 2 lists the
number of counties processed using the protocol and the number of
operations identified in those counties. In comparison, the CoA
lists larger numbers of operations in these counties. The reason is
that the CoA reports on operations of all sizes while this project
focused on commercial operations comprised of large buildings
that are readily identifiable in remotely sensed imagery. These
large buildings house tens of thousands of birds at one time and so
the locations of commercial operations provide valuable informa-
tion on the concentration of birds across a response area.

~"

Object-based image analysis protocol

The outputs of this project were two-fold: i) the protocol for
identifying and mapping commercial poultry barns from remotely
sensed imagery, and ii) the dataset of locations of commercial
poultry operations for the 35 counties in the study, including vali-
dation. The protocol is available to others to create a dataset of
commercial poultry operations. The protocol is documented in a
detailed step-by-step guide based on the Feature Analyst extension
and core ArcGIS capabilities. A GIS technician can run the proto-
col for outbreaks or events with minimal input needed. The final
dataset of commercial poultry operations in the study area is avail-
able to responders and analysts.

Time-cost estimates

During the development process, we compared the developer’s
time to the three GIS analysts’ time to complete the protocol for
one county. On average, the additional analysts ran the protocol in
8.3 hours per county on average for the reviewers vs. 6.2 hours for
the developer.

Compared to manual digitisation, implementation of the proto-
col improved results by decreasing the time to complete a county.
The mean time-cost of conducting the protocol was 0.24 (+/- 0.11
SD) minutes/ km?. This time-cost means a 1660 km* county would
take 398 minutes (6.6 hrs) to process. In contrast, it took an analyst
on average eight hours to identify and digitise poultry barns in a
1660 km? county. For the entire 35-county study area (58,282
km?), the time required to implement the protocol was 233 hours
versus 282 hours for the manual digitisation method (saving more
than a workweek of time). It is worth noting that the protocol runs
largely independently so the number of man-hours is actually far
lower than using manual methods.

The number of operations recorded in the CoA for a particular
county was the factor that best predicted processing time (Table 3).
Because the number of operations reported in the CoA and the
number of barns detected during the protocol were highly correlat-
ed (r = 0.67), we did not include these two variables in the same
candidate model. Although it had a lower AAIC score, the candi-
date model that included two factors (Model #1, Table 3) is not
considered a better model than the simpler model that only includ-
ed the number of operations (Model #2, Table 3). This is because
including the effect of county area did not increase Model #2’s
AAIC value by > 2.0 (Burnham and Anderson, 2002).

' Mississippi

Tennessee

Alabama

North Carolina ‘

Georgia

[ J1-100
B 101230

B 450
I:I States in study

Figure 8. The number of commercial poultry operations identified by the OBIA protocol in the seven states in the study are displayed

in three classes.
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Model validation

. . . Discussion
We used a confusion matrix to calculate metrics of accuracy

such as accuracy, sensitivity, and specificity as shown in Table 4. ) We developed a PrOtOCOI using cF)mmercial soft\yare Fhat
We completed the calculations for the North Carolina cluster ~ duickly generates locations of commercial poultry operations in a
(Union, Anson, and Richmond counties) and the Arkansas cluster county to assist with response to an animal disease outbreak or ani-

(Benton, Carroll, and Washington counties). Overall, we validated mal health event. These locations assist outbreak responders by
’ ’ ' ’ providing the locations of the population at immediate risk which

. . subsequently improves targeting of surveillance, sizing resources

Our methodolqu to 1fient1fy poultry bams has a .mean ac.cu.ra- for the response (people, materials, and equipment), and confirm-
cy rate of 0.983 with a higher mean value for negative predictive ing locations of operations. Most importantly, these location data
value (0.994) than positive predictive value (0.797), (Table 4). The  are not uniformly available from any other source for most of the
lowest values for both accuracy (0.948) and positive predictive  United States. Model validation indicates the accuracy of our
value (0.552) were both obtained from Union County, North  results were high, providing confidence in the value of the protocol
Carolina. and its applicability to other U.S. counties.

six of the 35 (17%) counties in the project.

Table 2. The fraction of counties processed in each state and commercial poultry operations identified by the OBIA protocol.

Totals for the study

State Number of counties processed/ Number of commercial
total number of counties poultry operations mapped

Alabama /67 1294

Arkansas 6/75 1076

Georgia 77159 1070

Louisiana 3/64 161

Mississippi 3/82 378

North Carolina 6/100 924

Tennessee 3/95 82

Table 3. Information-theoretic inference and R’ values for candidate models used to explore effect of various factors on processing time.

Model IS AIC AAIC
1. Number of operations * county area 0.45 19.7 0
2. Number of operations 0.35 21.6 1.9
3. Number of barns 0.1 294 9.7
4. Number of barns * county area 0.17 294 9.7
5. County area 0.04 31 11.3

Table 4. Results of the model validation show the metrics for North Carolina and Arkansas counties.

North Carolina Arkansas

Anson Richmond Union Benton Carroll Washington

County County County County County County
Sensitivity 0.848 0.838 0.828 0.817 0.85 0.806
Specificity 0.997 0.995 0.955 0.993 0.998 0.994
Positive Predictive Value 0.881 0.786 0.552 0.827 0.951 0.786
Negative Predictive Value 0.996 0.997 0.988 0.993 0.994 0.994
Accuracy 0.992 0.992 0.948 0.987 0.992 0.988
Quality Index 0.761 0.682 0.496 0.698 0.814 0.661
Omission Rate 0.004 0.003 0.011 0.007 0.006 0.005
Commission Rate 0.003 0.005 0.042 0.006 0.002 0.006
Commission Error 0.003 0.005 0.045 0.007 0.002 0.006
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The protocol expanded on previous development in object
identification and mapping in two respects. First, we used OBIA
and ML to develop an operational tool for consistent and rapid use
in emergency situations. At the time of this project, commercial
software programs became available to run object identification by
users rapidly and without requiring in-depth knowledge (Opitz and
Blundell, 2008). Second, a review of the literature revealed that
documented OBIA applications had typically been applied to small
geographic areas or a small number of images (Freire et al., 2014;
Caggiano, 2016). Applications to larger spatial extents such as
demonstrated in this project were less common.

In the first case, the ability to produce a dataset of farm fea-
tures rapidly enough to contribute to emergency operations was
critical. Success hinged on exploiting the ML model within
Feature Analyst (Overwatch Systems, 2010a). The scalability and
robustness of the Feature Analyst software was demonstrated by
our ability to create state models for poultry barn identification and
apply it to 35 counties with a high level of accuracy. Finally, the
protocol had to be sufficiently reliable and easy to use so that a GIS
technician without specialised knowledge of the software,
imagery, or the poultry industry could perform poultry barn identi-
fication in a new area (Opitz and Blundell, 2008).

In the second case, the ability to map poultry operations over
large areas is also critical, because animal health emergency
responses can include multiple counties or even states. Machine
learning and the batch-processing capability in Feature Analyst
allowed us to process up to 12 counties in one run (Overwatch
Systems, 2010a). Larger spatial extents have become more com-
mon in OBIA studies. In one recent example, pinyon-juniper intru-
sions into the sagebrush ecosystem were classified in 6,230 digital
orthophoto quarter quadrangles (approximately 228,000 km?) in
Nevada and California (Gustafson et al., 2018). Another recent
project created an automated process to identify possible concen-
trated animal feeding operations throughout North Carolina
(Handan-Nader and Ho, 2019).

Machine learning approaches to object identification and map-
ping hold potential for continued improvement of animal-health
applications. For the protocol, one future improvement could be
attaching estimates of population size (i.e., the number of birds on
an operation) based on the number of barns present on an opera-
tion. A second improvement could be implementing the protocol
for other species (e.g., swine or cattle). A third improvement could
be applying the protocol to other geographic regions or scaling it
up to a national extent. In addition, LiDAR data could improve the
building identification process. One potential advantage of using
LiDAR over aerial imagery is the ability to use data fusion, which
combines optical imagery with LiDAR or radar data. Tree canopy
height from LiDAR combined with other types of data are already
being used successfully in urban land-cover analysis (Zhang et al.,
2017). In an object-based evaluation of dwellings in a refugee
camp, optical data captured the dwelling footprints well, while the
radar data separated contiguous dwellings (Sprohnle et al., 2017).
Our experience using LiDAR data for our North Carolina valida-
tion dataset demonstrated that LIDAR has advantages over aerial
imagery for automated detection of buildings with a characteristic
size and shape. However, LiDAR is not yet collected in all parts of
the United States and so not was not available for this project.

In addition to emergency applications, geospatial ML tech-
niques can be adapted to improve the accuracy of planning and
modelling tools. For example, combining simulated poultry demo-
graphic data with actual locations from OBIA could improve
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national poultry risk-modelling efforts or other emergency pre-
paredness or surveillance planning.

Conclusions

Object-based image analysis applied to high resolution remote-
ly sensed imagery produces precise location data for commercial
poultry operations. The protocol in this project is built around
OBIA. A GIS technician without programming or ML expertise
can run the protocol easily. Thus, the protocol scales easily to
respond quickly to an animal health emergency and provides loca-
tions of commercial poultry operations to augment any existing
datasets. Using the protocol we developed, a GIS technician can
process a county in 6.6 hours for an average-sized county in south-
east United States, with an accuracy of 95-99%. Based on the time-
cost estimates, implementing the protocol for the entire study area
saved more than a workweek’s time (49 hours) over the manual
digitization method (233 hours versus 282 hours for the entire
study area). One or two GIS technicians could run the protocol
over that 233 hours, since only a small number of hours would be
set-up and, for the bulk of the time, the process would run indepen-
dently. In contrast, it would be challenging for some organisations
to find the personnel with the GIS skills and knowledge of the
poultry industry to digitise imagery for 282 hours. The time differ-
ence in receiving these geographic data on commercial poultry
operations could be critical for emergency responders. Between
the ease of use of the protocol, the processing time of 6.6
hours/county, and the confidence in the accuracy of the results, this
protocol is a better option than manual digitisation for multiple
counties. These data can provide a critical advantage to animal
health emergency responders in a disease outbreak or other disaster
when farm locations are scarce or unavailable.
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