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Abstract. The Health Insurance Portability and Accountability Act (HIPAA) privacy rule was enacted to protect
patients’ personal health information from undue disclosure. Despite its intention to protect patients, recent reports
suggest that HIPAA restrictions may be negatively impacting health research. Quantitative, visual geographical and sta-
tistical analysis of zip code geographical information systems (GIS) mapping, comparing 3-digit HIPAA-compliant and
5-digit HIPAA-non-compliant simulated data, was chosen to identify and describe the type of distortion that may result.
It was found that unmitigated HIPAA compliance with HIPAA mapping rules distorted the GIS zip code data by 28%
leading to erroneous results. Thus, compliance with HIPAA privacy rule when mapping may lead investigators to pub-
lish erroneous GIS maps.  
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Introduction

The Health Insurance Portability and
Accountability Act (HIPAA) privacy rule was enact-
ed, to establish national standards in the United
States of America to protect individuals’ medical
records and other personal health information. The
HIPAA privacy rule codified detailed regulations
regarding the use and dissemination of information
that could be used to identify an individual, often

called protected health information (PHI) (US
Department of Human Health Services, the Privacy
Rule). Protecting individuals’ privacy is an ethical
responsibility, which, if done correctly may lead to
increased trust between the subject and researcher
and greater participation of subjects in health care
research. In this context a breach in privacy and
noncompliance with HIPAA may lead to negative
social, medical or psychological ramifications such
as diminished dignity, stigmatization or discrimina-
tion at work or school.

In the research community there continues to be
debate about the HIPAA privacy rule’s effectiveness
at protecting individuals’ privacy and whether the
standards that have been set are hindering research
(Ness, 2007; Greene et al., 2008; Gostin and Nass,
2009; Steinberg and Rubin, 2009; Wartenberg and
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Thompson, 2010). Accordingly, the National
Academies of Sciences’ Institute of Medicine (IOM)
published a report in 2009 about the HIPAA regu-
lations concluding that “the HIPAA privacy rule
does not protect privacy as well as it should, and
that, as currently implemented, the privacy rule
impedes important health research”. The committee
found that the privacy rule (i) is not uniformly
applicable to all health research; (ii) overstates the
ability of informed consent to protect privacy rather
than incorporating comprehensive privacy protec-
tions; (iii) conflicts with other federal regulations
governing health research; (iv) is interpreted differ-
ently across institutions; and (v) creates barriers to
research and leads to biased research samples,
which generate invalid conclusions (IOM, 2009).
The IOM recommended that “the committee pro-
poses a bold, innovative, and more uniform
approach to the dual challenge of protecting priva-
cy while supporting beneficial and responsible
research; second, in the event that policy makers
decide that HIPAA was – and continues to be – the
most useful model for how to safeguard privacy in
health research, the committee proposes a series of
detailed proposals to improve the HIPAA privacy
rule and associated guidance” (IOM, 2009).

Impact of HIPAA on mapping research 

One topic not addressed in the IOM report was
health research using geographical information sys-
tem (GIS) research. “A GIS integrates hardware,
software, and data for capturing, managing, analyz-
ing, and displaying all forms of geographically ref-
erenced information. GIS allows us to view, under-
stand, question, interpret, and visualize data in
many ways that reveal relationships, patterns, and
trends in the form of maps, globes, reports, and
charts” (http://www.esri.com/what-is-gis/index.
html). GIS technology is a tool in public health
research that can help provide up-to-date graphical
information about resource distribution, disease
patterns, and loci of events (“hot spots”) (Rogers
and Randolph, 2003; Waring et al., 2005). For

example, in the context of the recent H1N1 influen-
za pandemic, GIS could have be used to graphically
match resource demand with resource supplies by
overlaying a map showing the locations of all
known influenza cases with a map of outpatient
clinics and hospitals. GIS technology may also help
fill knowledge gaps about transmission of diseases,
evolution of disease outbreaks and predicting future
disease spread using computer-aided stochastic
modeling and other analytical techniques. The tech-
nology has been used to track the spread of diseases,
rapidly identify disease clusters and outbreaks, and
examine large scale data for spatio-temporal rela-
tionships (Yasnoff and Sondik, 1999; Guerra et al.,
2002; Kistermann et al., 2002; Rogers and
Randolph, 2003; Waring et al., 2005). 

As the applications of GIS have advanced, the need
for researchers to publish GIS-related data has
become increasingly prevalent and important for
academic progress. It is widely understood that cer-
tain elements of GIS information may theoretically
be used to identify the individual represented by the
data. Accordingly, privacy is a concern that is often
raised when researchers seek to publish their results.
Currently, no specific federal standards exist for pub-
lication of maps showing GIS research data (VanWey
et al., 2005). According to current HIPAA regula-
tions, protected health information (PHI) must be
removed before data collection, analysis and/or pub-
lication, unless explicit permission (“informed con-
sent”) is granted by the subject(s) from whom the
information issues (US Department of Human
Health Services, HIPAA Regulations §164.514). In
contrast to many other research settings, de-identifi-
cation of GIS-related information in the context of
health research often defeats the primary objective of
GIS: to display the data graphically in a way that
communicates new information or knowledge.

The effect of HIPAA on publication of GIS data

Specifically, HIPAA states that all geographical
subdivisions smaller than state including address,
city, county, precinct, zip code and their equivalent
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geo-codes (latitude and longitude) must be eliminat-
ed from the data to be considered de-identified prior
to publication. The only exception is that the initial
three digits of a zip code may be published, if the
represented geographic area that has a population
greater than 20,000 (US Department of Human
Health Services, HIPAA Regulations §164.514).
Initially it may seem possible to easily meet the
HIPAA zip code requirements by simply combining
the areas represented by five-digit zip codes into a
display showing only the larger area represented by
3-digit zip codes (Fig. 1). To accomplish this manip-
ulation, however, all of the data contained in each of
the five-digit areas must be moved to the geograph-
ical centroid of the larger corresponding three-digit
area. In effect, this manipulation may reduces the
level of precision and introduce statistical bias into
the results. This issue has been identified as the
modifiable area unit problem (Dark and Bram,
2007). Several studies have shown that this type of
aggregation can inadvertently introduce bias, blur
meaningful variations in data, limit disease cluster-
ing detection or artificially shift the geographical
location of the results (Armstrong et al., 1999;
Kulldorff, 1999; Kwan et al., 2004; Gregorio et al.,
2005; Bell et al., 2006).

Despite numerous qualitative examples reported
in the scientific literature, relatively little has been
done to quantify the extent of error introduced by
the HIPAA three-digit zip code rule. One publica-
tion (Olsen et al., 2006) that has addressed a similar
topic did so by analysing the performance of “spa-

tial cluster detection,” a software programme often
utilised by GIS researchers to identify the relative
locations of disease clusters. In this study, the
authors converted data from an exact address to a
regional centroid location, with the aggregation,
identification of significant disease clusters erro-
neously decreased from 73% to 45% (Olsen et al.,
2006). Another study aggregated simulated data
from an exact location to a census tract, which
resulted in an inaccurate display of a pattern of dis-
ease risk (Boulos et al., 2006).

The purpose of this paper is to describe and quan-
tify the effects of aggregating data to comply with
the three-digit HIPAA zip code rule with an outbreak
of contagious infectious disease resembling influen-
za. This project was undertaken with the intention to
provide quantitative information to policy-analysts
and decision-makers who may be in a position to
make modifications to HIPAA regulation.

Meterials and methods

Simulated patient-level influenza data was created
to represent the number of influenza cases during a
12-month period in Florida. This type of simulated
data was used in lieu of real influenza case-data
because of the privacy limitations posed by HIPAA.
Accordingly, no institutional review board (IRB)
approval was obtained for this project. One inten-
tion of the simulated data was to have its graphic
appearance resemble the spatial distribution pattern
of an ordinary influenza outbreak in Florida during

Fig. 1. Transforming zip code data for publication: initial data collected at the precision level of five-digit zip codes censored
to show a precision level of three-digit zip codes.
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the winter months. A close graphical approximation
of an influenza outbreak was achieved using publi-
cally available influenza data posted on websites
operated by the State of Florida (Florida
Department of Health, 2009). To create the simu-
lated data representing an influenza outbreak, the
following steps were performed 100 times:
(i) Assigning prevalence (Pi) in each five-digit zip

code. Commensurate with the variability, typi-
cally experienced with influenza prevalence
during an outbreak (Florida Department of
Health, 2009), each of the 914 geographical
areas represented by five-digit zip codes within
the State of Florida were assigned a random
percentage between 5% and 15% (Centers for
Disease Control and Prevention, 2009). Each
prevalence rate, called true prevalence, was rep-
resented by Pi, i = 1, …, 914, the true preva-
lence per identified zip-code.

(ii) Determining case burden (Ci) in each five-digit
zip code. The total number of influenza cases in
each zip code denoted as Ci, i = 1, …, 914, was
computed by multiplying the prevalence of
influenza in the corresponding five-digit zip
code by the population in the corresponding
five-digit zip code (ESRI population data -
1999-2009, ArcGIS 9.3 Redlands, CA, USA).

(iii) Assigning density (Di) in each five-digit zip code.
The flu density, denoted as Di, i = 1, …, 914, in
each five-digit zip code, was calculated by divid-
ing the number of influenza cases in each five-
digit zip code in the geographical area of the cor-
responding five-digit zip code in km2 (ESRI area
data - ArcGIS 9.3 Redlands, CA, USA).

(iv) Computing estimated prevalence (P̂i) with
three-digit zip code data. In practice, we were
not able to know the true prevalence in each
five-digit zip code area (Pi) but could only esti-
mate the prevalence in each five-digit zip code
area P̂i with the three-digit zip code data avail-
able to public. The estimated prevalence in each
five-digit zip area (P̂i) was computed by sum-
ming all the cases that fell in the three-digit zip
code area and dividing by the sum by the total

population in the corresponding three-digit zip
code area. The five-digit zip code areas within
the same three-digit zip code area would have
the same estimated prevalence P̂i.

(v) Computing estimated density (D̂i) with three-
digit zip code data. Similarly, we can estimate the
five- digit zip code flu density (D̂i) with the three-
zip code area data as as (P̂i x the population size
in the five-digit zip code area)/(area in km2).

The absolute error (AE) and relative error (RE) of
the estimated prevalence values and flu density val-
ues in each five-digit zip code which were calculated
with the three-digit zip code data were computed for
each simulated data set as the absolute difference
between the estimated prevalence (density) and true
prevalence (density) and the percentage of the
absolute difference relative to the true prevalence
(density):

AEi = | P̂i - Pi | for prevalence, = | D̂i - Di | 
for flu density, i = 1, …, 914 

REi = 100% x | P̂i - Pi | / Pi = 100% x | D̂i - Di | / Di,
i = 1, …, 914

where AE is the absolute difference between the esti-
mated values computed with the three-digit data
and the true values we simulated for each five-digit
and RE is the ratio (percentage) of AE to the true
value for the five digit. 

Finally average AE and RE were computed over
100 simulated data sets for each five-digit zip code in
Florida. A random data set from the 100 simulated
data sets was mapped to visually display differences
in the two different mapping techniques (using
ArcGIS 9.3, 1999-2009). Two maps were developed:
(i) a map of the cases assigned to each five-digit zip
code area; and (ii) a map of the cases assigned to
each three-digit zip code area, such that the five-digit
zip code values were placed in aggregate at the cen-
troid of the corresponding three-digit area.

Results

Figures 2a and 2b display the results of both maps
described in the previous section. When mapped at
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the precision level of five-digit zip codes on this map,
the cases tend to cluster at the coastal areas and areas
that correspond to large urban cities. Cases tend to
be sparser in the panhandle and the lower central
portion of the state. The lowest density can be seen
in the central lower portion of the state.

When mapped at the three-digit level, cases tend
to be spread out more evenly over the entire state.
There is less of a distinction in case-count between
the panhandle and the remainder of the state. There
is an area with case clustering in the south-eastern
portion of that state. In both Figure 2a and 2b there
is a portion of the state where no cases can occur.
This location can be seen in the south-central por-

tion of the state and represents large national parks
and preserves. The difference between the two maps
can be seen by the location of case clustering. In
Figure 2a there are distinct areas of case clustering
and areas in which there is a sparse number of cases
as well as no cases. In Figure 2b this clustering is less
identifiable and cases are more even distributed
throughout the state. 

Tables 1 and 2 show the average AE and RE of the
estimated prevalence and influenza density with the
three-digit zip data for Florida across the 914 zip
codes. The mean absolute difference between the
estimated prevalence with three-digit data and true
prevalence simulated for the five-digit data was

Fig. 2. GIS mapping of identical datasets showing a simulated influenza outbreak (each dot represents one case). 2a) Influenza
data at the precision level of five-digit zip codes; 2b) influenza data at the precision level of three-digit zip codes.

Mean Minimum Median Maximum

AE of P̂i (%)

AE of D̂i (cases/km2)

RE of P̂i and D̂i (%)

2.46

18.57

28.3%

1.96

0.02

21.4%

2.46

9.79

28.2%

2.89

202.91

37.3%

Table 1. Average absolute error (AE) and relative error (RE) of estimated prevalence and influenza density in State of Florida with
three-digit zip data.

AE RE

Median (1st quartile, 3rd quartile) Median (1st quartile, 3rd quartile)

P̂i (%)

D̂i (cases/km2)

2.46 (2.36, 2.57)

9.79 (1.49, 28.45)
28.2% (26.6%, 30.0%)

Table 2. Average absolute error (AE) and relative error (RE) of estimated prevalence and case density in State of Florida using
three-digit data in simulated data.

a) b)
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approximately 2%. The mean absolute difference
between the estimated density with the three-digit
data and true density for the five-digit data was
approximately 19 cases per km2. Similarly, the mean
RE of the estimated values with the three-digit data
compared to the true values for the five-digit data
was approximately 28%. 

Discussion

The analyses presented in this paper demonstrate
that full compliance with zip code constraints
posed by HIPAA privacy regulations may substan-
tially distort GIS mapping data to the extent that
the results may be misrepresented and/or misinter-
preted. Compliance with these regulations while
publishing the type of incidence data, typically pro-
duced in an influenza outbreak, may introduce
errors approaching 30%. Errors of this magnitude
stand to have short-term and long-term effects. In
the short term, censoring may prompt decision-
makers to inadvertently misappropriate funds. In
the long term, systematic blurring and publication
of data to make it less precise carries the risk of
directing researchers and the wider public health
community down an erroneous pathway chasing
false results. In this context, it is conceivable that
the consequences of data censoring, performed in
the name of privacy protection may, in fact, be
worse than a breach in privacy. 

An important finding of this project is that this
type of data censoring may result in a dispropor-
tionate application to low population or rural geo-
graphic areas compared to urban or large popula-
tion because this aggregation skews the data (Figs.
2a and 2b). This can be seen when the findings are
applied to an example of influenza cases and need-
ed medical supplies for a city population of 50,000
compared to a city with a population of 10,000. If
a coastal city on the Gulf of Mexico with a popula-
tion of ~50,000, were to purchase a supply of N95
respirators for healthcare workers based on 15% of
the population developing an influenza infection
(Centers for Disease Control and Prevetion, 2009),

approximately 16,600 respirators would be needed
according to a predictive model developed by one of
the authors (Lewis, 2009). If the number of respira-
tors ordered erroneously fell by 28%, an order
would be placed for 14,500 respirators (a shortage
of 2,100 respirators). Conversely, for an inland city
with a population of ~10,500 and an estimated
15% of the population infected annually by influen-
za (Centers for Disease Control and Prevetion,
2009), there would need to be about 3,500 respira-
tors ordered for healthcare workers to treat influen-
za patients. With a 28% greater amount of cases
identified about 3,900 respirators would be ordered
due to the error (an excess of about 400). Although
these numbers may appear small, they become mas-
sive when applied across a large population. This
error occurs with the use of the three-digit data map
(Fig. 3) where cases are now more evenly spread
over the state. There are more cases introduced into
rural areas where low population and disease rate
occur and with the error introduction a surplus of
supplies might be sent. On the other hand, in large
urban city where cases have been decreased and
spread to outer areas, fewer cases would be repre-
sented per population and therefore a deficient of
supplies might be assigned. 

With such a wide variety of applications for the
use of GIS and public health research changes in
policy may allow for more accurate and vital infor-
mation to be published. In addition to the recom-
mendations made by the IOM in 2009, we propose
that new policies should seek to better ensure pro-
tection of individuals’ privacy and exhibit sufficient
flexibility to take into account unique research
methods such as GIS or unforeseen technologies to
be developed in the future. 

Note

The views expressed in his manuscript do not nec-
essarily reflect the views of the United States
Government, the United States Department of
Veterans Affairs, the University of Florida or the
University of California at San Francisco.



N. Tellman et al. - Geospatial Health 5(1), 2010, pp. 3-9 9

References

Armstrong MP, Rushton G, Zimmerman DL, 1999.

Geographically masking health data to preserve confiden-

tiality. Stat Med 18, 497-525.

Bell S, Hoskins R, Pickle L, Wartenberg D, 2006. Current prac-

tics in spatial analysis of cancer data: mapping health statistics

to inform policymakers and public. Int J Health Geogr 5, 49.

Boulos M, Cai Q, Padget J, Rushton G, 2006. Using software

agents to preserve individual health data confidentiality in

micro-scale geographical analyses. J Biomed Inform 39,

160-170.

Centers for Disease Control and Prevention, 2009. Influenza.

http://www.cdc.gov/flu/keyfacts.htm (accessed: June 2009).

Dark S, Bram D, 2007. The modifiable areal unit problem

(MAUP) in physical geography. Prog Phys Geog 31, 471-479.

Environmental System Research Institute (ESRI), 2009. What

is GIS? Geographic Information System. http://www.esri.

com/what-is-gis/index.html (accessed: June 2009).

Florida Department of Health, 2009. Influenza surveillance

reports 2009. http://www.doh.state.fl.us/disease_ctrl/epi/

htopics/flu/reports.htm (accessed: June 2009).

Gostin L, Nass S, 2009. Reforming the HIPAA privacy rule:

safeguarding privacy and promoting research. JAMA 301,

1373-1375.

Greene S, Bennet S, Kirlin B, Oliver K, Pardee R, Wagner E,

2008. Impact of the HIPAA privacy rule in the HMO

research network. The National Academy of Science.

Gregorio D, DeChello L, Samociuk H, Kulldorff M, 2005.

Lumping or splitting: seeking the preferred areal unit for

health geography studies. Int J Health Geogr 4, 6.

Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR,

Stancil A, Beck L, Bobo M, Kitron U, 2002. Predicting the

risk of Lyme disease: habitat suitability for Ixodes scapu-

laris in the North Central United States. Emerg Infect Dis 8,

289-297.

IOM (Institute of Medicine), 2009. Beyond the HIPAA privacy

rule: enhancing privacy, improving health through research.

The National Academics Press, Washington, DC, USA.

Kistermann T, Munzinger A, Dangendorf F, 2002. Spatial

patterns of tuberculosis incidence in Cologne (Germany).

Soc Sci Med 55, 7-19.

Kulldorff M, 1999. Geographic information system (GIS)

and community health: some statistical issues. J Public

Health Manag Pract 5, 100-106.

Kwan M, Casas I, Schmitz B, 2004. Protection of geoprivacy

and accuracy of spatial information: how effective are geo-

graphical mask? Cartographica 39, 15-28.

Ness R, 2007. Influence of the HIPAA privacy rule on health

research. JAMA 298, 2164-2170.

Olsen K, Grannis S, Mandl K, 2006. Privacy protection ver-

sus detection in spatial epidemiology. Am J Public Health

96, 2002-2008.

Radonovich LJ, Magalian PD, Hollingsworth MK, Baracco

G, 2009. Stockpiling supplies for the next influenza pan-

demic. Emerg Infect Dis [serial on the Internet],

http://www.cdc.gov/EID/content/15/6/el.htm (accessed:

June 2009).

Rogers DJ, Randolph SE, 2003. Studying the global distribu-

tion of infectious diseases using GIS and RS. Nat Rev

Microbiol 1, 231-237.

Steinberg M, Rubin E, 2009. The HIPAA privacy rule: lacks

patient benefit impedes research growth. Association of

Academic Health Centers, Washington DC, USA.

US Department of Health and Human Services. HIPAA

Regulations §164.514(a) and (b). http://edocket.access.

gpo.gov/cfr_2004/octqtr/pdf/45cfr164.514.pdf (accessed:

June 2009).

US Deptartment of Health and Human Services. The privacy

rule. http://www.hhs.gov/ocr/privacy/hipaa/understanding

/summary/index.html (accessed: June 2009).

VanWey L, Rindfuss RR, Gutmann MP, Entwisle B, Balk DL,

2005. Confidentiality and spatially explicit data: concerns

and challenges. Proc Natl Acad Sci USA 102, 15337-15342.

Waring S, Zakos-Feliberti A, Wood R, Stone M, Padgett P,

Arafat R, 2005. The utility of geographic information sys-

tems (GIS) in rapid epidemiological assessments following

weather-related disasters: methodological issues based on

the tropical storm Allison experience. Int J Hyg Environ

Health 208, 109-116. 

Wartenberg D, Thompson WD, 2010. Privacy versus public

health: the impact of current confidentiality rules. Am J

Public Health 100, 407-411.

Yasnoff W, Sondik E, 1999. Geographic information systems

(GIS) in public health practice in the new millennium.

J Public Health Manag Pract 5, 9-12.


