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Abstract

Local, bivariate relationships between coronavirus 2019
(COVID-19) infection rates and a set of demographic and socioe-
conomic variables were explored at the district level in Oman. To
limit multicollinearity a principal component analysis was con-
ducted, the results of which showed that three components togeth-
er could explain 65% of the total variance that were therefore sub-
jected to further study. Comparison of a generalized linear model
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(GLM) and geographically weighted regression (GWR) indicated
an improvement in model performance using GWR (goodness of
fit=93%) compared to GLM (goodness of fit=86%). The local
coefficient of determination (R?) showed a significant influence of
specific demographic and socioeconomic factors on COVID-19,
including percentages of Omani and non-Omani population at var-
ious age levels; spatial interaction; population density; number of
hospital beds; total number of households; purchasing power; and
purchasing power per km?. No direct correlation between COVID-
19 rates and health facilities distribution or tobacco usage. This
study suggests that Poisson regression using GWR and GLM can
address unobserved spatial non-stationary relationships. Findings
of this study can promote current understanding of the demo-
graphic and socioeconomic variables impacting the spatial pat-
terns of COVID-19 in Oman, allowing local and national authori-
ties to adopt more appropriate strategies to cope with this pandem-
ic in the future and also to allocate more effective prevention
resources.

Introduction

The coronavirus 2019 (COVID-19) pandemic has had an
immense global influence on physical and human environments
(Ciotti et al., 2019; Weissleder et al., 2020) threatening more than
220 countries and regions around the world (Bonaccorsi et al.,
2020; Karaye & Horney, 2020; Liu et al, 2020b; Verma &
Prakash, 2020), the Sultanate of Oman (Oman) among them
(Wiwanitkit, 2020). According to the Omani Ministry of Health
(MOH) (https://covid19.moh.gov.om/), there have been 160,018
confirmed cases of COVID-19 in Oman, with 1681 deaths from 3
January 2020 to 2 April 2021.

Governments, health-related organisations and virology
experts in several countries have attempted to improve our under-
standing of COVID-19 and its relationships with demographic,
environmental, and socioeconomic variables (Ahasan et al., 2020;
Arora et al., 2020; Bagal et al., 2020; Franch-Pardo et al., 2020;
Gupta et al., 2020; Mollalo et al., 2020; Pourghasemi et al., 2020;
Pramanik et al., 2020). In India, Roy et al. (2020) implemented
geospatial analysis using autoregressive integrated moving aver-
age methods. Specifically, geographic information systems (GIS)
can support risk analysis by employing epidemiological, ecologi-
cal, climate and socioeconomic data (Nakada & Urban, 2020;
Shakil et al., 2020). Spatial statistics, such as local bivariate rela-
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tionship (LBR) analysis (Song et al., 2020), geographically
weighted regression (GWR) (Iyanda et al., 2020), ordinary least
squares (OLS) (Sun et al., 2020a) and generalised linear modelling
(GLM) (Liu et al., 2020a) have been widely used to detect areas at
risk for COVID-19. Various studies have used existing social sus-
ceptibility index data and adapted methods to study the spatial
trend of COVID-19 emergence across different sociocultural envi-
ronments (Acharya & Porwal, 2020; Karaye & Horney, 2020).
Numerous studies have verified the dependency between the geo-
graphic distribution of socioeconomic factors and the spatiotempo-
ral evolution of the disease using spatiotemporal regression models
(Bray et al., 2020; Kadi & Khelfaoui, 2020).

The spatial distribution of the COVID-19 outbreaks in Oman
has varied considerably from one wilayat (district) to another,
thereby posing further difficulties to monitoring the COVID-19
spreading in the country on a detailed spatial scale (Al-Kindi ef al.,
2020). Only few studies of COVID-19 spatial modelling have been
carried out in Oman (Mansour ef al., 2020), which demands further
research focused on the socio-economic and environmental impact
of the infection, which may have a significant effect on this pan-
demic as outlined by (Bashir ez al., 2020). We believe that socioe-
conomic factors are vital for understanding of its distribution and

&

spread in Oman (Khalatbari-Soltani et al., 2020; Lin et al., 2020)
and that their determination can play a crucial role for resource
allocation.

The main objective of this study was to analyse the demo-
graphic and socioeconomic variables affecting the COVID-19
infections in Oman. We studied first the connection between these
infections and a single known factor to build a relationship model
and continued by developing a more detailed predictive model to
determine the relative impact of various candidate socioeconomic
factors.

Materials and methods

Study area

Oman is situated between latitudes 16°40° and 20°20°N and
longitudes 51°50” and 59°40’E in the south-eastern corner of the
Arabian Peninsula (Figure 1). The total area is 309,500 km?, with
a shoreline extending about 165 km from the Strait of Hormuz in
the North to Yemen in the South. The country is divided into 11
governorates and 61 districts (wilayats) and has a population of
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Figure 1. Area of study, including Oman’s location and the distribution in the study area of the 11 governorates and 61 wilayats.
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4,617,927 people according to a 2020 national census
(https://ncsi.gov.om/). With around 253,000 people, As-Seeb is the
most populated wilayat (9.5% of the total Omani population),
while the largest population density is registered in the Muscat
Governorate (355.4/km?). The Bowsher Wilayat has the largest
expatriate population (356,000 people), which amounts to 78% of
its total population (https://data.gov.om/).

COVID-19 data

Data about Omani and non-Omani COVID-19 cases for popu-
lation groups aged 0-14, 15-59 and >60 years were obtained from
the MOH and quantified at the sub-national level. The data for the
period April 30 to August 30, 2020 were selected as base period
since it corresponds to the time when the prevalence of the infec-
tion was the most pronounced in Oman.

To obtain real-time COVID-19 data, Tarassud+ App (TA+), a
prototype system established by the MOH was used. This App
shows the COVID-19 country status plus recommendations, per-
sonal information, declarations and other metadata related to
COVID-19. TA+ is updated daily with information on deaths and
existing, new and recovered cases (Ming et al., 2020; Waheed &
Shafi, 2020). While TA+ has an analytics platform to extract
updated information, the MOH is responsible for all official
announcements (Al Fannah et al., 2020).

Demographic and socioeconomic data

Data of the variables collected from different national authori-
ties in Oman are displayed in Table 1. Healthcare resources includ-
ing the number of physicians per wilayat, including the TA+ data,
were collected from the MOH. Other datasets were obtained
directly from local and national authorities, mainly the National
Center for Statistics and Information (NCSI), while others were
computed at national and wilayat levels using a GIS approach.
Specifically, the Enrich tool in ArcGIS Pro 2.7 (ESRI, Redlands,
CA, USA) was used to generate the geospatial dataset. The pur-
chasing power index per capita was computed using data for dis-
posable income. These enriched geospatial and population data
created via the Enrich tool were validated against data collected
from the NCSI (www.ncsi.gov.om/) (Table 1).

Overall, 24 demographic and socioeconomic variables were
obtained (Table 1). All geospatial datasets were projected onto the
World Geodetic System (WGS) 1984 Universal Transverse
Mercator (UTM) zone 40 North.

Calculation of health risk and service metrics

Tobacco risk

As COVID-19 primarily is a respiratory disease (Gattinoni et
al., 2020), a tobacco index (TI) dataset was used to identify this
risk. The data were obtained from the MOH and based on the
World Health Organisation (WHO) STEPwise approach to

Table 1. Variables and data sources used in this study and their main attributes.

PD Population density Polygon/GIS shapefile Enrich NCSI
TH Total number of households Polygon/GIS shapefile Enrich NCSI
AHS Average household size Polygon/GIS shapefile Enrich NCSI
SII-1 Spatial interaction index 1 GIS Network datasets Spatial analysis NCSI
SII-2 Spatial interaction index 2 GIS database Gravity model NCSI
SCI Social charity index Excel sheets MSD MSD
TPPI Total purchasing power index Polygon/GIS shapefile Enrich NCSI
PPI Purchasing power index (%) Polygon/GIS shapefile Enrich NCSI
RCD Relative cases distance Polygon/GIS shapefile NCSI
TP Total population Polygon/GIS shapefile NCSI
N-OC (0-14) Non- Omani cases (0-14) Excel sheets TA+ MOH
N-OC (15-59) Non- Omani cases (15-59) Excel sheets TA+ MOH
N-OC (60+) Non- Omani (60+) Excel sheets TA+ MOH
0OC (0-14) Omani cases (0-14) Excel sheets TA+ MOH
0C (15-59) Omani cases (15-59) Excel sheets TA+ MOH
OC (60+) Omani cases (60+) Excel sheets TA+ MOH
OFC Omani female cases Excel sheets TA+ MOH
OMC Omani male cases Excel sheets TA+ MOH
TO Total Omani Excel sheets TA+ MOH
TN-O Total non-Omani Excel sheets TA+ MOH
TI Tobacco index Excel sheets TA+ MOH
Doctors Doctors (%) Excel sheets TA+ MOH
Nurses Nurses (%) Excel sheets TA+ MOH
HB Hospital beds (no.) Excel sheets TA+ MOH
COVID-19 Monthly COVID-19 data Mobile phone TA+ MOH
NCSI, National Center for Statistics and Information; MOH, Ministry of Health; MSD, Ministry of Social Development.
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Surveillance (STEPS), a standardized surveillance tool through
which countries can collect, analyse and disseminate core informa-
tion on non-communicable diseases.

Spatial interaction index

Flow estimations (also referred to as spatial interactions),
between locations is of interest for transport. These flows enable the
demand for transport services to be assessed (existing or potential).
They include mobility modes, such as work trips, relocation, tourism,
the use of public facilities, information or resource transfer, retail
markets, international exchange and freight distribution. In this study,
the spatial layer of interaction was generated from road connectivity
based on ArcGIS analysis. While this approach offers a basis for loca-
tion communication, it does not allow detailed studies of the chang-
ing spatial interaction patterns that occur due to fear, closures, policy
changes, efc. The most commonly used spatial interaction models,
the Gravity Index (GI) and the Network Identify tool in ArcGIS 10.7,
were used to estimate a spatial interaction index based and road con-
nectivity network as potential for human movement (Song et al.,
2019). The resulting layer contains a GI field, in which higher values
correspond to higher weights of spatial interaction and influence
(Table 1).

Relative case distance index

This is based on the chance of exposure to COVID-19 and dis-
played as a map exhibiting various levels of this risk. The relative
case distance area represents a view from the middle of each munic-
ipality to all close areas with COVID-19 cases. To support each per-
son’s integrity, case identities are not revealed, only the nearest road
intersection to at-risk areas. We measured the distance to cases from
the municipality polygon centroids rather than from population cen-
tres. To accomplish this, we first created polygons for each wilayat
and included random points in them as representation of the percent-
age of the total population therein. Then, we computed the mean cen-
tres for all these random points associated with the polygons and took
all municipalities close to a large number of known cases as being at
increased risk of exposure (Table 1).

Impact on COVID-19 prevalence of demographic
and socioeconomic variables

A flowchart displayed as shown in Figure 2 shows how we mod-
elled the spatial relationships between COVID-19 prevalence and the
24 demographic and socioeconomic variables that were substantially
multicollinear. A regression model examining the effect of these vari-
ables on COVID-19 was constructed to ensure their independency.
We first turned all the correlated factors into artificial, uncorrelated
principal components (PCs), the analysis of which (PCA) would clar-
ify the maximum amount of original data variance (Abdi & Williams,
2010) while still retaining the most significant information about the
data structure.

To solve this, we applied what is called data rotation using the
VARIMAX method (https://www.sciencedirect.com/topics/ nursing-
and-health-professions/varimax-rotation). The outcome revealed six
components that accounted for 90% of the variance, but for simplic-
ity and ease of interpretation, we only kept the first three components
(PC1, PC2 and PC3), which explained 65% of the variance Table S1
(Appendix A).

The LBR approach was used to quantify the strength of connota-
tion amid the COVID-19 disease rate and the various demographic
and socioeconomic variables, thereby developing a relationship
model to determine if the relationships found were consistent across

[page 148]

[Geospatial Health 2021; 16:985]

the study area. This can be done by randomising the data, since the
presence of significant, meaningful correlations between two vari-
ables investigated in a data subset would increase the entropy consid-
erably (Guo, 2010).

Multivariate clustering (MC) utilises unsupervised machine
learning techniques to detect natural data clusters (Asante &
Kreamer, 2015; Paszto et al., 2020). MC is a toolset that can be used
to identify and map the locations of statistically significant spatial
outliers (Peeters et al., 2015). As it discovers spatial patterns (Garcia,
2020; Nipperess et al., 2008), the MC method was used to understand
how the COVID-19 outbreaks occurred and spread among all the
wilayats in Oman from April to August 2020. The clustering efficacy
was calculated applying the Calinski Harabsz pseudo-F statistic to
investigate the ratio of variation between clusters (Belvisi et al.,
2020). By default, the MC method uses a K-means algorithm
(Singhal & Seborg, 2005). The GLM and GWR techniques were
used to detect and model the associations between the number of
infected people and the different socioeconomic variables (PC1, PC2
and PC3) across the country (Figure 2). The GLM technique offers a
global model for understanding or predicting early incidence and
infection rates and generates an individual regression equation to
describe such a process. GWR, on the other hand, offers a local
model for predicting and understanding early incidence and infection
rates by implementing a regression equation (Sarra & Nissi, 2016).
GLM possesses OLS regression functionality with three models

CPress

Data

COVID-19 Demographic and socioeconomic
rates variables

Geospatial modeling
’\ tools

GLM &
GWR

Figure 2. Flowchart of the modelling of the spatial relationships
between COVID-19 and demographic and socioeconomic vari-
ables. MC, multivariate clustering; PCA, principal component
analysis; GLM, generalized linear model; GWR, geographically
weighted regression; LBR, local bivariate relationslgiip.
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(Gaussian, logistic and Poisson) that permits its use for a broader
approach (Yang et al., 2013). Fair model use, however, depends on
the existence of the dependent variable. GWR generates an equation
for each characteristic in the dataset, calibrating each one by utilising
the target features and neighbours. It includes spatial non-stationary
or spatially varying relationships in the regression by allowing the
coefficient to change with location (Windle et al., 2010). Similar to
GLM, GWR offers three types of regression models: count, binary
and continuous. The non-Gaussian (continuous) zero-inflated distri-
bution of the outcome variables (PC1, PC2 and PC3) and the dis-
cretization method allow Poisson regression to model the variable.
Geographically weighted Poisson regression (GWPR) is useful in the
study of disease distributions as it can be compared with the global
OLS model results to examine which approach is the most appropri-
ate. The spatial autocorrelation tool was used to ensure that the resid-
uals (over- and under-predictors) were random across the study area.
Golden search (Wheeler & Paez, 2010) calculates the distance or
number of neighbours with the lowest corrected Akaike information
criterion (AIC,). This tool and the golden section search method (Li
et al., 2019) was used to identify an optimal distance or number of
neighbours on the basis of the characteristics of the data. The GWR
model offers two kernel choices in the local weighting scheme
parameter: Bi-square and Gaussian. The former truncates the kernel
using a distance or several neighbours, while the latter assigns a
weight of 1 to the regression feature (feature 7). The importance of the
neighbouring elements (j features) decreases gradually as the regres-
sion feature distance increases. In this study, the bi-square was used
to run the model. To visualise how the associations between the
socioeconomic variables and the COVID-19 infection levels varied
across space, GWPR was used to create coefficient maps (Li et al.,
2013; Yu & Peng, 2019). GWPR is computed as follows:

CPress

¥, Poission[N, exp(, (4, v,)+ Ty B, v,)%,,)] )

where S, (u;, v;) is the intercept variable explicit to site i; f, (i, v;) the
coefficient of predictor variables y, at location i; N, the inverse vari-
able at each location; and (u;, v;) the x~y coordinate at each site.
Accordingly, to validate the hypothesis and its applicability to the
investigation of the regional differences, GLM was adopted also to
scrutinise the connection amid the COVID-19 infection rate and dif-
ferent combinations of socioeconomic variables (PC1, PC2 and PC3)
of two governorates: Muscat and Al-Batinah North. All analyses were
carried out using ArcGIS Pro version 2.7.

Results

Local bivariate relationships

The direction and strength of correlation amid the COVID-19
infection rate and the different demographic and socioeconomic
variables in Oman are illustrated in Figure 3, while the values of
the adjusted R? (Adj R?) are listed in Table 2. As indicated, positive
significant correlations were observed between COVID-19 preva-
lence and 14 of the 24 variables investigated (Table 2). In compar-
ison, significantly negative spatial connotations were detected
between the COVID-19 infection rate and the relative cases dis-
tance (Adj R*=-60.66). A negative but not significant relationships
were identified amid the COVID-19 infection rate and percentages
of doctors (P=0.85) and nurses (P=0.57). No relationship was
detected between the COVID-19 infection rate and the tobacco
index, number of hospital beds, percent average household size,

Table 2. Summary of the local bivariate associations between COVID-19 infection rate and individual socioeconomic variables.

1-Total population 80.33* 0 19.67 0 1.4227 0.0050
2-Total Omani 85.25% 0 0 14.75 1.2652 0.0050
3- Total non-Omani 1541% 0 24.59 0 1.4434 0.0050
4-Tobacco index 0 0 0 0 1.7573 0.8300
5-Spatial interaction index 1 54 0 0 0 1.4204 0.1650
8-Hospital beds 0 0 0 0 1.6942 0.0654
9-Population density 73.77* 0 0 0 1.332 0.0050
10-Total hospital 88.50% 0 11.48 0 1.2376 0.0052
11-Average households size (%) 0 0 0 0 1.1669 0.2017
12-Spatial interaction index 2 13.17* 0 1.64 0 1.2974 0.0050
13-Social charity index 44.26* 0 0 0 1.3695 0.0350
14-Total purchasing power index 88.52* 0 11.48 0 1.2496 0.0050
15-Purchasing power index (%) 0 0 0 0 1.3596 0.0600
16-Relative cases distance 0 60.66* 39.34 0 1.2214 0.0050
17-Non-Oman cases aged (0-14) 100* 0 0 0 1.2186 0.0050
18-Non-Oman cases aged (15-59) 77.05% 0 22.95 0 1.2904 0.0050
19-Non-Omani cases aged (=60) 86.00* 0 0 0 1.2341 0.0050
20-Omani cases aged (0-14) 90.00* 0 0 9 1.2224 0.0050
21-Omani cases aged (15-59) 90.16* 0 0 9.84 1.0542 0.005
22-Omani cases aged (=60) 95.08* 0 0 4.9 1.1667 0.0050
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percent purchasing power index and male and female Omani case
variables (Figure 3 and Table 2). The coefficients maps produced
throughout the LBR model revealed where the variable had the
most significant impact of the regression across the country
(Appendix B, S1).

Principal component analysis

Figure 4 illustrates the spatial pattern of the first three PCs. For
PCl1, the highest loads were located in the wilayats, particularly
Mutrah, Bowsher and As-Seeb in Muscat Governorate and Salalah
in Dhofar Governorate (Figure 4a), while the lowest ones were dis-
tributed in coastal wilayats such as Shinas, Saham and Al-Suwayq
in Al-Batinah North Governorate and internally in wilayat Bid-Bid
in Al-Dakhliah Governorate (Figure 4a). For PC2, the highest
loads were concentrated in the most populated districts, especially

5) f
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Undefined Complex
Mot Significant

I 150
Kilometers

o Pasitive Linear
s Negative Linear
= Concave
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[} 150
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@

in As-Seeb in Muscat Governorate, while the lowest were found in
Khasab in Musandam Governorate (Figure 4b). For PC3, the high-
est were in Muscat in the Muscat Governorate and in Huma in Al-
Wausta Governorate. In contrast, the lowest were seen in many
wilayats, including Al-Sunaynah in Al-Buraymi Governorate, As-
Seeb in Muscat Governorate and Al-Mazuynah and Shalim Wa
Juzur Al-Hallaniyat in Dhofar Governorate (Figure 4c).

The highest eigenvectors of the six components are sum-
marised in Table S1 (Appendix A). The highest factor loads for
PC1 were 0.94 for the non-Omani cases aged >60, 0.92 for the
non-Omani cases aged 0-14, 0.92 for the spatial interaction index-
2, 0.91 for the population density, 0.90 for the total non-Omani
population, 0.89 for the non-Omani cases aged 15-59, 0.73 for the
number of hospital beds, 0.72 for the total number of households,
0.70 for the Total purchasing power and 0.70 for the purchasing

~z

Figure 3. Maps showing the types of association between the COVID-19 infection rate and individual socioeconomic variables. s) non-
Omani cases aged =60; t) Omani cases aged 0-14; u) Omani cases aged 15-59; v) Omani cases aged =60; w) female Omani cases; and

x) male Omani cases.
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power per mile. The highest factor loads for PC2 were 0.93 for the
Omani cases aged 15-59, 0.95 for the total Omani cases, 0.919 for
the Omani cases aged 0-14 and 0.86 for the Omani cases aged >60.

Multivariate clustering

The MC-based results based on K-means and K-medoids anal-
ysis are summarised in Table S2 (Appendix A). Oman’s districts
are grouped according to the monthly registered COVID-19 cases
from April to August 2020. The highest R* value was found for the
July variable. The R? value indicates how much variance was
retained after the clustering phase in the actual rate data
(Vishwakarma et al., 2017). Out of the 61 wilayats examined, three
(0.3%; 925 km” total area) were identified as high-risk ones; five
(2.0%; 6,308 km? total area) as medium-risk ones; 15 (21.3%;
65,858 km? total area) as being at low risk; and 38 (75.0%; 232,409
km? total area) were identified as being at very low risk (Figure 5).
The wilayats depicted as cluster 4 in Figure 6 were found to be
high spatial clusters. The COVID-19 spatiotemporal and spatial
patterns were similar during much of the study period. By applying
MC analysis, we were able to identify wilayats in high-risk areas
(cluster 4) based on the monthly records from April 30 to August
30, 2020 (Figure 6). These wilayats were As-Seeb, Mutrah and
Bowsher. The boxplots created for each cluster and variable show
how the cluster values were related to those of other clusters
(Figure 7). The map and the parallel boxplot charts in Figures 5, 6
and 7, respectively, summarise the areas with various risk levels
identified in the different locations (wilayats) for different epidem-
ic periods (monthly) using the MC tool. The boxplot shows the
connections between the multivariate clustering outcome and the
PCA results. These connections were used to run global and local
regression models (Figure 8).

The generalized linear model

The variance inflation factor (VIF) values were <I.1 indicating
that they were all under the ESRI-defined threshold of 7.5; thus,
the independent variable distributions were not redundant or
biased by multicollinearity. Note that we could not obtain good
VIF results before applying PCA with the data used in this study.
The Joint Wald and Koenker (probability >chi-square) statistics
(Pick & Nishida, 2015) were significant, with P-values of approx-
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Figure 5. The four spatial multivariate clusters based on the data
regarding the confirmed case attributes.
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Figure 6. Boxplots summarising the four multivariate clusters
and their associated variables (April-August 2020).
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imately 0. The significant positive association between the
COVID-19 infection rate and the socioeconomic variables (PC1,
PC2 and PC3) are illustrated in Table 3. GLM had an AIC, value
>25,174 explaining 86% of the goodness of fit for the associations
between the COVID-19 infection rate and the socioeconomic fac-
tors. The generalized linear regression (GLR) model results were
also appraised for spatial autocorrelation showing a z-score of
—0.817 and Moran’s /= —0.075 at P=0.41. This indicated that the
model’s resulting pattern was highly random and as such, crucial
independent variables were present. The residuals of the Poisson
regression GLM exhibited negative spatial autocorrelations.

Geographically weighted regression

The GWR model had an AIC, value >13,379 which explained
93% of the goodness of fit for the associations between the
COVID-19 disease rate and the socioeconomic variables. The
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Figure 7. Parallel boxplot display of each multivariate cluster and
corresponding variables.
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Figure 8. Differences of principal component (PC) scores as a function of the four main spatial clusters (CL).

Table 3. Statistically significant variables based on generalized linear regression.

Intercept 6.3136 0.0072 880 0.0001* 1.00
PC1 0.5224 0.0018 289 0.0001* 1.00
PC2 0.5986 0.0024 252 0.0001* 1.00
PC3 1.0018 0.0084 118 0.0001* 1.00

Coefficient, strength and type of relationship between each explanatory variable and the dependent variable. VIF, variance inflation factor where values >7.5 indicates redundancy among the explanatory variables.
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S

GWR model had a lower AIC, value implying model complexity
and a higher R?, which gave a better fit than GLR for the observed
results (Table 4). Therefore, the extent of GWR calculations
showed the non-stationery of the relations between the socioeco-
nomic variables and the COVID-19 infection rate in the study area.
The spatial autocorrelation results reported a z-score of -0.5044
and Moran’s /= —0.0530 at P=0.6139. This indicates that the over
and underpredictions resemble those of the GLR model; they thus
appear random and suggest a properly specified model. Figure 9
shows the bivariate colours of the quantitative relationship of the
spatial associations between the fixed variable (COVID-19 infec-
tion rate) and the exploratory factors (PC1, PC2 and PC3). High
associations between the COVID-19 infection rate and PC1 were
found in the following wilayats: Bowsher, Mutrah, As-Seeb and
Muscat in Muscat Governorate; Nizwa in Al-Dakhliah
Governorate; Salalah in the Dhofar Governorate and Al-Dugm in
Wusta Governorate. In contrast, a low association between
COVID-19 infection rate and PCl1 was found in Daba in
Musandam Governorate and Al-Sunaynah in Al-Brahimi
Governorate (Figure 8). Figure 10 exhibits the local coefficient
assessments for each of the explanatory variables, presented from
high to low. The positive significant associations between COVID-
19 infection rate and PC1 varied substantially, and the coefficients
ranged from 0.1327 to 0.2374 (Figure 10a). Positive associations
were also identified between COVID-19 infection rate and PC2,
with coefficients ranging from 0.330 to 0.4017 (Figure 10b). High
relational values were observed in the most northern portion of the
study area, while the lowest values were found in the southern part.
Therefore, positive associations were detected between the infec-
tion rate and PC3, with coefficients ranging from 0.528 to 0.551
(Figure 10c). The goal of these maps was to examine the spatial
changes of the disease occurrence based on socioeconomic vari-
ables. The distribution of locally weighted R? between the per-
ceived, equipped values and the deviance residuals displayed,

— —
75 150
Kilometers

which prototype had a higher symmetry of dependent-variable
variance estimated by the regression model (Figure 11a and b). The
locally adapted strengths changed spatially, as seen in the map of
local R? (Figure 1la), which indicates that the high-occurrence
areas were better suited than the low-occurrence ones. The local R?

values, which suggest the impacts of the elected socioeconomic
variables on the COVID-19 cases, were perceived to be the high-
est, with the R? ranging from 0.92 to 0.93 in As-Seeb, Bowsher,
Mutrah, Muscat, Al-Amrat, Barka, Bid-Bid, Nakhal, Wadi Al-
Maawil, Al-Awabi, Al-Musanah, Al-Suwayq, Al-Rustaq,
Qurayyat, Wadi Bani Khalid, Sur, Al-Qabil, Izki, Nizwa, Manah
and Al-Hamra (Figure 11). The statistics presented in the residuals
map show that the residuals followed a normal distribution, with a
mean of —2.411 and a standard deviation (SD) of 14.71. Most of
the locations had standardised residuals close to 0. The GWR
model made fewer over- and underestimations (with the standard-
ised residuals more than one SD away) than GLM. On the basis of
the results, we utilised GWR to assemble a predictive map for clas-
sifying areas with potential future outbreaks (Figure 11c¢).
Although global and local regression were used to examine the
associations between different combinations of the socioeconomic
factors and the COVID-19 infection rate for the whole Oman,
GLM was also used to model the regional differences (specific
model for each governorate). The global model explained 95% and

Table 4. Comparison of local and global models.

Mode
)

Generalized linear Poisson regression 0.86 25174
Geographically weighted Poisson regression 0.93 13379

AIC,, corrected Akaike information criterion.

Figure 9. Local R’ relationships between the COVID-19 infection rate and the three main components. a) COVID-19 infection rate
and PC1; b) COVID-19 infection rate and PC2; ¢) COVID-19 infection rate and PC3.
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99% of the impacts of the socioeconomic variables on the COVID-
19 infection levels of the Muscat and Al-Batinah North gover-
norates, respectively (Table 5). The coefficient values displayed in
Appendix A, S3 show that PC1 and PC2 had strong correlations
with the COVID-19 infection levels. Figure 12 shows the predic-
tive maps for classifying areas with potential future outbreaks of
the Muscat and Al-Batinah North governorates, respectively.

a) Local coefficients (PC1)
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b) Local coefficients (PC2)
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Table 5. Summary of hypothesis validation and its applicability
to global and local models of regional difference.

Muscat 0.95 6711
Al-Batinah North 0.99 107

AIC,, corrected Akaike information criterion.

¢) Local coefTicients (PC3)

Figure 10. Local coefficients for the geographically weighted regression model. a) coefficients between COVID-19 infection rate and
principal component (PC) 1 (ranging from 0.1327 to 0.2374); b) coefficients between COVID-19 infection rate and PC2 (ranging from

0.330 to 0.4017); c) coefficients

etween COVID-19 infection rate and PC3 (ranging from 0.528 to 0.551).
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Figure 11. COVID-19 infection rate in the study area including deviance and predictive information. a) Local percentage deviance in
the geographically weighted regression based on a prediction model of COVID-19 infection rate in the study area; b) Deviance residuals
showing which model had a higher proportion of dependent-variable variance accounted for by the regression model; ¢) Predictive

information on the possible COVID-19 outbreak areas.
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Discussion

Although GWR, GLM and OLS are potent tools for modelling
the relationships between such variables and predicting the geo-
graphic distribution of viruses (Pirdavani et al., 2014; Su et al.,
2017), these models are affected mainly by multicollinearity
(Bager et al., 2017; Wheeler & Tiefelsdorf, 2005), and as such,
PCA was applied in this study to reduce data dimensions, keeping
only the most significant and non-correlated components.

The LBR results revealed that certain variables, age in partic-
ular, contributed significantly to the increased COVID-19 infec-
tion rate in Oman during the study period (Table 2). This is hardly
surprising as it is known that younger people infected by COVID-
19 generally have mild symptoms and therefore move around
unhindered by the disease (Ludvigsson, 2020).

The large number of non-Omani residents had a meaningful
influence on the COVID-19 infection rate in Oman. The expatriate
population, numbering around 2/5 of the total population, largely
live in more crowded situations than the nationals and have been
found to have a comparatively higher rate of COVID-19 infection
rates. In accordance with similar studies worldwide (Kadi &
Khelfaoui, 2020; Sannigrahi et al., 2020; Sun et al, 2020b) our
study discovered a positive association between the COVID-19
infection rate and variables, such as population density, number of
households, spatial interaction and social charity in the study area
(Figure 2 and Appendix B, S1).

The results of the multiple clustering model revealed that out
of the 61 wilayats examined in this study only three were high risk
and five at medium risk, while 15 were at low risk and as many as
38 were at a very low risk. The MC results also indicated that the
clustering digressed in August (Appendix A, S2). One reason for
this may be complete closure between the Sultanate governorates
enacted between July 25 and August 8, 2020. A second reason may
be related to the decision to prohibit movement in all the sultanate
governorates from 9:00 p.m. to 5:00 A.M. from August 8 August

== High

—
0 25 50
Kilometers

15, 2020. An earlier analysis showed that the geographical distri-
bution of COVID-19 events in Oman varies greatly in time and
space from one willayat to another (Al-Kindi ez al., 2020).

LBR was used in this study to examine the correlations
between the number of infected people and the socioeconomic
variables for developing a correlation model. Based on this corre-
lation model, we constructed a more complex predictive model for
assessing the relative impacts of the candidate socioeconomic vari-
ables. While the GWR model was used to define a spatial model
for the dependent and independent variables to represent a hedonic
model with geographically varying weights, GLM was used to
establish the relational attributes of explanatory variables globally.
Both models were affected by multicollinearity, so we were unable
to introduce or run more than 40% of the candidate explanatory
variables before applying PCA.

Comparisons of regression models are essential to understand
factors such as socioeconomic status that may impact the COVID-
19 infection rate in the study area (Mollalo ef al., 2020). According
to the GLM results, most of the introduced variables have the
potential to perform a significant role in increasing or decreasing
the COVID-19 infection rate in the study area. This approach is
therefore useful for understanding what is happening in a location
as some socioeconomic factors can have global impacts without
spatial variation. The GWR model had an AIC, value >2086 and
explained 92% of the goodness of fit. The overall AIC, result for
the GWR model was less than for GLM. The lower AIC, statistic
in the observed results indicates that the GWR model would be
preferable (Tables 4 and 5). The GWR coefficients are also an
effective means to visualise the spatial variation of the association
between a descriptive variable and a target variable. In this com-
parison, the GWR model was found to be better suited to capturing
spatial variations in the number of infected people in relation to
socioeconomic status. The study results reveal positive coefficient
relationships between COVID-19 infection rate and the socioeco-
nomic factors in the study area (Figure 9). The coefficient maps

b)

== High

25 50
Kilometers

Figure 12. Predictive details of probable COVID-19 presence in the epidemic areas in two governorates. a) Muscat; b) Al-Batinah North.
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created with GWR show where each variable had the strongest
impact on the regression across the study area, ranging from strong
positive relationships to weak positive relationships (Figure 10).
The maps of standard residuals, predictive values and R? values
permitted us to recognize the confluence of factors that are most
favourable to survival and prevent the growth of COVID-19
(Figure 11). These results suggest that Poisson regression GWR
and GLM can address unobserved spatial non-stationary relation-
ships.

Like various studies worldwide (Ahasan et al., 2020; Asante &
Mills, 2020; Cao et al., 2020; Kwok et al., 2020), our study proved
that the spatial relationship tools have the power to discover asso-
ciations amid COVID-19 infection rate and socioeconomic vari-
ables and predicting the future of COVID-19 at various scales. The
models built in this study can be used against the spread of
COVID-19 in Oman for various control management purposes.

Spatial modelling was used to detect relationships between
COVID-19 and demographic and socioeconomic factors. GLM
and GWR were adopted to detect the relationships between
COVID-19 rates and demographic and socioeconomic variables in
Oman. The GWR model showed an enhancement in model perfor-
mance, as designated by lower AIC, and goodness-of-fit compared
with the GLM. The local R? values indicated the influence of the
elected socioeconomic factors on COVID-19 cases. Understanding
the variables related to high COVID-19 rates can help authorities
in Oman make predictions about future outbreaks and allocate pre-
vention resources more effectively. However, it is noteworthy that
data at a higher spatial resolution are needed to provide a more
detailed spatial assessment of the response of the Omani commu-
nity to COVID-19 under different environmental and socioeco-
nomic conditions. Also, more sophisticated data analysis and man-
agement tools and techniques (e.g., artificial intelligence and deep-
learning algorithms) are needed to isolate the joint impact that can
be introduced by some variables, allowing the relative importance
of each independent variable to be defined at a more detailed spa-
tial scale (e.g., urban vs. rural areas). In this context, the use of the
advanced techniques use here can be an avenue for future research
to enhance current understanding of the spatial and temporal pat-
terns of COVID-19 pandemic in Oman. Climatic variations and
environmental variables may also perform critical roles in intensi-
fying the expansion, development, and forgiven of COVID-19.
These prototypes might be worthy of forecasting the spatial distri-
bution and densities of the number of infected people under pre-
dominating conditions at each season’s commencement.

Conclusions

Knowledge of the factors associated with elevated concentra-
tions of COVID-19 would assist the Omani authorities to make
predictions for potential pandemics and to carry out pandemic-pre-
ventive facilities. Spatial statistics provide powerful tools to detect
relationships amid COVID-19 and demographic and socioeconom-
ic factors. The use of advanced techniques can be an avenue for
research work in the future to enhance current understanding of the
spatial and temporal patterns of COVID-19 pandemic.
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