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Spatial autocorrelation and heterogenicity of demographic and healthcare
factors in the five waves of COVID-19 epidemic in Thailand
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Abstract

A study of 2,569,617 Thailand citizens diagnosed with
COVID-19 from January 2020 to March 2022 was conducted with
the aim of identifying the spatial distribution pattern of incidence
rate of COVID-19 during its five main waves in all 77 provinces
of the country. Wave 4 had the highest incidence rate (9,007 cases
per 100,000) followed by the Wave 5, with 8,460 cases per
100,000. We also determined the spatial autocorrelation between a
set of five demographic and health care factors and the spread of
the infection within the provinces using Local Indicators of
Spatial Association (LISA) and univariate and bivariate analysis
with Moran’s /. The spatial autocorrelation between the variables
examined and the incidence rates was particularly strong during
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the waves 3-5. All findings confirmed the existence of spatial
autocorrelation and heterogenicity of COVID-19 with the distri-
bution of cases with respect to one or several of the five factors
examined. The study identified significant spatial autocorrelation
with regard to the COVID-19 incidence rate with these variables
in all five waves. Depending on which province that was investi-
gated, strong spatial autocorrelation of the High-High pattern was
observed in 3 to 9 clusters and of the Low-Low pattern in 4 to 17
clusters, whereas negative spatial autocorrelation was observed in
1 to 9 clusters of the High-Low pattern and in 1 to 6 clusters of
Low-High pattern. These spatial data should support stakeholders
and policymakers in their efforts to prevent, control, monitor and
evaluate the multidimensional determinants of the COVID-19
pandemic.

Introduction

As reported by the World Health Organization (WHO),
COVID-19 has caused 6 million deaths and 512 million confirmed
cases globally of 15 March 2022 (WHO, 2022). In December
2019, the primary cases were reported in China and the infection
was declared a pandemic in March the following year (WHO,
2020). On January 13th, 2020, Thailand reported its first case and
has subsequently seen multiple waves of the virus (Kunno ef al.,
2021), with a total of 4,281,536 cases and 28,778 deaths reported
by May 5th, 2022 (WHO-Thailand 2022a). The COVID-19 pan-
demic presented a major challenge for health authorities, who are
working to develop effective preventive and control measures to
curb its spread. It is crucial to identify risk factors related to both
demographic and healthcare factors so as to effectively manage
and control the pandemic. It has become mandatory to identify
risk factors related to healthcare and demography.

The application of geographic information systems (GIS) and
spatial statistics have proved effective in analyzing and control-
ling the spread of the disease (Lovett et al., 2014). These tools pro-
vide important data and information for policy makers to make
informed decisions in controlling the pandemic (Ramirez-Aldana
et al. 2020). By envisage the relationship between related vari-
ables and disease, GIS helps stakeholders from various sectors to
identify the most effective measures for controlling the pandemic,
while decisions based on spatial analysis provide relevant guide-
lines and regulations for controlling the spread of COVID-19
(Sornlorm et al. 2022).

Recent studies have explored demographic risk factors for
spread and severity of the pandemic, such as urbanization (Kwok
et al. 2021) and population density (Dutta et al., 2021; Pedorsa and
Albuquerque, 2020). Additionally, the availability of medical
resources has been linked to COVID-19 infection rates (Alcantara
et al., 2020; Liu et al., 2020; Ribeiro et al., 2020; Su et al., 2020;
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Wu et al., 2021; You et al., 2020). Despite the limited number of
GIS-based studies in Thailand, research has been conducted on the
impact of factors such as night-time light (Sangkasem and
Puttanapong, 2020), air quality in Greater Bangkok (Wetchayont,
2021) and the spread of the disease in different regions in Thailand
(Zhang et al., 2021). However, there is a lack of studies specifically
focusing on the demographic and healthcare factors that impact the
spread of COVID-19. To develop effective plans and policies for
controlling the pandemic, it is necessary to understand its distribu-
tion and the spatial autocorrelation of demographic and healthcare
factors. Thus, this study aimed to identify spatial patterns of
COVID-19 in five specific waves in Thailand, and its incidence
during these waves based on demographic and healthcare factors.

Materials and Methods

Study area

This study was conducted in Thailand, which is located in
Southeast Asia and considered an upper-middle-income country.
Thailand has a total area of 514,000 km* and shares borders with
Myanmar, Cambodia, Laos and Malaysia. It is divided into 77
provinces, which are grouped into four regions named Central,
North, Northeast and South. Geographical mapping of the admin-
istrative areas with geographic coordinates was done assisted by
DIVA-GIS (http://www.diva-gis.org/). All these datasets used in
the study are publicly available.

Study design and data collection

The number of confirmed COVID-19 cases in Thailand from
January 2020 to March 2022 was used as the dependent variable in
this study. These data were collected from the Centre of
Epidemiological Information, Bureau of Epidemiology, Ministry
of Public Health and included a total of 2,569,617 confirmed cases.
The monthly incidence rate was calculated as the number of con-
firmed cases per 100,000 population, data were divided into five
phases based on the progression of the pandemic as follows: First
wave (January-May 2020), Second wave (September 2020-March
2021), Third wave (April-June 2021), Fourth wave (July-October
2021), and Fifth wave (November 2021-March 2022). The data
were provided by WHO-Thailand (2022b).

The independent variables were demographic data and health-

medical establishments with beds; and of physicians per 10,000 pop-
ulation. These data were obtained from the National Statistical
Office, Thailand (2020), and covered the years 2016-2020.

cpress

Statistical analysis

We employed well-established geospatial statistics such as
global and local Moran’s / and the Local Indicator of Spatial
Association (LISA) for autocorrelation studies (Steiniger and
Hunter 2013). GeoDa v. 1.18.0.16, developed by Anselin, was used
for spatial data analysis, with QGIS v. 3.20.3 (https://www.qgis.org)
utilized to combine and integrate all the data into one dataset,
which was then imported into GeoDa for analysis by LISA.

Moran’s / is a statistical tool used to measure the strength of
the relationship between variables in a spatial context. It produces
values ranging from -1 to 1, where +1 indicates strong positive
spatial autocorrelation (i.e. similar values clustering together), 0
indicates random spatial patterns, and -1 indicates negative spatial
autocorrelation (i.e. dissimilar values clustering together)(Anselin
and Bao 1997; Anselin, Syabri and Kho 2006; Anselin 2020). To
assess spatial autocorrelation reliably, this study was performed
with 999 permutation simulations at the significance level p=0.05.
The Moran’s [ test is calculated as follows:

EiEjWijzi-zj/SO
Eizf;'n

I = (Eq.1)

where X, is the sum of variable of interest at the location /; 3 the
sum of variable of interest at the location j; w; the elements of the
spatial weight matrix; z; the term i/ — x (where x expresses the mean
of variable x for an observation at location 7); z; the term x; — x
(where x expresses the mean of variable x for an observation at
location j); S, the sum of all weights 3.3 w,; and n the number of
observations. A limitation of Global Moran’s / is its inability to
find the local spatial autocorrelation. To overcome this, Anselin
(2020) extended this statistic to a version offering the specific loca-

Table 1. Univariate analysis of COVID-19 incidence rate among waves.

care data. The former included population density, household densi- Wave 1 0.145 0.051
ty and percentage of people residing in urban areas by the year 2020, Wave 2 0.043 0.040
whicb were obtained .fr.om the Department of Provincial Wave 3 0,62 0.001
Administration and the Ministry of Interior. The healthcare data, col-

lected by the Office of the Permanent Secretary of the Ministry of Wave 4 0.535 0.001
Public Health, consisted of the total number of hospitals; of other Wave 5 0.454 0.001
Table 2. Univariate analysis of COVID-19 incidence rate per 100,000 population.

Wave 1 4 0 2

Wave 2 4 0 4

Wave 3 7 1 10 2

Wave 4 8 1 16 1

Wave 5 7 1 15 1
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tions of spatial autocorrelation, which is calculated as follows:
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J(i = C.Z; Z; Wiij (Eq.2)

where % is summation of all variables of interest at location ; that
borders location 7; z; the deviation of the variable of interest from
its mean value at location 7; z; the deviation of the variable of inter-
est from its mean value at location j; w; the elements of the spatial
weight matrix; and ¢ a constant that is typically set to 1/n.

GeoDa was utilized to analyse spatial autocorrelation by
employing the k-nearest neighbours approach (Anselin et al.,
2006; Clift and Ord, 1981) using k=3. The spatial weight matrix
was carefully selected in computing Moran’s / and LISA. The spa-
tial weight matrix was designed to account for geographical fea-
tures such as island provinces (Phuket and Krabi) as well as coastal
and border provinces to ensure enough neighbouring areas were
included and to maintain local characteristics.

A scatterplot in spatial analysis can be represented by four
quadrants based on the standardized variables. These quadrants
represent different patterns of spatial autocorrelation, with positive
autocorrelation indicated by High-High (HH) and Low-Low (LL)
correlations in upper right and lower left positions, and negative
autocorrelation indicated by High-Low (HL) and Low-High (LH)
correlation in the lower right and upper left positions.

LISA maps indicate spatial clustering patterns (in this case
COVID-19 incidence). From univariate maps, HH clusters depict
high-incidence provinces surrounded by other high-incidence
provinces, while LL clusters show low-incidence provinces sur-
rounded by other low-incidence provinces. We used bivariate maps
with colour to depict the pattern of factors of interest, where dark
red represents HH areas (hotspots) and dark blue LL areas
(coldspots); light red represents high-density areas surrounded by
low-density areas (HL) and light bluerepresents low-density areas
surrounded by high-density areas (LH).

provinces during each of the five waves of the pandemic. The high-
est numbers reached per wave were 44 cases in Phuket during
Wave, 474 cases in Samut Sakhon during Wave 2, 1,356 cases in
Bangkok Metropolis during Wave 3, 9,007 cases in Samut Sakhon
during Wave 4, and 8,460 cases in Phuket during Wave 5.

In the LISA analysis, hotspots of high incidence rate were found
in a varying number of provinces during the different waves, with the
highest during Waves 4 and 5; there was also a maximum of
coldspots during these two last waves, but they appeared in the north-
ern and north-eastern regions (Table 2). Significant spatial COVID-
19 clusters were seen in various parts of the country, indicating a
strong autocorrelation between the incidence rates and geographic
locations (Figure 2). These included both HH clusters and LL clusters
highlighting the uneven distribution of cases across Thailand.

Demography and COVID-19 incidence

The results showed that there was a spatial autocorrelation, in
particular in waves 3-5, between population density, household den-
sity and urbanization on the one hand and COVID-19 incidence rate
on the other (Table 3). Bivariate LISA calculations confirmed this
autocorrelation showing significant clusters in the form of hotspots
and coldspots as shown in Tables 4, 5, 6 and Figures 3, 4, 5.

Table 3. Bivariate analysis of demographic factors and COVID-19
incidence.

Results

COVID-19 incidence rate by province

There was a significant spatial dependency with respect to the
incidence rate across the five phases of the pandemic. Moran’s / was
high in all waves indicating that there was a strong spatial correla-
tion between COVID-19 cases in the country as a whole (Table 1,
online supplementary materials for details).

Figure 1 displays the incidence rate per 100,000 population
(displayed as 10 levels, each in a different colour) among the

Wave 1 0.227 0.011
Wave 2 0.078 0.095
Wave 3 0.563 0.001
Wave 4 0.228 0.005
Wave 5 0.224 0.007
Wave 1 0216 0.014
Wave 2 0.071 0.102
Wave 3 0.557 0.001
Wave 4 0.216 0.005
Wave 5 0.226 0.008
Wave 1 0.140 0.037
Wave 2 0.098 0.094
Wave 3 0.505 0.001
Wave 4 0.257 0.002
Wave 5 0.256 0.001

Table 4. Bivariate analysis of COVID-19 incidence rate with population density per km’.

Wave 1 3 1 5 3
Wave 2 5 0 4 3
Wave 3 8 0 11 1
Wave 4 4 0 17 5
Wave 5 3 0 16 5
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Figure 1. Incidence of the COVID-19 rate per 100,000 population in the different waves. A) Wave 1; B) Wave 2; C) Wave 3; D) Wave 4; E) Wave 5

Table 5. Bivariate analysis of COVID-19 incidence rate with household density per km”.

Correlation type HH (no. of provinces) HL (no. of provinces) LL (no. of provinces) LH (no. of provinces)
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Figure 2. Univariate analysis of the COVID-19 incidence rate per 100,000 population in the different waves. A) Wave 1; B) Wave 2; C)
Wave 3; D) Wave 4; E) Wave 5.
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Figure 3. Bivariate analysis of the COVID-19 incidence rate and population density per km” in the different waves. A) Wave 1; B) Wave
2; C) Wave 3; D) Wave 4; E) Wave 5.
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Figure 4. Bivariate analysis of the COVID-19 incidence rate and household density per km” in the different waves. A) Wave 1; B) Wave

2; C) Wave 3; D) Wave 4; E) Wave 5.
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Figure 5. Bivariate analysis of the COVID-19 incidence rate and urbanization in the different waves. A) Wave 1; B) Wave 2; C) Wave 3;
D) Wave 4; E) Wave 5.
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Healthcare factors and COVID-19 incidence rate

There was a positive autocorrelation between the number of
hospitals per km?; of other medical establishments with beds per
km?; and of physicians per 10,000 population on the one hand, and

. I

Table 7. Bivariate analysis of healthcare factors and COVID-19

incidence.

Factor Moran’s / P

Hospital density per km®

the COVID-19 incidence rate on the other (Table 7). The results of

the spatial LISA analysis confirmed this, showing significant clus- Wave 1 0.152 0.036
ters in the form of hotspots and coldspots as shown in Tables 8, 9, Wave 2 0.019 0.263
10 and Figures 6, 7, 8. Wave 3 0.468 0.001
The results showed positive correlations between these health Wave 4 0.202 0.004
care variables and COVID-19 incidence rates in waves 3-5 based Wave 5 0.175 0.001
on tl}e spatlaliautocorrelatlon. The. study foupd 1}0tspot clusters.m
multiple provinces for all three variables, indicating that areas with
more medical resources tend to have higher COVID-19 incidence ~ Wave 1 0.090 0.082
rates. Coldspot clusters were also found in several provinces, indi- Wave 2 0.192 0.007
cating that areas with fewer medical resources have lower COVID- Wave 3 0413 0.001
19 incidence rates. Wave 4 0.306 0.001
Wave 5 0.308 0.001
Discussion Wave 1 0.108 0.059
The importance of considering spatial patterns when analysing Wave 2 0.108 0.059
the spread of COVID-19 and the effectiveness of control measures Wave 3 0.543 0.001
was highlighted in this study. It was found that several provinces in ~ Wave 4 0.270 0.001
Thailand experienced high COVID-19 incidence rates across the Wave 5 0.259 0.002

Table 8. Bivariate analysis of COVID-19 incidence rate with hospital density per km*.

Correlation type

HH (no. of provinces) HL (no. of provinces) LL (no. of provinces) LH (no. of provinces)

Wave 1 1 2 4 5
Wave 2 4 0 4 4
Wave 3 5 0 9 4
Wave 4 2 0 17 6
Wave 5 2 0 16 6

Table 9. Bivariate analysis of COVID-19 incidence rate with medical establishments with beds per 10,000 population.

Correlation type

HH (no. of provinces)

HL (no. of provinces) LL (no. of provinces) LH (no. of provinces)

Wave 1 2 3 3 4
Wave 2 6 2 2 2
Wave 3 8 2 9 1
Wave 4 4 3 14 5
Wave 5 5 5 11 3

Table 10. Bivariate analysis of COVID-19 incidence rate with physicians per 10,000 population.

Correlation type

HH (no. of provinces)

HL (no. of provinces) LL (no. of provinces) LH (no. of provinces)

Wave 1 2 1 5 4
Wave 2 6 1 3 2
Wave 3 8 0 11 1
Wave 4 5 5 12 4
Wave 5 6 6 10 2

OPEN aRCCESS
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Figure 6. Bivariate analysis of the COVID-19 incidence rate and hospital density per km’ in the different waves. A) Wave 1; B) Wave

2; C) Wave 3; D) Wave 4; E) Wave 5.
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Figure 7. Bivariate analysis of the COVID-19 incidence rate and medical establishments with beds per 10,000 population in the differ-
ent waves. A) Wave 1; B) Wave 2; C) Wave 3; D) Wave 4; E) Wave 5.
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Figure 8. Bivariate analysis of the COVID-19 incidence rate and physicians per 10,000 population in the different waves. A) Wave 1;
B) Wave 2; C) Wave 3; D) Wave 4; E) Wave 5.

[Geospatial Health 2023; 18:1183] OPEN 8 ACCESS



five different waves. These cases were initially concentrated in the
southern part of Thailand in Wave 1 and then shifted to the central
part in subsequent waves. The results showed that the spatial auto-
correlation, as indicated by Moran’s /, was constant in waves 1 and
2 but increased in waves 3 to 5. This observed pattern suggests that
the control policies implemented by the government, such as
restrictive measures, conducting widespread testing of migrant
workers, imposing restrictions on international travel, implement-
ing travel restrictions for individuals coming from affected
provinces as well as administering mass vaccinations may have
influenced the changing spatial patterns. Similar variations have
been found in other studies of COVID-19 outbreaks (Al-Kindi er
al., 2020; Alcantara et al., 2020; Bag et al., 2020; Deeb, 2021;
Zhang et al., 2020) emphasizing the need for timely and updated
spatial analysis of epidemic diseases for accurate prediction and
effective control measures. These findings suggest that spatial anal-
ysis plays a critical role in the prediction of outbreaks and develop-
ment and implementation of regulations to control viral spread.

The finding that high levels of population density and house-
hold density are spatially associated with a high concentration of
COVID-19 cases is supported by a majority of other studies (Al-
Kindi et al., 2020; Coskun et al., 2021; Dutta et al., 2021; Maroko
et al.,2020; Sun et al., 2020). The similar effect of urbanization on
COVID-19 cases has also been noted by several studies (Ramirez-
Aldana et al., 2020; Dutta et al., 2021; Sarkar et al., 2021). It
would be critical that planning and fulfilling measures to control
the spread of COVID-19 reflect the findings that densely populat-
ed areas with high levels of urbanization seem to be at higher risk
for outbreaks. Public health officials and policymakers should
therefore prioritize these areas in their COVID-19 response efforts.

Some of the building blocks for healthcare system (such as
manpower and hospital beds) provide health promotion to the pub-
lic, prevention of uninfected population through isolation and treat-
ing infected people with proper quarantine and rehabilitation. In
this study, the healthcare factors (hospital density; presence of hos-
pitals and other medical establishments with beds; and physicians
per 10,000 population) all showed a strong spatial relationship with
the COVID-19 incidence rate. In other words, arcas with more
medical resources tend to have higher rates of cases and be sur-
rounded by other areas with more medical resources while, areas
with few medical resources, as indicated by the coldspot clusters,
tend to have lower COVID-19 incidence rates. Counter-intuitively,
this implies that the distribution of medical resources may have an
influence on the spread of COVID-19 in a certain area. On the other
hand, the lower incidence rates in areas with fewer medical
resources could also be due to a lack of access to testing and health-
care or there may not be enough resources to fully protect an area
from COVID-19 leading to underreporting of cases. This is sup-
ported by several studies carried out in other countries, such as
Brazil, Oman, China and the United States (Alcantara et al. 2020;
Mansour et al. 2021; Liu et al. 2021; Ribeiro et al. 2020; Su et al.
2020). It is difficult to determine whether the findings are consistent
with real conditions without additional information. The relation-
ship between medical resources and incidence rate is complex and
may be influenced by several other factors, such as population den-
sity, demographic factors, access to healthcare, socioeconomic sta-
tus, government response and community-level interventions to
prevent viral spread.

There was a positive spatial correlation between the number of
physicians and the incidence rate, with the strongest correlation
found in Wave 3. This suggests that areas with higher numbers of

OPEN 8ACCESS
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physicians per population not only tend to have higher incidence
rates, but they are also surrounded by other similar areas. The
LISA analysis confirms this finding by revealing the presence of
HH clusters (provinces with high numbers of both physicians and
incidence rates) in several waves. The presence of these HH clus-
ters suggests that areas with high numbers of physicians may be
more susceptible to COVID-19 outbreaks. On the other hand, the
LL clusters found in several waves indicate that areas with low
numbers of physicians may be less affected by COVID-19. This
might reflect the same situation as described above or it could be
due to factors such as exposure to the virus in medical settings or
a high population mobility in these areas (Ehlert, 2021; Ramirez-
Aldana et al., 2020; Su et al., 2020; Wetchayont et al., 2021). This
study highlights the importance of considering the distribution of
healthcare workers, particularly physicians, in the response to
COVID-19. Policymakers and healthcare organizations can use
these results to identify areas that need additional healthcare
resources and allocate resources accordingly. This could help to
minimize spread and support patients in need.

Several limitations were identified in this study. One was that
it only examined six factors and did not account for other potential
factors that could influence the incidence rate, such as economic
status, individual behaviours, environmental factors, social and
cultural practices, and public health policies. Additionally, it would
be useful to examine the specific impact of different types of med-
ical facilities (e.g., general hospitals, specialized clinics, etc.) and
healthcare workers (e.g., doctors, nurses, etc.). In addition, we
relied on secondary data that may contain inaccuracies or be limit-
ed in other ways, e.g., by only covering part of the pandemic and
not reflecting the current situation progress. To gain a more com-
prehensive understanding of the impact of demographic and
healthcare factors on incidence, future research should investigate
additional factors, employ more comprehensive longitudinal data
and spatio-temporal analysis that can track changes over both
space and time.

As the study was cross-sectional, cause-and-effect relation-
ships between the factors examined and COVID-19 incidence
could not be established, while the spatial regression analysis
would have made it possible to provide more detailed information
about the spatial relationship between the factors and the incidence
rate. Importantly, as the study only focused on the incidence in
Thailand, the results may not be generalizable to other countries
with different populations, health systems, and cultural practices.
Finally, this is the first assessment analysing with univariate and
bivariate analysis using QGIS and GeoDa for the spatial correla-
tion between COVID-19 incidence rate and its related factors in all
77 provinces of Thailand during the five main waves of the pan-
demic that clearly visualized the spatially heterogeneous autocor-
relation between the demographic and healthcare factors and
COVID-19 incidence rate among these provinces.

The incidence of COVID-19 varied in each of the five waves
of the pandemic. The highest rates were seen in Phuket during
Wave 1 and Wave 5, Samut Sakhon during Wave 2 and Wave 4 and
Bangkok Metropolis during Wave 3. Several provinces in Thailand
experienced high COVID-19 incidence rates across all five waves,
with the cases initially concentrated in the southern part of the
country in Wave 1 and shifting to the central part in subsequent
waves (see online supplementary materials). The study highlights
the importance of considering spatial patterns when analysing the
spread and the effectiveness of control measures. The results sug-
gest that the spatial analysis plays a frontier role in the prediction
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on outbreaks and development and implementation of regulations
to control the spread of COVID-19. We also found that demo-
graphic factors such as population density, household density and
urbanization have a strong impact on COVID-19 incidence rates,
with the higher case numbers in the most highly urbanized
provinces as reflected by their high densities of households and
people. Moreover, the study found that availability and accessibil-
ity on medical resources, such as hospital beds, was correlated to
the incidence of COVID-19 cases. Resource-limited areas with
low incidence rates may suffer from limited access to testing and
healthcare services leading to potential underreporting of cases and
inadequate protection against the disease. The distribution of med-
ical resources could have an impact on the spread of COVID-19 in
certain areas and it is important that public health officials and pol-
icymakers prioritize these areas in their response efforts.

Conclusions

This study highlights the crucial role of considering spatial
analysis, demographic factors and medical resources to better
understand the spread and develop and underscores the need for a
comprehensive approach that considers both demographic factors
and medical resources when planning and implementing measures
to control the spread of COVID-19. The study emphasizes the need
for timely and updated spatial analysis of epidemic diseases for
accurate prediction and effective control measures. The changing
trends in the spread require regular updates to the analysis, in order
to respond effectively to the evolving situation.
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