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Abstract. In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more
abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence
malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated
with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been
broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater
Mekong Subregion (GMS), which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant
falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been
examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the
provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegeta-
tion index obtained from both climate time series and satellite measurements were used as independent variables to model
malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria trans-
mission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi,
Mae Hong Son, and Tak) which are among the provinces most endemic for malaria, is 72.8% and the average testing accu-
racy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accu-
racy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided
the malaria cases into bands (classes) to compute training accuracy. Using the same neural network architecture on the 19
most endemic provinces for years 1994 to 2000, the mean training accuracy weighted by provincial malaria cases was 73%.
Prediction of malaria cases for 2001 using neural networks trained for 1994-2000 gave a weighted accuracy of 53%.
Because there was a significant decrease (31%) in the number of malaria cases in the 19 provinces from 2000 to 2001, the
networks overestimated malaria transmissions. The decrease in transmission was not due to climatic or environmental
changes. Thailand is a country with long borders. Migrant populations from the neighboring countries enlarge the human
malaria reservoir because these populations have more limited access to health care. This issue also confounds the com-
plexity of modeling malaria based on meteorological and environmental variables alone. In spite of the relatively low reso-
lution of the data and the impact of migrant populations, we have uncovered a reasonably clear dependency of malaria on
meteorological and environmental remote sensing variables. When other contextual determinants do not vary significantly,
using neural network analysis along with remote sensing variables to predict malaria endemicity should be feasible.
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Introduction

The transmission of malaria is influenced by a
myriad of factors. Environmental, climatic, social,
economic, public health, political, and wartime
conditions have all been shown to contribute to
malaria occurrence and outbreaks. Among these,
the environmental conditions, especially rainfall,
appears to be the most recognizable determinant.
The intensity of malaria transmission has long been
associated with rainy seasons based on informal
long-term observations in endemic areas. The
excessive rain or droughts brought about by cli-
matic events like El Niño Southern Oscillation
(ENSO) have also been shown to enhance the
occurrence of malaria epidemics in affected regions
(Bouma and van der Kaay, 1996; Poveda et al.,
2001; Githeko and Ndegwa, 2001; Gagnon et al.,
2002; Kovats et al., 2003). Remote sensing is con-
sidered an important technologic tool for predict-
ing, preventing, and containing malaria epidemics
(MARA/ARMA, 1998; WHO, 2001; WHO,
2004a; WHO, 2004b) because environmental vari-
ables can be remotely sensed from earth observing
satellites, and the influence of ENSO events may be
forecast using satellite-measured parameters. In
recent years, researchers have reported various
methods and techniques for using meteorological
data or remotely sensed measurements for forecast-
ing malaria epidemics, in particular for Africa
(Thomson et al., 1996; Hay et al., 1998;
Kleinschmidt et al., 2000; Rogers et al., 2002;
Nalim et al., 2002; Small et al., 2003; Abeku et al.,
2004; Teklehaimanot et al., 2004a,b; Omumbo et
al., 2004; Thomson et al., 2006). Some of these
forecasting techniques have already been used in
operational control programs (Grover-Kopec et al.,
2005). Advances in Geographic Information
Systems (GIS) have made it possible to integrate
remote sensing measurements, epidemiological
data, other information important to malaria
transmission, and risk modeling results (Albert et
al., 2000).

Since rainfall provides vector breeding sites and

prolongs the vector life span by increasing water
availability, precipitation or precipitation anom-
alies are the attributes most frequently used for
predicting malaria epidemics. It has also been
shown, however, that rainfall, or the lack of it, has
a complex effect on malaria transmission in various
parts of the world (Kovats et al., 2003). For exam-
ple, although moderate rainfall may promote
malaria transmission, intense and prolonged rain-
fall may flush away larval habitats and thus reduce
transmission. Similarly, lack of rainfall does not
always reduce larval populations. On the contrary,
lack of rainfall may create new habitats, such as
pools and puddles, in some regions and therefore
increase larval population. In addition, droughts
may be deleterious to predator populations or may
cause human populations with no immunity to
move to areas endemic for malaria (Kovats et al.,
2003). These factors may indirectly increase overall
malaria transmission. For regions where regular,
yearly malaria infections contribute to partial
immunity, a reduced transmission in certain years
may increase human population vulnerability in
later years.

Another meteorological variable that is often
used for predicting malaria transmission is temper-
ature. Warmer temperatures hasten larval and vec-
tor development (Craig et al., 1999) and shorten
the sporogonic cycle thus prolonging the risk of
infection. Warmer air holds more moisture and
therefore encourages mosquito survival. The range
of rainfall and temperature needed to maintain sta-
ble malaria transmission is called climate suitabili-
ty (MARA/ARMA, 1998; Craig et al., 1999; Small
et al., 2003; Omunbo et al., 2004; Hay et al.,
2004). For example, in African regions where the
Anopheles gambiae complex is the dominant factor
in the transmission of falciparum malaria, climate
suitability is associated with a temperature between
18º and 32ºC and a rainfall exceeding 80 mm per
month for at least 3 to 5 months (MARA/ARMA,
1998; Craig et al., 1999).

Naturally, climate suitability depends on the ecol-
ogy of the dominant malaria vector species, and
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therefore varies with geographic region (WHO and
UNICEF, 2005). Climate suitability indicates how
favorable the regional climate is for stable malaria
transmission, but how much this potential materi-
alizes into malaria endemicity depends on other
contextual determinants. Socioeconomic condi-
tions, public health infrastructure, herd immunity,
irrigation and transportation projects, natural dis-
asters, and military conflicts, have overriding
effects on malaria transmission. When these con-
textual determinants are relatively unchanged,
environmental determinants like rainfall and tem-
perature are indeed the essential predictors for esti-
mating the intensity of malaria transmission.

In previous studies, rainfall surrogates were often
used for modeling when no suitable remotely
sensed or ground based measurements were avail-
able (Hay et al., 1996; Thomson et al., 1996; Hay
et al., 1998). The most frequently used surrogates
include the Cold Cloud Duration (CCD) derived
from Meteosat remote sensing measurements
(Snijders, 1991) and the Normalized Difference
Vegetation Index (NDVI) derived from Advanced
Very High Resolution Radiometer (AVHRR) meas-
urements. The NDVI is not a measure of the pre-
cipitation at the time of the satellite overpass, but
an increase in NDVI over nonirrigated area indi-
cates the greening of vegetation and therefore
implies that rainfall was recently received. The
NDVI is also good for estimating the extent of veg-
etation cover on the ground. It is therefore a useful
indicator for differentiating between urban and
rural areas. Direct, space-based rainfall measure-
ment capabilities started with NASA’s Tropical
Rainfall Measuring Mission (TRMM) in 1999
(Kummerow et al., 1998). TRMM is expected to
last through 2009. The successor of the TRMM is
the Global Precipitation Measurement (GPM) mis-
sion, an international collaboration involving a
constellation of satellites (Flaming, 2005; Smith et
al., 2006). 

Most malaria early-warning capabilities devel-
oped to date are for Africa. It is generally agreed
that rainfall excess is the main determinant for

malaria epidemics in lowland and in warm, semi-
arid and desert-fringe areas. For highland areas,
temperature or temperature and rainfall together
are the main predictors (Hay et al., 2001; Thomson
and Connor, 2001; Grover-Kopec et al., 2005). The
Greater Mekong Subregion (GMS), which consists
of Thailand, Myanmar, Laos, Cambodia, Vietnam,
and the Yunnan Province of China, is an epicenter
of multidrug resistant falciparum malaria (Kidson
et al., 1999). The Mekong Roll Back Malaria
Program has identified remote sensing and GIS as
important elements for malaria prevention and
control in this region (Thimasarn, 2003). Remote
sensing has been shown to be useful in Thailand for
detecting potential larval habitats of malaria vec-
tors and for estimating the associated malaria risks
in the vicinity (Sithiprasasna et al., 2005; Zollner et
al., 2006). Early-warning capabilities similar to
those available in Africa with respect to malaria do
not yet exist in the GMS. 

The objectives of this study are to examine the
meteorological and environmental dependency of
malaria transmission in Thailand at the provincial
level. Because some satellite measurements were
not yet available during the years in which the
malaria epidemiological data were taken, meteoro-
logical data based on both ground observed and
satellite remotely sensed measurements are used in
this study. Therefore, another objective of this
study is to examine the feasibility of using meteor-
ological and environmental data of mixed origins
and resolution to estimate malaria endemicity at
provincial resolution scales.

Materials and Methods

Several categories of data are used in this study,
including malaria cases, climate time series con-
structed from ground-based measurements, and
satellite measurements. Meteorological and envi-
ronmental parameters from these measurements
will be used as independent variables to statistical-
ly model malaria cases.
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Malaria data

All four human malaria species are present in
Thailand. There are approximately equal numbers
of Plasmodium falciparum and P. vivax malaria
cases. Together, they account for approximately
99% of all cases. P. malariae malaria constitutes less
than 1% of all cases and P. ovale malaria is rare
(Thai Ministry of Public Health, 2003). Through
concerted efforts in surveillance and treatment, and
prevention and control, malaria morbidity and mor-
tality in Thailand have declined significantly in the
last three decades. The current annual parasite inci-
dence is less than 1 per 1000 population. Foreign
workers and migrant, displaced populations from
neighboring countries (Myanmar, Cambodia, Laos,
and Malaysia) contribute significantly to malaria
transmission in Thailand. Implementing positive
health care policy for the non-Thai population in
recent years has helped lower the overall malaria
prevalence. 

The monthly, provincial malaria data compiled by
the Epidemiology Division, Department of Disease
Control, Thai Ministry of Public Health were used
in this study. These data are based on passive detec-
tion, mainly confirmed malaria cases reported by
hospitals and clinics. The data do not provide infor-
mation on parasite species. Annual (but not month-
ly) statistics with breakdowns into age groups and
Thai or foreigner groups are also provided. Since it
is not known whether the cases are new, due to
recrudescence, or relapses, the incidence rate cannot
be directly calculated from the compiled data. In our
analysis, we used the total number of monthly
provincial malaria cases which groups parasite
species and Thai or non-Thai populations together.
Malaria data with higher spatial resolution (at dis-
trict, village, and hamlet levels) and more epidemio-
logical details (parasite species, mixed infection,
ages, and nationality) are archived at the
Department of Disease Control. 

Understandably, the data only include sympto-
matic cases. In Thailand, there may be a significant
number of asymptomatic cases among repeatedly

infected adults but the distribution may be geo-
graphically dependent (Coleman et al., 2004;
Pethleart et al., 2004). In addition, there are an
unknown number of symptomatic cases among the
migrant and displaced people who may not have
sought or received treatment from public health
organizations for a variety of reasons. The malaria
cases used in the analyses therefore reflect the lower
bound of the true prevalence.

Meteorological and environmental data

The malaria epidemiological data used for this study
span from 1994 to 2001. For modeling, a variety of
data sources is needed to provide the meteorological
and environmental data.

Air temperature and precipitation data from 1994
to the end of 1999 are based on the Seasonal-to-
Interannual Earth Science Information Partner
(SIESIP) data set compiled by the Center for Climate
Research of the University of Delaware USA. SIESIP
is one of the Earth Science Information Partner
(ESIP) projects funded by the National Aeronautics
and Space Administration (NASA) to compile and
develop customized Earth science data sets.

This data set was produced from the Global
Historical Climatology Network (GHCN version 2)
and Legates and Willmott’s station records of
monthly and annual mean air temperature and total
precipitation. Using a spherical distance-weighting
algorithm, station averages of monthly values were
interpolated to a 0.5° x 0.5° latitude-longitude grid,
with nodes centered on 0.25°. The number of near-
by stations influencing grid node estimates was 20
on average. Both Digital Elevation Model-assisted
interpolation and Climatologically Aided
Interpolation were employed to estimate the month-
ly fields. This data set spans the time period from
1950 to 1999 (Vose et al., 1992; Easterling et al.,
1996; Peterson and Vose, 1997).

From the beginning of 2000, we extracted month-
ly temperature data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) data set.
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MODIS has two bands at 250 m resolution, five
bands at 500 m, and 29 bands at 1,000 m, with its
spectral region ranging from visible to thermal
wavelengths. MODIS is a key instrument on board
the Terra Earth Observing System AM platform
(EOS AM) and Aqua (EOS PM) satellites. Data
from MODIS improve our understanding of global
dynamics and processes occurring on the land, in
the oceans, and in the lower atmosphere. A wide
variety of geophysical parameters can be derived
from MODIS measurements. To be precise, the tem-
perature parameter in the MODIS product is land
surface temperature instead of air temperature.
However, the average monthly air temperature can
be approximated by the average monthly land sur-
face temperature, since these two parameters exhib-
it similar seasonal trends.

Also, from the beginning of 2000 we extracted
monthly precipitation data from rainfall data sets
measured by the instruments on board the Tropical
Rainfall Measuring Mission (TRMM) spacecraft
(Kummerow et al., 1998). TRMM is a joint mission
between NASA and the Japan Aerospace
Exploration Agency designed to monitor and study
tropical rainfall and to help our understanding of
the water cycle in the climate system. Of the five
instruments carried by TRMM, the Precipitation
Radar and the TRMM Microwave Imager are most
directly related to rain measurements. The TRMM
precipitation data has a resolution of approximate-
ly 5 km at nadir. 

When more than one data source is used, there
may be valid and intrinsic differences due to the
conditions under which the data were obtained. In
these cases, a linear transformation was performed
on each data stream to match up the statistical
properties of the first data stream.

Relative humidity data were extracted from the
National Centers for Environmental Prediction’s
(NCEP) Reanalysis Monthly Means and Other
Derived Variables data set. The NCEP/National
Center for Atmospheric Research (NCAR)
Reanalysis Project uses a state-of-the-art

analysis–forecast system to perform data assimila-
tion using past data from 1948 to the present. A
subset of this data was processed to create monthly
means of a subset of the original data. These vari-
ables are instantaneous values at the reference time
and are averages of instantaneous values at the four
reference times - 0, 6, 12, and 18 Z -over the aver-
aging period. Spatial resolution of the data set is a
2.5° by 2.5° latitude/longitude global grid.
Alternatively, we can compute relative humidity
from water vapor, which is one of the geophysical
parameters available in the MODIS atmospheric
profile product (http://modis-atmos.gsfc.nasa.gov).

Vegetation plays an important role in vector
breeding, feeding, and resting sites. A number of
vegetation indices have been used in remote sensing
and Earth science disciplines. The most widely used
index is the Normalized Difference Vegetation Index
(NDVI) (Tucker, 1979). It is simply defined as the
difference between the red and the near infrared
bands normalized by twice the mean of these two
bands. For green vegetation, the reflectance in the
red band is low because of chlorophyll absorption,
and the reflectance in the near infra-red band is high
because of the spongy mesophyll leave structure.
Therefore, the more vigorous and denser the vegeta-
tion, the higher the NDVI. 

NDVI has also been used as a surrogate for rain-
fall estimate. However, although it is an effective
measure for arid or semi-arid regions, vegetation
index may be a less sensitive measure for estimating
rainfall for tropical regions where ample rainfall is
normally received.

The mean vegetation index over a region does
reflect the degree of urbanization or lack of vegeta-
tion. In this sense, NDVI in a grid cell is used as an
indicator for the mean level of vegetation present in
the cell in question.

Any satellite instrument with red and infrared bands
can be used to compute NDVI. However, because of
the difference in band definitions, spatial resolutions,
and satellite passing time, NDVI computed from dif-
ferent sensors must first be calibrated before the
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NDVI from different sensors can be compared.
The NDVI data are processed and distributed by

the NASA Goddard Space Flight Center’s Goddard
Earth Sciences Data and Information Services
Center (GES DISC). These data are 8 km resolution
monthly NDVI maximum value composite images
from the GES DISC’s Global Land Biosphere Data
and Resources web site (http://disc.sci.gsfc.nasa.gov
/guides/GSFC/guide/avhrr_dataset.gd.shtml). The
original data set was produced as part of the
National Oceanic and Atmospheric Administration
(NOAA)/NASA Pathfinder Advanced Very High
Resolution Radiometer (AVHRR) Land Program.
The data set spans July 1981 through December
2000, with the exception of September through
December 1994. We extracted the NDVI data for
2000 and beyond from MODIS measurements
(http://modis-atmos.gsfc.nasa.gov).

Neural network methodology

We use the neural network (NN) method to
approximate the dependency of malaria cases on the
meteorological and environmental variables. This
method has been successfully used in many applica-
tions, including classification, regression, time series
analysis, and handwritten character recognition
(Nelson and Illingworth, 1990). In this approach,
the probability density of the data is not assumed to
follow any particular functional form. Rather, the
characteristics of the probability density are deter-
mined entirely by the distribution in the data, hence,
it is a data driven approach. This method is most
suitable for problems that are too complex to be
expressed in a closed, analytical form. For problems
in which there are hidden, implicit variables, this
approach is particularly suitable, as it is difficult to
either specify the variables properly or sufficiently
account for their effects mathematically.

This method is called neural network because it
resembles how biological neurons function
(Gardner, 1993). Nodes in a neural network are
analogous to neurons; the connections between the
nodes are analogous to synapses. The behavior of

the activation function corresponds to the firing of
a neuron. The weights of the connections can be
trained to give the aggregate of neurons a specific
functionality. A network may accommodate compli-
cated geometries in multidimensional space by
incorporating hidden layers. Without hidden layers,
the neural network method will be equivalent to the
generalized linear model.

To train our neural network model, we feed
observed or measured parameters from the past into
the network. The input parameters may consist of
meteorological, environmental, and other variables
and the output parameter is the corresponding
malaria cases for that specific location and time.
Once trained, the network will be able to estimate
the cases at some other time period using the param-
eters corresponding to that time period. 

The neural network used in this study is in the
class of multi-layer perceptron (Rumelhart and
McClelland, 1986; Haykin, 1994; Bishop, 1996).
The general network architecture is composed of an
input layer, one or more hidden layers, and an out-
put layer. Each layer consists of a number of nodes.
In this study, meteorological and environmental
data are the main parameters fed into the input
layer; and the malaria cases or other data indicating
malaria prevalence are the parameters generated
from the output layers. A hidden layer consists of
one or more hidden nodes. The function of the hid-
den layers in a neural network is to map the data
structure into a new representation that facilitates
the optimization of the objective function. For
example, if the objective function is to maximize
classification accuracy, hidden layers will transform
the input parameters into functions of the parame-
ters to make the classes more readily separable.
Without hidden layers, a neural network may only
differentiate linearly separable classes. Because the
complexity of the data structure and the objective
function drive the construction of hidden layers,
trial and error is the usual approach to determine
the numbers of hidden layers (HL) and hidden
nodes (HN) to be used. In fully interconnected net-
works, weight decay (Bishop, 1996) can be used to
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eliminate nodes and links that are insensitive to the
optimization of the objective function.

In the hindcasting (or retrospective forecasting)
mode, the model is used to estimate historical cases.
The model’s estimation accuracy can then be deter-
mined by comparing the model output with the
events that actually took place. Although not a topic
of this paper, future malaria cases can be predicted
by using forecast parameters as input in the fore-
casting mode. Once a model is trained with past epi-
demiological data for a region, estimates on current
malaria endemicity for that region can be obtained
by feeding current meteorological and environmen-
tal data into the trained model.

For the remainder of this paper, we denote the
average temperature by T, the precipitation amount
by P, the precipitation amount in the previous
month by P-1, the relative humidity by H, and veg-
etation index by V. The major malaria vector
species in Thailand include Anopheles dirus, An.
minimus, and An. maculatus. 

Various neural network architectures were used in
this analysis. The most suitable architecture may
vary from province to province. For the ease of dis-
cussion, four configurations are reported in the fol-
lowing – networks with one hidden layer (HL)
imbedded with one, two, or three hidden nodes
(HN). The input variables include P, P-1, T, H, V.
Time (t) is also used as an input parameter to
account for trends that are independent of meteoro-
logical and environmental variables. The trend can
be linear or nonlinear. This time factor may reflect
the advances in malaria detection and treatment
methods, improvement in public health support,
establishment of more cultivated crop areas, con-
struction of transportation routes and irrigation
projects, and changes in the influx of refugees and
migrant populations. In general, the time factor
helps to account for the effects of the changes in
non-meteorological and non-environmental contex-
tual parameters on malaria transmission during the
time period under study.

We selected three provinces (Kanchanaburi, Mae
Hong Son, and Tak) for more intensive study. These

provinces are among the provinces with the most
intense transmission. The locations of these three
provinces are shown in Fig. 1. To examine how well
networks with these configurations perform, the six
years of data are divided into six groups. Each
group consists of five years of data for training and
one year of data for testing. The average over the six
groups of the root-mean-square error between the
real cases and the fitted cases normalized by the real
cases is used as an accuracy measure. The network
for each input data combination was trained using
backward propagation (Haykin, 1994; Bishop,
1996) for a million epochs or until the training
errors converged. An epoch is a complete round of
training over all the input samples. Although the
training might not have completely converged after
a million epochs, the decrease in the value of the
objective function and the changes in the network
parameters at this point were negligibly small from
one epoch to the next.

Software

We developed the majority of the processing,
modeling, and analysis software in IDL and C,
including a neural network code in C. Commercial
software used in this study include ENVI/IDL 4.2
(ITT Visual Information Solutions, Boulder, CO,
USA), Matlab 7.0.4 (MathWorks, Natick, MA,
USA), NeuroSolution 4.3 (NeuroDimension,
Gainesville, FL), and ArcGIS 9.0 (ESRI, Redlands,
CA, USA).

Results

Table 1 shows the training and testing results from
the neural network. Configuration 1 in the table
shows the simplest architecture. For example, the
average training accuracy is 75±9%, and testing
accuracy is 67±10% for Kanchanaburi. Like in
other classification techniques, the training accuracy
is normally higher than the testing accuracy. This is
due to the differences in statistical characteristics
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between the training and testing samples. In the con-
text of this study, it implies that malaria transmis-
sion in the training and testing samples may respond
differently to changes in meteorological and envi-
ronmental parameters. When the temperature
parameter is removed from the input (Configuration
2), the accuracy for training and testing in
Kanchanaburi is reduced to 74±9% and 62±12%,
respectively. When another hidden node is included
(Configuration 3), more complex geometries can be
introduced to assure better classification. For exam-
ple, the average training accuracy becomes 83±6%
for Kanchanaburi. The testing accuracy, however,
reduces to 57±16%. This indicates that the more
complex geometry might have been constructed to
accommodate the noise components in the training

samples, and thus worsened the testing accuracy.
When one more hidden node is included
(Configuration 4), the training accuracy increases
further, while the testing accuracy decreases and
becomes erratic for Mae Hong Son indicating that
the network is over-trained.

As described above, training accuracy is expressed
as normalized root-mean-square error by compar-
ing network output with malaria cases. Because of
the uncertainty regarding the reported malaria
cases, accuracy measures may be defined less strin-
gently in the following way. We divided the malaria
cases into 20 bands (classes) – from zero to 1.5
times of the historical maximum. As long as the fit-
ted data falls into the correct band or one of the two
adjacent bands, the classification will be considered
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Table 1. Training and testing accuracy for modeling provincial malaria cases using neural networks in four specific configurations.
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Configuration 1
t, T, P, P -1 , H, V

I HL 1 HN

Configuration 2
t, P, P -1 , H, V

I HL 1 HN

Configuration 3
t, T, P, P-1, H, V

I HL 2 HN

Configuration 4
t, T, P, P-1, H, V

I HL 3 HN

Province training testing training testing training testing training testing

Kanchanaburi 75±9% 67±10% 74±9% 62±12% 83±6% 57±16% 88±4% 58±17%

Mae Hong Son 71±10% 57±11% 69±11% 56±6% 77±8% 56±7% 84±6% 10±50%

Tak 72±10% 64±6% 70±11% 63±8% 78±8% 55±20% 84±6% 48±22%

correct. The upper limit of the highest band was set
to infinity. The architecture used for Configuration
1 in Table 1 was then applied to the malaria data for
the 19 provinces that were most endemic for malar-
ia between 1994 and 2000. Aside from the
Kanchanaburi, Mae Hong Song, and Tak provinces
that were selected before, the other 16 provinces
are, in alphabetical order, Chanthaburi, Chiang

Mai, Chymphon, Krabi, Narathiwat, Phetchaburi,
Prachinburi, Prachuap Khiri Khan, Ranong,
Ratchaburi, Rayong, Suphan Buri, Surat Thani,
Trat, Ubon Ratchathani, and Yala (Fig. 1). The
malaria endemicity in the other 57 provinces in
Thailand ranges from very low to none. The train-
ing accuracy results from these 19 provinces and the
width of each band are shown in Table 2. The aver-

Table 2. Training and testing accuracy for the 19 Thailand provinces most endemic with malaria. Malaria cases are grouped
into 20 band classes to account for the uncertainty regarding the reported malaria cases. The band width is both expressed in
absolute numbers of malaria cases per 100,000 population. The training accuracy is based on 1994-2000 data and the testing
accuracy on 2001.

Province

Chanthaburi

Chiang Mai

Chymphon

Kanchanaburi

Krabi

Mae Hong Son

Narathiwat

Phetchaburi

Prachinburi

Prachuap Khiri Khan

Ranong

Ratchaburi

Rayong

Suphan Buri

Surat Thani

Tak

Trat

Ubon Ratchathani

Yala

Training Accuracy

0.55

0.57

0.70

0.73

0.76

0.88

0.81

0.74

0.64

0.95

0.77

0.79

0.61

0.61

0.76

0.64

0.45

0.52

0.86

Testing Accuracy

0.08

0.00

0.58

0.58

0.00

0.75

0.42

0.33

0.00

0.50

0.92

0.42

0.33

0.33

0.67

0.67

0.17

0.42

0.92

Band Width

180

84

140

503

59

435

83

92

23

287

126

182

35

27

304

408

203

91

112

Band Width per 100,000
Population

37

5

30

64

16

187

12

20

5

60

79

22

7

3

34

84

91

5

26



age training accuracy of the 19 provinces, weighed
by the malaria cases, is 73%. We then used the neu-
ral networks trained with 1994-2000 data to predict
(hindcast) the malaria cases in 2001. The testing or
prediction accuracy was computed in the same way
as the training accuracy and is given in Table 2. 

The average testing accuracy weighted by malaria
cases is 53%. When weighted by the number of
cases per 100,000 population, the training and test-
ing accuracy became 74% and 57%, respectively.
Note that testing accuracy is the probability for the
prediction to fall into the correct band. In 2001, the
malaria cases in these 19 provinces experienced a
31% decrease. Because there was no apparent cli-
matic or environmental change, this decrease was
most likely due to changes in other contextual deter-
minants, and was generally attributed to the effec-
tiveness of malaria control efforts in Thailand. The

prediction or testing therefore overestimated the
malaria cases for 2001. The actual average monthly
malaria cases per 100,000 population in 2001 are
shown in Fig. 2A. 

The predicted cases are shown in Fig. 2B. In this
representation, 11 provinces were correctly predict-
ed, and 8 provinces were over predicted. Therefore,
the testing or prediction accuracy at province level is
58%, which largely agrees with the accuracy meas-
ure in the band representation.

Discussion

Malaria transmission is dependent on the diverse
factors that influence the vectors, parasites, human
hosts, and the interactions among them. These fac-
tors may include, among others, meteorological and

Fig. 2. (A) Mean monthly malaria cases per 100,000 population in 2001. (B) Predicted (hindcast) mean monthly malaria cases
per 100,000 population in 2001 by neural networks trained with 1994-2000 data. Because of the significant reduction in
malaria transmission in 2001, the networks overestimated malaria transmission in some provinces.

(A) (B)

R. Kiang et al. - Geospatial Health 1, 2006, pp. 71-8480



R. Kiang et al. - Geospatial Health 1, 2006, pp. 71-84 81

environmental condition, the innate and adapted
immunity of the human hosts, public health system,
housing construction, vector control, construction
of transportation networks, irrigation projects, and
population movements. The couplings among these
factors may be so complex that it is difficult to iso-
late the key factors that promote or sustain malaria
transmission in an area. 

The most apparent determinants are meteorologi-
cal and environmental factors, including the param-
eters evaluated here: rainfall, temperature, humidity,
and vegetation. Experience has shown that malaria
is correlated with the rainy season, and that ENSO
events may either increase or decrease malaria trans-
mission. When other factors remain more or less
constant, the meteorological and environmental
conditions can indeed be considered the driving fac-
tors. These conditions can be remotely sensed using
satellites that regularly cover extensive geographical
areas. Therefore, remote sensing has been used in
recent years for developing malaria early-warning
systems, particularly for Africa. For the Greater
Mekong Subregion, an epicenter of multi-drug
resistant malaria, few studies have examined the
dependency of malaria cases on these factors. 

In this study, we show that neural network tech-
niques are useful for modeling the dependency of
malaria cases on meteorological and environmental
parameters. Neural network analysis is a vital part
of machine or artificial intelligence, which is a disci-
pline to study a machine’s ability for learning and
adaptation, and exhibition of intelligent behaviors.
It has found broad application involving estimation,
classification, and time series analysis, and therefore
this methodology overlaps with traditional statisti-
cal methods.

Generally speaking, the neural network methods
excel in real-life problems that are too complex to
be expressed in analytical form. The disadvantage of
these methods, as has been demonstrated in various
applications, is the long computation required in the
training process relative to other statistical methods.
In addition, the trained network is not in a form as
compact as the regression techniques when using the

training results on application samples or for pre-
diction. This, however, may be the price to pay to
accommodate more complex representations. We
have yet to extensively compare the performance of
neural network methods with respect to the more
traditional statistical approaches with the data used
in this study. This may be a topic for future study.

The example for predicting (hindcasting) malaria
cases in 2001 demonstrated that the use of meteor-
ological and environmental data is only feasible
when other contextual determinants do not vary sig-
nificantly. The success of malaria control effort in
Thailand led to a significant reduction of malaria
transmission in 2001. Because a neural network
learns from examples, and this reduction differs
from what it learned from the 1994-2000 seasons,
the networks overestimated the malaria transmis-
sion in 2001. Likewise, for countries in which
malaria control efforts are disrupted, either due to
economic crises or to military conflicts, neural net-
works trained with normal transmission conditions
would likely underestimate future malaria transmis-
sion. This example underscores the importance of
other contextual determinants on malaria transmis-
sion. 

Thailand has long borders, nearly 3,200 km over
land, with Myanmar, Laos, Cambodia, and
Malaysia as its neighboring countries. Significant
populations from the neighboring countries have
come into Thailand or stayed near the border over
the last two decades. Along the Thai-Myanmar bor-
der, there were approximately 1.3 million registered
migrants and 120,000 registered refugees living in
camps at the end of 2004 (WHO Thailand, 2006).
There were at least a million unregistered migrants
in Thailand. The estimated percentage of non-per-
manent populations are available for some of the
border provinces (WHO Thailand, 2006) and are
shown in Fig. 1. 

Taking the Tak province for example, it is esti-
mated that 42-47% of its population are refugees,
migrants, or displaced populations. Because of the
large border-crossing population movement, it
may not be surprising that Tak is one of the most



malaria-endemic provinces in Thailand. Overall,
approximately 70% of all malaria cases in
Thailand occur in the 10 border provinces (WHO
Thailand, 2006). Due to the limited accessibility of
health care, transient and migrant populations
expand the human reservoir for malaria transmis-
sion. In turn, these populations escalate the
endemicity among the native Thai populations.
The movement of migrant population is therefore
an important contextual determinant that con-
tributes to malaria transmission. In addition, it
confounds the complexity for the prediction of
malaria transmission intensity based on meteoro-
logical and environmental parameters.

In this study, we have used remotely-sensed and
on-site data to examine the meteorological and
environmental factors in malaria transmission. The
malaria cases are at provincial resolution, and the
spatial resolution of the meteorological and envi-
ronmental data are from medium to coarse.
Malaria transmission is known to be spatially het-
erogeneous. In spite of the relative low resolution
of the data and the potential impact of migrant
populations, it appears that it is still possible to
extract a reasonable amount of dependency for
malaria transmission on the meteorological and
environmental parameters. As the trend for satellite
measurements is toward higher spatial resolution,
more and more geophysical parameters relevant to
malaria transmission are becoming available. By
coupling these parameters with malaria data at
lower administrative levels (e.g., district or village),
it is reasonable to believe that a more precise
dependency will be found between the malaria
cases and the meteorological and environmental
parameters.

Weight decay (Bishop, 1996) may reduce the
effective number of synapses and nodes in a fully
connected network. This technique was also used in
the present study. But the result with weight decays
in training has less bearing on the objective of this
paper. We will describe weight decay and network
pruning in a follow-on paper in which these tech-
niques may improve prediction accuracy.
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