
Abstract
The tropical climate of Thailand encourages very high

mosquito densities in certain areas and is ideal for dengue trans-
mission, especially in the southern region where the province
Nakhon Si Thammarat is located. It has the longest dengue fever
transmission duration that is affected by some important climate
predictors, such as rainfall, number of rainy days, temperature and
humidity. We aimed to explore the relationship between weather
variables and dengue and to analyse transmission hotspots and
coldspots at the district-level. Poisson probability distribution of
the generalized linear model (GLM) was used to examine the
association between the monthly weather variable data and the
reported number of dengue cases from January 2002 to December
2018 and geographic information system (GIS) for dengue hotspot
analysis. Results showed a significant association between the
environmental variables and dengue incidence when comparing

the seasons. Temperature, sea-level pressure and wind speed had
the highest coefficients, i.e. β=0.17, β= –0.12 and β= –0.11
(P<0.001), respectively. The risk of dengue incidence occurring
during the rainy season was almost twice as high as that during
monsoon. Statistically significant spatial clusters of dengue cases
were observed all through the province in different years. Nabon
was identified as a hotspot, while Pak Phanang  was a coldspot for
dengue fever incidence, explained by the fact that the former is a
rubber-plantation hub, while the agricultural plains of the latter
lend themselves to the practice of pisciculture combined with rice
farming. This information is imminently important for planning
apt sustainable control measures for dengue epidemics.

Introduction
The global emergence, resurgence and redistribution of infec-

tious diseases are affected by the current warming climate
(Pachauri et al., 2014), particularly those transmitted by insects.
According to the World Health Organization (WHO), infectious
diseases are often highly sensitive to climate variations (WHO,
2005; Tian et al., 2015). Climate change, especially with regard to
temperature, precipitation patterns and extreme weather events, is
known to affect the emergence, incidence and geographical distri-
bution of vector-borne diseases (Githeko et al., 2000). Across the
geographically diverse regions of Thailand, the El-Nino Southern
Oscillation (ENSO), the natural weather phenomenon that occurs
periodically, is an important driver of dengue incidence
(Tipayamongkholgul et al., 2009) and can therefore be seen as an
important predictor of this kind of epidemic (Xiao et al., 2018). To
have an informed optimal public health response, there is a need
to be able to predict the direction and extent of weather effects
(Braks et al., 2014) and dengue haemorrhagic fever among other
re-emerging arthropod-borne viral (arboviral) diseases of great
public health importance has been shown to have spread across
tropical and subtropical countries in the world. For example, about
75% of the global population exposed to dengue live in the Asia
Pacific (WHO, 2011, 2012), and it is the leading cause of hospi-
talization and death in children in the population of the 1.3 billion
at-risk individuals who live within the region (Gubler, 2002;
WHO, 2011, 2014). Dengue epidemics continue to occur in the
Southeast Asia region with a regular cycle of 3 to 5 years, with
disease severity and the number of cases currently increasing, par-
ticularly in Thailand, Indonesia and Myanmar (Shepard et al.,
2013).

The tropical climate of Thailand encourages very high
mosquito densities and is ideal for the transmission of dengue
fever. In southern Thailand, severe dengue is influenced by the
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mean temperature (Xu et al., 2019), number of rainy days, amount
of rainfall and relative humidity (Wongkoon et al., 2016a). The
distinctive climate (i.e. having hot and humid weather almost all
year round) and terrain of Nakhon Si Thammarat province is ideal
for dengue transmission. A report has shown that of all provinces
in the south of Thailand, the Trang and Nakhon Si Thammarat
provinces have the longest dengue transmission duration from
June to September compared to Krabi, Phuket, Ranong,
Chumphon, and Surat Thani provinces with a dengue transmission
duration from June to August (Wongkoon et al., 2016a).

Currently, geographic information systems (GIS) are increas-
ingly used in disease epidemiology to identify, assess and analyse
possible risk factors with respect to climatic, demographic and
socio-economic variables. In the modulation of disease dynamics,
spatial analysis tools in GIS software are often used to address epi-
demiological problems especially in high-risk areas (Rotela et al.,
2007; Mondini and Chiaravalloti-Neto, 2008; Wu et al., 2009;
Jeefoo et al., 2011). To test and detect the spread and pattern of dis-
ease incidence, the methodology includes spatial autocorrelation
analysis, cluster analysis and temporal analysis (Brownstein et al.,
2002; Tsai et al., 2009). For public health surveillance and under-
standing the growing incidence of mosquito-borne infections,
improved progression in GIS has led to discovery and focus on dis-
ease clusters (hotspots) as they illustrate the dynamics of disease
spread (Yeshiwondim et al., 2009). Especially where disease
surveillance and control need to be targeted, spatial, temporal and
space-time clustering are useful in identifying high-risk areas and
spatially and temporally (Si et al., 2008). In this study, we focused
on the number of reported dengue cases per 100,000 population for
each district. Hotspots are statistically significant clusters that can
feature high and low values and we used the Getis-Ord Gi* tool as
it considers clusters in the context of neighbouring clusters. High
values may be of interest but not necessarily statistically signifi-
cant. For a feature to be a statistically significant hotspot, it has to
have a high value and be surrounded by other clusters with high
values as well. The situation is the same for coldspots, but here we
are talking about low values surrounded by areas with similarly
low values. Getis-Ord Gi* is not designed to detect spatial outliers
as it interprets significant values only; thus positive Gi* indicates
local clustering of high values (i.e. hotspots) and negative Gi*
indicates local clustering of low values (i.e. coldspots) as we
exclusively focused on these features.

Environmental factors such as temperature, rainfall, humidity
and pressure are often used in statistical and mathematical models
to study the association and relationship between weather variables
and dengue incidence (Stewart-Ibarra and Lowe, 2013; Wongkoon
et al., 2016a; Xiao et al., 2018; Xu et al., 2019). However, in this
study, we included additional weather factors, such as the number
of rainy days, wind speed, evaporation, cloud cover, sea-level pres-
sure and population numbers at the district level. In climate-health
studies, modelling the relationships between environmental vari-
ables and diseases can be challenging due to their complex nonlin-
ear interactions that require particular models; hence the use of the
generalized linear model (GLM) Poisson distribution to detect the
association of climate variables and dengue cases. 

It is important to understand the evolving pattern and trend of
dengue as it determines the success of prevention and control inter-
vention measures. To comprehend the spatial distribution of
dengue at the district level, a retrospective study was conducted in
the Nakhon Si Thammarat province in Thailand from 2002 to
2018. The purpose of the present study is to observe the relation-

ship of climate variables and dengue cases at the district level, and
also to examine the spatial distribution of dengue cases and identi-
fy dengue hotspots and coldspots districts by using GIS tools and
applying the spatial cluster analysis techniques such as Getis-Ord
Gi*statistics.

Materials and methods

Study area
Nakhon Si Thammarat province is located in the south of

Thailand which is distinctive in climate, terrain and resources. It has
a total area of approximately 9,942.5 km2 (3838.8 sq. mi) and a pop-
ulation in 2019 of 1,560,433 (771,530 males and 788,903 females)
according to the provincial office (City Population, 2019; Provincial
Office, 2021), which corresponds to a population density of 157
inhabitants/km2. The province is situated between latitude 8°25′7″ N
and longitude 99°57′49″ E on the western shore of the Gulf of
Thailand encircled (clockwise from the south) by the provinces of
Songkhla, Phattalung, Trang, Krabi and Surat Thani (Figure 1).

Nakhon Si Thammarat province is divided into 23 districts,
which are further divided into 165 sub-districts and 1429 villages.
There are three distinct weather patterns in a year. The summer
season lasts from mid-February to mid-May and is followed by a
rainy season that ends in mid-October, while the monsoon period
extends from November to January.

Data collection
This research was a quantitative retrospective study based on

mathematical models and statistics for the analysis of the collected
secondary numerical data, predict the probability of dengue inci-
dence and show hotspot and coldspot districts of Nakhon Si
Thammarat.

Epidemiological data 
Monthly reported dengue fever cases from January 2002 to

December 2018 of all 23 districts in Nakhon Si Thammarat were
obtained from the R506 national disease surveillance report system
put in place by the Bureau of Vector-Borne Diseases, Ministry of
Public Health, Thailand (Bureau of Epidemiology, 2019). The
R506 national surveillance system, which shares similarities with
the Centres for Disease Control and Prevention (CDC) in the
United States, obtains data from public hospitals and health centres
and codes disease entries according to the 10th issue of the
International Classification of Disease Codes (ICD-10). Based on
regulations by WHO (WHO, 1997), all identified dengue cases
including clinical criteria are required to be reported to the surveil-
lance system by public hospitals and clinics every week
(Department of Disease Control, 2001). Dengue fever is defined as
the presence of acute fever with at least two clinical symptoms,
such as muscle pain, beck-eye pain, severe headache, high fever,
positive tourniquet test, or a leukocyte count <5000/μL (Ministry
of Public Health, 2019). In addition to a combination of any of the
above clinical symptoms, defined cases of dengue haemorrhagic
fever have a 10-20% haematocrit elevation. Serology confirmation
of all reported cases varies between 10 and 50% (Ministry of
Public Health, 2019). There is considerable uncertainty regarding
the severity and duration of symptoms and that affects the degree
to which patients seek medical attention; hence, self-reported data
underestimates the real outcome of infectious diseases.

                   Article
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District population data
Population data from each district of the province from the

period of January 2002 to December 2018 were obtained from the
Department of Provincial Administration with a registration statis-
tics system database (Department Provincial Administration,
2019). 

Weather variables
Monthly data from six weather stations in Nakhon Si

Thammarat, Surat Thani, Koh Samui, Phat Thalung, Krabi and
Trang from January 2002 to December 2018 were retrieved from
the provincial Thai Meteorological Department (TMD)
(Meteorological Department of Thailand, 2015). These include
temperature, relative humidity, rainfall, number of rainy days,
wind speed, evaporation, cloud cover and sea level pressure. The

data however obtained, are subject to some degree of uncertainty
as they are estimates of true values.

GIS mapping 
By the use of GIS techniques in ArcGIS v. 10.8.1 software

(ESRI, Redlands, CA, USA), the spatial distribution of dengue
cases were mapped district-wise. Map data files were obtained
from the office of the Department of Lands, Thailand Ministry of
Interior Services, where it was codified and available for academic
purposes at a scale of 1:1,000,000 (Thailand Interior Ministry,
2016). The information was stored based on geographical coordi-
nates using the official geodetic reference system of Thailand for
cartographic purposes, i.e. the Geographic Coordinate System
GCS_WGS_1984 UTM_Zone_47N. It maps precise spatial rela-
tionships of different geographical objects employing simple
geometry of points, lines and areas.

                                                                                                                                Article
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Figure 1. The study area covering all of Nakhon Si Thammarat Province with its 23 districts.
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Data analysis 

Temporal analysis
The yearly reported dengue cases from January 2002 to

December 2018 for each district, as well as their respective inci-
dence rates were analysed. Temporal patterns were analysed and a
classic Poisson regression between seasonal climate variables and
dengue incidence rate was carried out. 

Predictive model
A GLM was used in this study using the number of dengue

cases as count data. GLM Poisson regression analysed associations
between monthly reported dengue incidence (dependent variable)
and environmental variables (independent variables like tempera-
ture, relative humidity, rainfall, number of rainy days, wind speed,
evaporation, average cloud cover and average sea-level pressure)
over 204 months between January 2002 and December 2018. GLM
is suitable as it can include non-continuous variables, account for
nonlinear relationships and handle non-Gaussian error distribu-
tions. The probability of the disease is based on the Poisson distri-
bution (Lawless, 1987) calculated as: 

e–lly

P = ––––––                                                                               (1)
y!

where, P is the probability of y events occurring and l a constant,
which is equal to the mean and the variance. The model to find the
correlation is: ln(count) = a + b1x1 + b2x2 +…+ bkxk , where a is a
constant; b is the coefficient of each x (which is an independent
variable).

Spatial analysis

Hotspot detection
By using spatial autocorrelation regression at the local level,

different spatial cluster patterns like hotspots, coldspots, high-risk
can be identified in a study area by the Getis-Ord Gi* statistics
(Ord and Getis, 1995; Osei and Duker, 2008; Getis and Ord, 2010).
Hence, this method was chosen to analyse dengue distribution pat-
terns and to show groupings within the study area. With the confi-
dence levels (CLs) set at 90%, 95% and 99%, the output was cal-
culated and given in form of Z-scores and P-values from Gi* statis-
tics. The Z-score identifies spatial clustering of low values
(coldspots) and high values (hotspots) through the Mapping
Clusters tool in the Spatial Statistics Tools suite of ArcGIS (ESRI
2021) and is defined as:

                                                      

(2)

where Gi* is the Z-score; xj the attribute value for feature j; wi,j the
spatial weight features between the neighbourhood points i and j;
n equal to the total number of features; with

as the mean of variable x over all js; and

as the standard deviation of variable x over all js

The neighbourhood is the key element for groupings. It is
important to note that from the point of view of dengue distribu-
tion, even though a spot reaches a high Gi* value and automatical-
ly becomes relevant, it may not be a statistically significant hotspot
(as it may be an outlier). For a location to be regarded as a statisti-
cally significant hotspot, it must have a high Gi* value and be sur-
rounded by neighbours of high values as well (Getis and Ord
2010). In selecting a distance method for the conceptualization of
spatial relationship, the inverse distance (which has the assumption
that the farther away an element is, the smaller the impact it has)
option was chosen as it shows clear transition areas (Sánchez-
Martín et al., 2019). With the inverse distance option, the calcula-
tion method for the distance between neighbourhoods was chosen
as the Euclidean distance, which defines the shortest possible dis-
tance between points i and j (straight line).

As evidence to enable apt sustainable decisions by policymak-
ers, this study precisely identified the geographical location of
hotspots and coldspots of reported dengue cases of spatial relation-
ship within the districts of Nakhon Si Thammarat Province,
Thailand.

Results

Temporal analysis
The largest dengue incidence events occur during the rainy

season except in 2006, 2011, 2012 and 2013 where the largest inci-
dence was reported in summer (for 2006, 2011 and 2013) and dur-
ing the monsoon (for 2012). The total number of reported dengue
cases in Nakhon Si Thammarat from 2002 to 2018 was 46,087.
The highest recorded cases were in the Muang, Thungsong and
Thasala districts with 9025, 5629 and 3270 cases, respectively,
while the districts with the least recorded cases were Khanom,
Churaphon, and Tham Phanra with 934, 621, 502 cases respective-
ly (Figure 2). The highest number of recorded cases were in the
years 2002 and 2010 (6412 and 6045 cases, respectively), while
the lowest occurring cases were in 2004 and 2006 (697 and 646
cases, respectively) (Figure 3). As for dengue incidence (i.e. the
number of cases per 100,000 inhabitants) over the years, the top
three districts were Nabon, Lan Saka and Phrom Khili, while the
least three were Churaphon, Sichon and Pak Phanang districts
(Supplementary file S1).

There seems to be a 2-3 year epidemic cycle in the number of
recorded cases in each district as observed in our study (Figure 3).
This was also the case at the national level. In the years 1997 and
1998, Thailand incidence rate of dengue cases was at its peak
recording about 167.2 and 211.4 cases per 100,000 inhabitants,
respectively. However, the recorded incidence rates in 1999 and
2000 declined to the corresponding values of about 40.3 and 30.2,
which later rose to peak again in 2001 and 2002 to reach 225.4 and
168. 

In all districts, the number of dengue cases increased from
April to a peak in July and then declines in October (Figure 4).
This means that every year, most cases occur from April to October
in the study area, which can be vividly observed for the Thung
Song and Muang districts. When computing the total dengue inci-
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dence over the whole province for the different seasons, it is obvi-
ous that the largest incidence was during the rainy season (mid-
May to mid-October) followed by the monsoon from November to
January, while summer from mid-February to mid-May had the
lowest incidence (Supplementary file S1).

During the study period, it was observed that across the dis-
tricts the weather variables showed monthly average values rang-
ing from 26.3°C to 28.3°C for temperature, 79.1% to 87.6% rela-
tive humidity, total monthly rainfall from 43 mm (in February) to
378 mm (in November), 5 to 21 rainy days, 1.1 to 1.8 knots wind
speed (1.334 km/h), 78 mm to 136 mm pan evaporation, average
cloud cover of 5 to 7.3 okta (Okta is a measurement unit of cloud
amount. An okta represents a cloud amount of one eight or less but

not zero) and average sea-level pressure of 1008.4 hPa to 1011.4
hPa. Relative humidity, rainfall, number of rainy days, and average
cloud cover begins to increase from April (Figures 5-8). 

Poisson regression 
GLM Poisson analysis was used to investigate the association

between climate variables and the occurrence of dengue cases in
Nakhon Si Thammarat. From Table 1, the seasonal influence of cli-
matic factors on dengue incidence over the period shows that all
explanatory variables are significantly associated with the number
of dengue cases, some more than others. The number of rainy days,
windspeed and sea-level pressure were negatively associated with
dengue cases, while the others were positively associated, e.g. tem-

                                                                                                                                Article

Figure 2. The number of dengue fever cases in all Nakhon Si Thammarat districts from 2002 to 2018.
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Table 1. Correlation between variables, regressors and P-values.

Variable                       �                            b                                     RR 95% CI                                           P-value
                                                                                                                                   Lower                             Upper                               

Constant                                                                113.221                                                                                                                                                                                   
Temperature (°C)                                                0.170                                           1.185                           1.162                                          1.208                                    <0.001
Relative humidity (%)                                          0.044                                           1.045                           1.039                                          1.050                                    <0.001
Rainfall (mm)                                                       0.0004                                         1.0004                         1.0003                                       1.0004                                   <0.001
Number of rainy days (days)                            –0.007                                          0.993                           0.990                                          0.996                                    <0.001
Windspeed (knots)                                             –0.105                                          0.900                           0.888                                          0.912                                    <0.001
Pan evaporation (mm)                                        0.002                                           1.002                           1.001                                          1.003                                    <0.001
Average cloud cover (okta)                                0.039                                           1.039                           1.023                                          1.056                                    <0.001
Average sea level pressure (hPa)                   –0.119                                          0.888                           0.877                                          0.899                                    <0.001
Season                                  Summer                   0.269                                           1.309                           1.259                                          1.362                                    <0.001
                                               Rainy                         0.595                                           1.812                           1.759                                          1.867                                    <0.001
                                               Monsoon                    0                                                  1                                   -                                                 -                                             -
RR, relative risk; CI, confidence interval.
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perature and sea-level pressure had the highest coefficient of
β=0.17 and β= –0.12 (P<0.005), respectively.

The regression equation suggests that on average every month
(for about the past two decades), the dengue incidence changes by
the corresponding β coefficient for every unit change in the weath-
er variable used. The climate variables temperature, windspeed
and sea-level pressure seem to have the most effect on reported
dengue cases in Nakhon Si Thammarat province; while those with
the least effect are rainfall and pan evaporation. In addition, newly
reported dengue cases are twice as likely to occur during the rainy
season than monsoon. 

The Poisson distribution regression model between dengue

cases and seasonal climate variables can be written as:

(Dengue cases)
= 113.221 + 0.170 (temperature) + (relative humidity)
+ 0.0004 (rainfall) – 0.007 (number of rainy days) -0.105 (windspeed)       
+ 0.002 (Pan evaporation ) + 0.039 (average cloud cover)
– 0.119 (average sea –sea-level pressure) + 0.269 (summer) + 0.595
(rainy)

Compared to the monsoon season, the relative risk of dengue
incidence was 1.8 and 1.3 times (β=0.595, β=0.269) significantly
higher during rainy and summer seasons, respectively. Also,
according to our study, the relative humidity was observed to be

                   Article
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Figure 3. Yearly dengue cases according to each district in Nakhon Si Thammarat from 2002 to 2018.

Figure 4. Monthly dengue cases according to each district in Nakhon Si Thammarat from 2002 to 2018.
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Figure 5. Average monthly and seasonal relative humidity in relation to number of dengue cases.

Figure 6. Average monthly and seasonal rainfall in relation to number of dengue cases.
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Figure 7. Average monthly and seasonal number of rainy days in relation to number of dengue cases.

Figure 8. Average monthly and seasonal cloud cover in relation to number of dengue cases.
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highest during monsoon, which may have a negative effect on
mosquito abundance. The temperature and pan evaporation, on the
other hand, appeared to be the lowest during this time resulting in
a significant positive effect on dengue incidence. Average sea-level
pressure is negatively correlated to dengue incidence rate but sig-
nificant enough to have an effect (P<0.01). 

In our study, population influences dengue incidence as dis-
tricts with the highest population such as Muang, Thasala, Phra
Phrom, and Charoem Phakiat were shown to be dengue hotspots
over the years (Figure 9). 

Hotspot analysis
Results based on the Getis-Ord Gi* statistics (Figure 9) shows

the yearly hotspot and coldspot analyses in Nakhon Si Thammarat
province identifying the statistically significant spatial clusters of
high and low values of dengue incidence from 2002 to 2018; as
well as cumulatively during the study time period. Statistically sig-
nificant spatial clusters of dengue cases were observed all through
the province in different years. We noted negative Z-score values
in the districts of Sichon (99% CL in 2010), Pak Phanang (99% CL
in 2015) and Thungsong (95% CL in 2018) showing that low val-
ues of the spatial distribution of dengue cases in the data set were
more clustered than would be expected indicating coldspots. On
the other hand, positive Z-score values in the districts of Nabon,
Nophitam, Thasala and Lansaka (99% CL); Thungsong, Muang
and Chawang (both at 99 and 95% CL observed across the years in
Figure 9); Pipun, Bangkhan, Churaphon and Phra Phrom (99%
CL); and Charoem Phakiat, Khanom and Phromkili (95% CL)

show that the spatial distribution of high values of dengue cases
were more clustered than would be expected indicating hotspots.
In essence, we observed that the spatial clustering of high values
of dengue cases was more pronounced than expected in a random
distribution of dengue infection in Nakhon Si Thammarat as a
whole. 

Discussion
In different subtropical and tropical regions of the world, stud-

ies have been carried out on dengue and climatic factors; however,
unlike those studies that mostly use temperature, rainfall and rela-
tive humidity as climate variables, this study includes other climate
parameters like number of rainy days, wind speed, pan evapora-
tion, cloud cover, sea-level pressure and population at the district
level. It also provides useful information on dengue incidence
trends and mapping patterns as it is imminently important to con-
trol dengue outbreaks by monitoring and planning sustainable con-
trol measures for epidemics.

Temporal analysis of climate factors has shown that in Nakhon
Si Thammarat, the incidence of dengue infection spikes from the
months of April to October, which is more than it was reported
(from May to September) in the Chachoengsao province situated
in the central region of Thailand (Jeefoo et al., 2011). Poisson cor-
relation results of climate variables show a statistically significant
result which is similar to a study conducted in Kuala Lumpur
(Sulekan et al., 2021). According to Woongkoon et al., Nakhon Si
Thammarat province has the longest dengue transmission duration

                                                                                                                                Article
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Figure 9. Map of Nakhon Si Thammarat Province showing the spatial clusters of dengue incidence from 2002 to 2018 by district.
Hotspot and coldspot analyses based on Getis-Ord Gi* statistic. 
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in the Gulf area of Thailand from June to September (Wongkoon
et al., 2016a). The reported dengue cases, which are highest during
rainy season, could be as a result of average cloud cover and num-
ber of rainy days being highest in the rainy season; as it is known
that the larval stage of a mosquito vector is aquatic and so more
rainy days increases vector population size and adult survival
(Gubler et al., 2001) by the presence of artificial water bodies in
discarded containers around the household. Both variables are
equally suited to understand their relationship with dengue inci-
dence as they show the highest correlations and are positive. Also,
considering cloud cover in developing spatial and temporal models
improves methods that investigate dengue epidemic changes (Tian
et al., 2016). 

Wind is known to have a dual effect that could either be posi-
tive or negative on mosquito vectors and their hosts. Wind speed
results from our regression show a negative relationship with
dengue incidence which was also found in other studies conducted
in Vietnam, Barbados Sri Lanka and Malaysia (Depradine and
Lovell, 2004; Cuong et al., 2011; Ehelepola et al., 2015; Sulekan
et al., 2021). This shows that even though flight distance of
mosquito may increase with wind thereby subsequently increasing
human infection, strong winds do reduce mosquito density as well
as biting opportunity making it difficult to find a host (Reid, 2000).
Temperature significantly influences dengue infection. Due to the
spatial-temporal distribution of mosquito-borne diseases affected
by temperature, it is possible for the insects in low-latitude regions
to find new habitats in mid- or high latitude regions and areas of
high altitude as the temperature continues to rise, leading to geo-
graphical expansion or shift of diseases (Wu et al., 2016). Also,
rainfall has been shown to significantly influence dengue inci-
dence. Initially, rainfall is needed for mosquito larvae habitat, but
incessant rainfall destroys these habitats, sweeping away the lar-
vae. In Thailand, rainfall is strongly an influential weather factor in
all provinces for dengue incidence (Chumpu et al., 2019). 

Average sea-level pressure shows a significantly negative rela-
tionship to dengue cases in our study. A report by
Tipayamongkholgul et al., suggests that sea-level pressure is a pre-
dictor of dengue epidemics in mountainous provinces of Thailand
(Tipayamongkholgul et al., 2009) and it is reported that the salini-
ty-tolerant mosquito vectors along the coasts are influenced by ris-
ing sea levels. Even though the predominant dengue vector (Ae.
aegypti) in Thailand is a freshwater breeder, a rise in sea level
could lead to its acclimation to breed in brackish or saline waters
(Ramasamy and Surendran, 2011). According to literature, a limit-
ed short-term increase in salinity is tolerable to the Ae. aegypti lar-
vae as it possesses the necessary physiological mechanisms
resilient to such changes (Edwards, 1982). In vector control pro-
grams, brackish or saline water bodies are often neglected but
advanced understanding in vector biology and relevant pathogen
information could be crucial in developing effective counter con-
trol measures. In predicting the changing risk for infectious dis-
eases caused by climate change, it is important to recognise that
socioeconomic factors play a role. Here, population influences
dengue incidence, and the top three densely populated districts are
Muang, Thasala and Phra Phrom. Muang and Phra Phrom districts
are in the top ten districts with the highest incidence rates and look-
ing at Figure 1, these districts are adjoining. Muang is the admin-
istrative capital of the province so perhaps the movement patterns
of people and spatial heterogeneity of human activities could
encourage dengue transmission. One could say that dengue cases
in surrounding districts could influence the number of dengue

cases in a particular district.
To superimpose the temporal and spatial distributions of

dengue cases, GIS is a powerful tool that can be used based on its
application of ecological determinants like climate, landscape
ecology, vector population, human presence and activity. Spatial
distribution of dengue through cluster analysis and epidemiologi-
cal scenarios was investigated in all 23 districts of the province.
Looking at the hotspot analysis map from 2002 to 2018 Figure 9,
Nabon is observed as a hotspot for dengue infection while Pak
phanang is a coldspot. Statistically significant spatial clusters of
dengue cases were observed all through the province in different
years. This random distribution means that dengue infection in the
province is not restricted to a particular region but that any district
could be at risk of epidemic regardless of the year. Needless to say
that population density is an important factor for dengue transmis-
sion, both Aedes mosquito vectors are adapted to the urban and
peri-urban environment extremely well so much so that dengue is
today a largely urban problem. While the Aedes aegypti mosquito
lives in proximity to human habitations breeding mostly in man-
made containers; Aedes albopictus populations are known to be
more stable and established in areas with open spaces and vegeta-
tion better acclimated to cooler climates spreading the infection. 

The topography of the study area is mountainous in nature
(Provincial Office, 2021). The central mountain range include dis-
tricts Thasala, Lansaka, Phrom kili and Muang which has shown a
trend of being a dengue hotspot district over the years (Figure 9).
Due to a changing climate, dengue fever cases are rapidly increas-
ing in mountainous areas. The increase in potential duration of epi-
demic transmission season by some model projections have pic-
tured a potential increase in altitude and latitude range of dengue
mosquito vectors (Jetten and Focks, 1997), this could explain how
across the study years, these districts have shown unexpected
spikes of spatial clusters of high values consistently marking them
as hotspot areas. Pak phanang district was observed to be a
coldspot district, perhaps this could be because it is predominantly
a rice-producing region including neighbouring districts like
Huasai, Wichian Yai, and Cha uat, where the rice farmers practice
fish culture in rice paddies. Mosquito-eating fish are introduced to
the rice paddies to reduce vector population. Agricultural commu-
nities in southern India that practice pisciculture in their paddy
fields observed 81% reduction of Anopheline population; so also in
China where mosquito population decreased by 90% providing the
farmers a net profit 2.5 times more than rice paddies where only
rice was cultured (Wu et al., 1991; Victor et al., 1994). This has
shown that successfully promoting pisciculture in rice farming is
not only an effective strategy in mosquito vector control, it also is
economically beneficial in attracting farming communities to par-
ticipate in reducing dengue transmission.

The hilly western plains situated between the mountains of the
study province include hotspot districts like Nophitam, Pipun,
Chawang, Nabon, Thunsong and Bangkhan also shows the random
spatial distribution of high-value clusters (Figure 9). The Nabon
district which is seen to be the top hotspot over time is known to
be the rubber plantation hub of the entire province. In rubber plan-
tations, tree holes, latex-collection cups and water-storage contain-
ers around the homes of rubber-plantation workers are potential
breeding sites for the Aedes mosquito (Thammapalo et al., 2011;
Paily et al., 2013); exposing those living within the vicinity to day-
biting mosquitoes. A study in Thailand suggests that townhouses
have 18.3 times lesser odds of having at least a container with
Aedes larvae when compared to rubber plantation houses
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(Thammapalo et al., 2005). In latex-collection cups containing
rainwater, Aedes albopictus lay their eggs producing adult
mosquitoes during rainy seasons. Unlike Africa, in Southeast Asia,
rubber-plantation workers tap latex at night when the yield is high-
est making them exposed to mosquito bites; hence, it is safe to say
that rubber plantation risks of mosquito-borne disease transmission
depend on the daily activities of workers and seasonality of their
work (Tangena et al., 2016).

According to Clark et al. (2005), the economic burden of
dengue fever in terms of financial loss per family is higher than the
average monthly income. To reduce the risk of dengue in Nakhon
Si Thammarat, identifying appropriate and sustainable vector con-
trol measures by investing in the health of those living in dengue
hotspots like Nabon district is likely to be financially beneficial
especially to the economy of the rubber industry of South-East
Asia by preventing worker absenteeism and lower productivity.
This means that vector control measures should include interven-
tions targeting both indoor and outdoor protection against biting
mosquitoes involving collaboration from within and outside the
health sector. Using both non-insecticide and insecticide-based
control measures, the health/education sector, agricultural industry
and local communities need to work hand-in-hand in choosing sus-
tainable implementation strategies supported by climate, entomo-
logical and epidemiological surveillance. Alongside vector control
measures, other strategies like improved health communication,
access to health services for prompt and effective diagnosis and
treatment, migrant community volunteer training and interaction
with health workers should be explored. These approaches are in
line with the WHO-recommended adaptive strategies for integrat-
ed vector management (IVM). Here, this study provides some pre-
vention conducts for possible dengue hotspots at the district level.

The 2-3 year epidemic cycle in the number of recorded dengue
cases in each district as observed in our study (Figure 3) was sim-
ilar to the situation at the national level. In the years 1997 and
1998, Thailand incidence rate of dengue cases was at its peak
recording about 167.2 and 211.4 cases per 100,000 inhabitants,
respectively. However, the recorded incidence rates in 1999 and
2000 declined to the corresponding values of about 40.3 and 30.2,
which later rose to a peak again in 2001 and 2002 to reach 225.4
and 168 (Thailand Health Ministry, 2001; Ongart Charoensuk et
al., 2017). These changes could explain the high number of cases
in 2002 found in our study. 

The low incidence for the year 2011 was possibly due to the
unexpected heavy rainfall that year. Rainfall is known to be a main
driver of dengue transmission; however, in excessive amounts, it
disrupts the mosquito vector life cycle flushing out the aquatic
phase from breeding sites. A study comparing weeks with no flush-
ing events to weeks with five or more flushing events found that
the risk of a dengue outbreak was significantly reduced by up to
70% (Benedum et al., 2018). Recently, the dengue incidence rate
has almost doubled from an average of 38.6 per 100,000 in 2018
to 67.6 in 2019, with the south of Thailand having a rate of 69.4
per 100,000 as of June 2019 (Thaivbd, 2019).

As shown in Figures 5-8, the relative humidity, rainfall, num-
ber of rainy days, and average cloud cover begins to increase from
April. This timing translates into dengue outbreaks in the months
of June, July and November as we report. Studies suggest that gen-
erally, dengue outbreaks happen when humidity is higher than
average just as the rainy season begins (Guha-Sapir and Schimmer
2005) as adult mosquitoes tend to survive longer in increased
humidity. Also during these months in our study, temperature, pan

evaporation and sea-level pressure (in May, June and November)
decreases (Supplementary file). Tipayamongkholgul et al. (2009)
report that sea level pressure is a constant predictor of dengue inci-
dence and outbreaks in the southern tropical coasts of Thailand. 

In Asian Pacific countries, temperature is known to be associ-
ated with the recorded number of dengue cases (Andraud et al.,
2013), its fluctuations significantly affect the Aedes vector popula-
tion (Tran et al., 2013). Laboratory experiments show that adult A.
aegypti start to die when the air temperature is above 40°C and
their larvae perish when the water temperature surpasses 34°C
(Christophers 1960). The negative association with the number of
dengue cases and the number of rainy days, windspeed and sea-
level pressure we found indicates that lesser strength of these vari-
ables influences mosquito vector survival and thus contribute to
increased dengue incidence. Also according to our study, the rela-
tive humidity was observed to be highest during the monsoon
(recording about 164 cases per 100,000 inhabitants as shown in the
Supplementary file); and when relative humidity is higher than
85%, mosquitoes may not survive longer to spread the dengue
virus. This suggests that very high relative humidity is a predictor
of diminishing dengue incidence in the Gulf of Thailand similarly
reported by Wongkoon et al. (Wongkoon et al., 2016b). However,
in certain parts of the world, such as central Europe, blood search-
ing activities of some mosquito spp. were recorded at a relative
humidity as high as 92% (Petric, 1989). 

The seasonal average cloud cover has a significant positive
effect on the reported dengue cases, as, for every unit increase in
the monthly average cloud cover, dengue incidence seemed to
increase by a value of 0.04. In southern tropical coastal provinces
such as Nakhon Si Thammarat, sea-level pressure seems to be a
constant predictor for dengue epidemics (Tipayamongkholgul et
al., 2009). However, one cannot say that these correlations imply
causality as other socio-demographic factors may also be at play.
While climatic factors may in part explain dengue cases, it is far
from being the only driver as there are probably socio-economic
drivers or non-environmental factors such as movement of people,
urbanization and population density that play a bigger role in
dengue infection outbreaks in the province. Particularly, the sea-
sonal climate phenomena especially during the rainy seasons of
Nakhonsi Thammarat drives dengue transmission. In our study,
districts with the highest population were shown to be dengue
hotspots over the years (Figure 9). This influence is supported by
other authors (Schmidt et al., 2011; Ho et al., 2018). However, Pak
Phanang, the fifth most densely populated district in Nakhon Si
Thammarat, is surprisingly a coldspot for dengue incidence.

Planning prevention and treatment activities before the dengue
season are quite difficult as the number and location of cases vary
dramatically from year to year. The random distribution statistical-
ly significant spatial clusters of dengue cases found in our study
mean that dengue infection in the province is not restricted to a
particular region but that any district is at risk regardless of the
year. On the one hand, negative Z-score values at high confidence
levels in several districts, as well as positive Z-scores in many
other districts, show both low and high values in the dataset were
more randomly clustered than would be expected. 

Strengths and limitations 
This is the first study that investigates geographical patterns of

dengue fever at the district level for a period of 17 years in the
southern region of Thailand. The findings provide evidence that
dengue hotspot districts are randomly spread across the province
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with epidemics occurring every two to three years. Also, it pro-
vides evidence of spatial dimension indicating the need to include
socio-economic and lifestyle determinants in choosing effective
dengue control measures. Dengue is an increasingly worrisome
public health problem and requires interventions tailored at the
grassroots level in every district. There are also limitations in our
study, we focused on reported dengue cases, so the data represent
only confirmed cases. The usually low level of reporting, poor dis-
ease surveillance, low case fatality rate and inconsistent compara-
tive analyses make the true incidence and impact of dengue likely
to be significantly higher than that currently reported. Still, the
information gained is sufficient to support the degree of associa-
tion between environmental variables and dengue incidence dis-
covered. Although this does not necessarily mean that one causes
the other, we can state that some environmental factors can affect
dengue incidence.

Environmental variables such as temperature, relative humidi-
ty, rainfall, number of rainy days, wind speed and evaporation
describe a region’s climate and their values are obtained by query-
ing GIS databases. This makes it subject to uncertainties as these
obtained values are estimates of the true spatial climate or predic-
tions thereof. Also, one cannot rule out the fact that spatial struc-
tures of some regions could be consistently underestimated or
overestimated as the case may be.

Conclusions and policy implication
Countries across South-East Asia will continue to depend on

agriculture and specific plantations for the foreseeable future, a sit-
uation the requires the threat of certain areas becoming hotspots
for mosquito-borne disease to be eliminated. Hence, there is a need
to further investigate the role of the climate and the socio-environ-
mental stress that supports dengue transmission, especially at the
district level. This study provides public health information on sta-
tistically significant dengue incidence hotspots using existing
health data and GIS tools supporting proficient resource allocation
and effective decision-making to curb dengue infection and
resource allocation. 
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