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Assessment of malaria transmission changes in Africa, due to the climate
impact of land use change using Coupled Model Intercomparison Project

Phase 5 earth system models
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Abstract

Using mathematical modelling tools, we assessed the potential for
land use change (LUC) associated with the Intergovernmental Panel
on Climate Change low- and high-end emission scenarios (RCP2.6 and
RCP8.5) to impact malaria transmission in Africa. To drive a spatially
explicit, dynamical malaria model, data from the four available earth
system models (ESMs) that contributed to the LUC experiment of the
Fifth Climate Model Intercomparison Project are used. Despite the lim-
ited size of the ESM ensemble, stark differences in the assessment of
how LUC can impact climate are revealed. In three out of four ESMs,
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the impact of LUC on precipitation and temperature over the next cen-
tury is limited, resulting in no significant change in malaria transmis-
sion. However, in one ESM, LUC leads to increases in precipitation
under scenario RCP2.6, and increases in temperature in areas of land
use conversion to farmland under both scenarios. The result is a more
intense transmission and longer transmission seasons in the south-
east of the continent, most notably in Mozambique and southern
Tanzania. In contrast, warming associated with LUC in the Sahel
region reduces risk in this model, as temperatures are already above
the 25-30°C threshold at which transmission peaks. The differences
between the ESMs emphasise the uncertainty in such assessments. It
is also recalled that the modelling framework is unable to adequately
represent local-scale changes in climate due to LUC, which some field
studies indicate could be significant.

Introduction

Future changes to the size of human population, and its energy and
agricultural systems, could lead to considerable changes in the way
land is used and the resulting land cover. Such changes could have sig-
nificant implications for the transmission of infectious diseases
(Foley et al., 2005), particularly those involving an intermediate vector
such as malaria (Patz and Olson, 2006).

Land use change (LUC) may affect malaria transmission through a
wide range of pathways; many of which are poorly studied and under-
stood, and are summarised in Figure 1. Firstly, LUC impacts the phys-
ical environment, in particular the flow of water over the surface and
its retention in ponds and pools. Mosquitoes rely on the availability of
water for oviposition, with the key malaria vectors Anopheles gambiae
and arabiensis preferring temporary sunlit pools and puddles, so that
in areas lacking permanent water bodies, transmission is closely tied
to the rainy season with a lag of one to two months (Bomblies ef al.,
2009). The availability and suitability of breeding sites is highly het-
erogeneous and, in addition to climate, depends on topography, soil
texture and land cover type (Norris, 2004). Forest conversion to agri-
culture will likely produce more poorly drained soils, especially in the
initial years after land conversion (Packard, 2007) and reduced vege-
tation, while canopy cover reductions increase the availability of sun
lit ponds. The type of land use will also be relevant. For instance, irri-
gated crops may further increase breeding sites, although the result-
ant increased income may reduce overall population vulnerability and
reduce overall malaria prevalence (Ijumba and Lindsay, 2008).

Studies on the availability of breeding sites in different land cover
environments are limited, but fieldwork conducted in the highlands of
Kenya found that breeding sites on farmland or pasture were more fre-
quently occupied with larvae than those found in forests (Minakawa et
al., 2005; Munga et al., 2009; Mutuku et al., 2009). This could be the
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result of differences in vegetative shading, with Tuno et al. (2005)
showing gambiae larvae survival being an order of magnitude greater
in sunlit ponds in cleared areas relative to shady pools in forests.
However, they could also be due to the second aspect of LUC (Figure 1),
namely the changing in vector-host dynamic, where the density of
anthropophilic vectors increases in response to the increasing host in
population density associated with land development (possibly at the
expense of alternative mosquito species).

The complexity of the relationship between hydrology, land use and
vectors was emphasised in the reviews of Walsh et a/. (1993) and
Yasuoka and Levins (2007), who highlighted that deforestation could
both increase or decrease malaria incidence depending on the local sit-
uation. To date, these effects have rarely been considered in any
dynamical modelling assessment of potential future risk in response to
LUC, due to the lack of quantitative data that allow their encapsulation
in simple mathematical relationships. Vanwambeke et al. (2007)
attempted to model breeding site availability and resulting larvae den-
sity in an empirical model for Thailand, but such model is yet to be cou-
pled to dynamical models of malaria transmission.

The third mechanism by which LUC may impact malaria is by alter-
ing climate (Figure 1). Malaria is highly climate-sensitive (Martens et
al., 1995a, 1995b). In addition to the provision of breeding sites by rain-
fall, intense rainfall can flush breeding sites of earlier stage larvae
(Paaijmans et al., 2007), leading to a nonlinear relationship between
rain and malaria cases (Thomson et al., 2006; Lowe et al., 2013). Wind
affects host location by the vector and vector dispersion (Lindsay et al.,
1995; Cardé and Willis, 2008), while relative humidity impacts vector
survival (Mayne, 1930; Lyons et al., 2014). Air temperature is key as it

Physical (non-climate
Environment

impacts the sporogonic and gonotrophic cycle length and also impacts
the vector mortality rate. The temperature of the water in which the
vector larvae develop, which is related to air temperature, also affects
their development rate and mortality (Bayoh and Lindsay, 2003; Bayoh
and Lindsay, 2004; Kirby and Lindsay, 2009). The combined effect is
that malaria increases with air temperature until transmission peaks
at 25-30°C, thereafter decreasing (Lunde et al. 2013a; Mordecai et al.,
2013).

Many numerical (often idealised) earth system model studies of
LUC, mostly focusing on its manifestation as deforestation for the cre-
ation of agricultural land or pasture, have documented significant
potential impacts on climate (Lean and Warrilow, 1989; Shukla et al,
1990; Nobre et al., 1991; Henderson-Sellers et al., 1993; Polcher and
Laval, 1994; McGuffie et al., 1995; Zhang et al., 1996; Taylor et al., 2002;
Nogherotto et al., 2013). For example, forest conversion to agricultural
land use alters the surface roughness, the albedo and the evapotranspi-
ration. Conducted over sufficient spatial area, these changes can
impact rainfall and temperature both locally, and also remotely through
teleconnections. However, the modelling work has often been contra-
dictory. Even the sign of the precipitation changes is uncertain, for
example, with deforestation leading to increases or decreases, depend-
ing on the Earth System Model (ESM) in question. Bell et al. (2015)
recently attempted to dissect these findings, dividing the impact of LUC
into its constituent changes to albedo, surface roughness and evapo-
transpiration. The latter two effects dominated, but the work showed
that the climatic reaction to LUC was complex and included feedbacks
with the large-scale, dynamics. Moreover, ESMs still run at spatial
scales that can only account for regional scale changes in land cover,

dynamics

Host-vector

Climatic Impact

Figure 1. Schematic of potential pathways for land use change (LUC) to impact malaria transmission. LUC affects the physical envi-
ronment, for example by changing the soil drainage characteristics and the thus the availability of breeding sites (top). The proportion
of sun-lit pools could alter as a result of reductions in canopy cover. Vector-host dynamics could alter through changes in the predom-
inate vector species or closer proximity of human habitations to breeding sites (middle). LUC has also been shown to alter temperature,
rainfall and relative humidity, which would also impact malaria transmission (lower).
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and are unable to resolve the local impact of land cover changes that
are smaller in scale, such as the introduction of rice culture. We will
return to the theme of spatial scale in the discussion.

The climate impact of LUC could thus be potentially significant for
malaria transmission. In fact, Lindblade et al. (2000) and Afrane et al.
(2005, 2006) identified this climate mechanism as the key influence of
LUC on malaria transmission in their local study in the highlands of
Kenya, and it was also highlighted in the reviews of Patz et al. (2005)
and Patz and Olson (2006). Modelling studies on the impact of LUC on
malaria have been limited. To our best knowledge, the only direct mod-
elling study incorporating LUC was the one by Ermert et al. (2012)
using the Liverpool malaria model (Hoshen and Morse, 2004; Ermert et
al., 2011). This was driven by climate information generated by a
regional ESM that included future potential LUC in addition to changes
in anthropogenic greenhouse gases. They quoted a strong impact of
LUC on malaria in this study, although no separate experiments were
conducted to isolate the influence of the LUC. Moreover, due to the use
of a single ESM, no assessment of climate model uncertainty can be
derived (Ermert et al., 2012).

Many of the cited global and regional climate modelling studies that
investigated the climate impact of LUC used idealised experimental
frameworks, instigating complete and instantaneous deforestation of
entire basins such as the Congo (Nogherotto et al., 2013; Bell et al. 2015).
Such changes far exceed the anticipated LUC over the next century.
Recently, the Coupled Model Intercomparison Project Phase 5 (CMIP5),
that contributed to the Intergovernmental Panel on Climate Change
(IPCC) 5™ assessment report, included an optional experimental line
that attempted to include more realistic representation of LUC. Twin
experiments with and without LUC projections resulted in limited cli-
mate impacts in most models, with the results highly model-dependent
(Pitman et al., 2009; Brovkin et al., 2013). It should be noted that Brovkin
et al. (2013) masks out 30 year mean differences if they are not statisti-
cally greater than the respective model’s year to year variability; a strict
test that assumes interannual variability is equal to decadal variability.
As a result, most changes are deemed insignificant, except over oceanic
areas of known strong decadal variability.

In this article the research of Ermert et al. (2012) will be taken
further by the use of twin experiments with and without LUC in
order to isolate its impact, conducted by the suite of ESMs that par-
ticipated in the CMIP5 process using the LUC scenarios consistent
with the emission scenario storyline of the IPCC. The use of an
ensemble of four different climate models rather than the single
modelling system in Ermert et al. (2012) permits a preliminary
assessment of the uncertainty related to the way LUC is incorporated
into ESMs and the interaction between atmosphere and the land sur-
face. These climate integrations will be used to drive a spatially
explicit dynamical malaria model to produce the first multi-model
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assessment of the potential impact of LUC on malaria transmission
in Africa via its impact on climate.

Materials and Methods

Land use change in earth system models

The latest generation of representative concentration pathways
(RCPs) are associated with a story-line for future anthropogenic LUC
that was converted to a common gridded format for use in climate mod-
elling studies (Van Vuuren et al, 2011b). One optional experimental
line of the latest round of the climate model intercomparison project
(CMIP5) involved the twin investigation of future climate with and
without LUC represented. Each of the impact assessment models
(IAMs) that produced a RCP included scenarios that involved LUC deci-
sions. However, the land use classifications and their spatial resolu-
tions (distributed, national level) mean that for the use in ESM inte-
grations, a harmonisation process was required. This was achieved
using the History of the Global Environment model (HYDE v3.1), result-
ing in an internally consistent database combining historical popula-
tion, cropland and pasture statistics with satellite information and allo-
cation algorithms to generate spatial land-cover maps (Goldewijk et al.,
2010; Klein Goldewijk ef al., 2011), which then smoothly connected his-
torical land-use data with future projections in a format more readily
accessible to ESMs (Hurtt ef al., 2011). The resulting datasets provide
yearly fractional land-use data for the time period (1500-2100) at 0.5
degrees of horizontal resolution. These land use maps were then incor-
porated into five global models, each of which implemented various
rules to translate the HYDE land class and their conversions to the
plant functional type (PFT) definitions of various land surface schemes
used in the ESMs. This additionally involved devising rules to deal with
internal inconsistencies for the two models in which the dynamical
vegetation model was active. Of the five ESMs which participated in the
LUC experiment of CMIP5, complete daily data were made available
from four models within the timeframe of this study, and thus the
HADGEM-ES2 model is not considered further. A summary of the
methodologies employed to implement the LUC projections into these
four ESMs is given in Table 1. The models differ concerning the imple-
mentation of dynamical vegetation modelling and the number and clas-
sification of PFTs in the respective land surface schemes. Thus,
although the ESMs use the same harmonized land-use scenarios, the
method employed to convert HYDE categories into land categories and
PFTs used by ESMs differs between the models, as does the translation
of HYDE trends to PFT conversion pathways. For example, crop increas-
es in CANESM2 result in a reduction in the fractional coverage of
herbaceous and woody PFTs, proportional to their existing coverage,

Table 1. Summary of the key land surface details relevant for the History Database of the Global Environment 3.1 conversion.

Land model CTEM ORCHIDEE SEIB-DGVM JSBACH

Reference Arora and Boer (2010) Krinner et al. (2005) Sato et al. (2007) Raddatz et al. (2007)
PFTs classes 9 13 13 12

DVM No No Yes Yes

HYDE output Absolute values Absolute values Transition matrix Transition matrix

HYDE conversion ~ Woody + herbaceous = natural ~ Woody + herbaceous = natural ~ Primary + secondary = natural ~ Primary + secondary = natural

ESM, Earth System Model; CanESM2, Canadian Earth System Model version 2; IPSL-CM5A-LR, Institute Pierre Simon Laplace version 5a; MIROC-ESM, Model for Interdisciplinary Research on Climate; MPI-ESM-LR,
Max Planck Institute Earth System Model; CTEM, Canadian Terrestrial Ecosystem Model; ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems; SEIB-DGVM, spatially explicit individual-based Dynamic
Global Vegetation Model; JSBACH, (Jena Scheme for Biosphere—Atmosphere Coupling in Hamburg; PFT, plant functional type; DVM, Dynamic Vegetation Model; HYDE, History Database of the Global Environment.
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while the IPSL-CM5A-LR model reduces all natural vegetation types.
Reductions in crop area are compensated for by increases in all natural
coverage types in both models, while MIROC-ESM explicitly simulates
forest regrowth after pasture abandonment. In the MPI-ESM-LR model
pasture area increases at the expense of forest if the pasture exceeds
the availability of the grasses and shrubs category, similar, but not
identical to MIROC-ESM, which converts grassland prior to forest,
while CANESM2 does not alter pasture. Such differences regard the
intricate detail of the respective model coding and are not always
explicitly documented in the literature. To isolate the impact of LUC on
climate, the participating CMIP5 groups performed two sets of simula-
tions for the period 2006-2100 using the same forcing as for RCP2.6
and RCP8.5 but with the land-use invariant through the time (Brovkin
etal., 2013). The RCP8.5 scenario predicts a rising of the radiative forc-
ing pathway leading to 8.5 Wm=2 top-of-atmosphere forcing by 2100,
while the RCP2.6 scenario expects a peak in radiative forcing at
approximately 3 Wm~2, declining to 2.6 Wm=2 by 2100.

The two scenarios for land use for RCP2.6 and RCP8.5 are derived
respectively from IMAGE IAM (Van Vuuren et al., 2011a) and MESSAGE
IAM (Riahi et al., 2011). The socioeconomic scenarios associated with
both of the RCPs predict an increase of cropland area (Figure 2), but
while in RCP8.5 this is due to the increase of human population and
associated food and fuel requirements, in RCP2.6 the change is a result
of the desire to move towards greater bio-energy production to reduce
CO. emissions. In fact, the increase in crop land at the expense of pri-
mary land cover is actually greatest in RCP2.6. In contrast, the pasture
area is assumed to remain almost constant in RCP2.6, while an
increase occurs in RCP8.5 (Van Vuuren et al., 2011b).

Malaria model

The malaria model used in this study is the VECTRI model
(Tompkins and Ermert, 2013), a gridded mathematical model for malar-
ia transmission that accounts for temperature in the larvae and adult
life cycles, while rainfall drives a model for surface pond coverage that
has been improved and evaluated (Asare et al, 2016a; 2016b). The
model has been applied to seasonal forecasting tasks (Tompkins and Di
Giuseppe, 2015) and has been evaluated using sentinel site and district
case data from Uganda and Rwanda (Tompkins et a/., 2016a), as well as
applied to climate change problems (Caminade et al., 2014). The model
accounts for human population density, which in these studies is
frozen at present day values given by the Worldpop dataset (Tatem et
al., 2007; Linard et al., 2012). Thus future population growth, urbanisa-
tion or changes in cyclic migration (Tatem and Smith, 2010;
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Wesolowski et al., 2012; Tompkins and McCreesh, 2016) do not impact
the projections reported here. This study uses version v1.3.3 of the
VECTRI model, which additionally represents larvae growth rates using
the relationship of Craig et al. (1999), and water-temperature depend-
ent larvae mortality rates derived from a combination of the growth
rate and the data of Bayoh and Lindsay (2003) and Bayoh and Lindsay
(2004). The temperature experienced by the adult mosquito is
assumed to be an average of the outdoor air temperature (measured at
the standard 2 metre station height) and the derived indoor hut tem-
perature. The latter is derived from the 2 metre air temperature using
the relationship given in Lunde et al. (2013b). This modification
improves the model performance at colder temperature ranges below
21°C since it prevents endophilic vectors being subjected to cold night
time temperatures.

The malaria transmission changes are assessed using two metrics
in this study. The first is the malaria parasite prevalence, which is
referred to as the parasite ratio (PR) and is commonly used as a broad
measure for malaria transmission intensity (Omumbo et al., 2005).
The second metric is the length of the transmission season (LTS),
which is calculated as the number of days where the daily entomologi-
cal inoculation rate (EIR, the number of infectious bites received per
person per unit time) exceeds 0.01 as used in Caminade et al. (2014).

Experimental set up

Daily precipitation and temperature output from the four available
ESMs was used to drive the VECTRI model for the model’s historical run
(1960-2005) and the two RCPs (2005-2099). The simulations are con-
ducted and then analysed for the whole of Africa, with an additional
focus on the East African Community region of the HEALTHY FUTURES
project. As temperature is key for simulating malaria in the correct geo-
graphical locations, we applied a simple bias correction in which the
mean annual cycle of temperature bias with respect to the 1960-2005
Climatic Research Data mean (CRU; Harris et al., 2014) is subtracted
from each integration. Rainfall is used without correction. The numer-
ical expense limited the number of earth system model integrations
that were conducted for the land use experiment: three ensemble mem-
bers for Canadian Earth System Model version 2 (CanESM2), two
ensemble members for the Max Planck Institute Earth System Model
(MPI-ESM-LR) and just a single integration of the Institute Pierre
Simon Laplace version 5a (IPSL-CM5A-LR) and the Model for
Interdisciplinary Research on Climate (MIROC-ESM) models. No sta-
tistical significance testing is conducted, as it is not possible for the
two models only running a single integration and the statistical power

15 W0 15 E30 B45 B
-0.2 -0.1 0 0. 0.2 0.3
Crop fraction cover ditference

0.1 02 03

Figure 2. A) Present day crop fraction in Africa and the changes projected to occur by 2099 under (B) RCP2.6 and (C) RCP8.5.
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will be low for the models with the sample sizes of 2 and 3. In an
attempt to minimize the effect of small ensemble sizes, differences are
investigated for a long averaging period of 70 years (2030 to 2099).

Results

Impact of land use change on climate

The impact of LUC on climate is assessed in terms of two variables
only, the 2 metre air temperature and precipitation, as these are the
two climate-related inputs to the malaria model. Understanding the
impact of LUC on climate is complex, since it involves feedbacks with
the large-scale dynamics, and is also a function of how the land use
conversions are translated into each model’s PFT categories and the
relative physiological properties assigned to the class. Without the pos-
sibility to conduct further sensitivity experiments with each ESM it is

0

15°8

30°8

o -

158

impossible, and thus beyond the scope of the present work, to discern
why each ESM responds to LUC in a particular way.

The precipitation difference between the experiments with and
without LUC for the period 2030 to 2099 for emissions scenario RCP2.6
(Figure 3) show small magnitude changes that are for the most part
less than 0.3 mm day~!, considerably less than the changes observed
due to greenhouse gas emissions (IPCC, 2014). Again, this emphasises
the stark need for more than one ensemble member in such experi-
ments to allow robust significance testing to be conducted, and also to
be able to correctly attribute the relative contribution of model config-
uration and natural variability to uncertainty. Looking closely at indi-
vidual models, the response is very limited in the IPSL-CM5A-LR and
CanESM2 models. The MPI-ESM-LR model also has a small response,
which is manifested in a small increase in precipitation throughout
much of sub-Saharan Africa. From the 4 models, MIROC-ESM exhibits
the strongest response to LUC, with local changes up to 1 mm day~'.
The magnitude of precipitation changes due to LUC in the RCP8.5 sce-

Figure 3. Precipitation differences averaged for the period 2030-2099 due to the land use change scenario associated with RCP2.6 sim-
ulated with Earth System Model (A) Canadian Earth System Model version 2, B) Institute Pierre Simon Laplace version 5a, C) Model
for Interdisciplinary Research on Climate, and D) Max Planck Institute Earth System Model.
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nario are even smaller than RCP2.6, due to the smaller rate of land con-
version (Figure 2) and are not shown here for brevity. However, we
note that the patterns of changes are distinct between the scenarios,
reflecting the contrasting patterns of LUC.

The temperature changes are also very limited in three of the mod-
els, with MIROC-ESM again showing the strongest impact of LUC,
which in places exceeds 1°C in RCP2.6 (Figure 4). In the MIROC-ESM
model, the south-eastern area of Africa shows strong warming, along
with areas of West Africa, which coincide with the location of maxi-
mum conversion to agricultural land (Figure 2) and is a result of
changes to evapotranspiration efficiency and albedo.

Impact of land use change on malaria transmission

As the impact of LUC on climate is minor in the CanESM2, IPSL-
CM5A-LR and MPI-ESM-LR ESMs relative to the order of magnitude
larger changes that result from greenhouse gas emissions, even in the
RCP2.6 scenario (IPCC, 2014), a limited impact on malaria in those

c

T
15°W o 15°E

30°8 —

models is expected. Using the LTS metric this is indeed seen to be the
case (Figure 5). In the IPSL-CM5A-LR, MPI-ESM-LR and CanESM2
models, LTS changes are mostly less than 10 days. Only the MIROC-
ESM model produces substantial changes, with the transmission sea-
son increasing by up to two months per year in south-eastern Africa,
over the northern part of Mozambique and Tanzania. Over the Sahel
region, decreases in the length of the transmission season occur. If the
temperature is referred to Figure 5, it is seen that there is a direct cor-
respondence between regions of changing temperature and malaria
impact, but that the sign of the correlation changes. Above about 25-
30°C, malaria transmission decreases with increasing mean tempera-
ture (Craig et al., 1999) and warming in the already warm Sahel region
(warmer still in the 2030-2099 period due to greenhouse gas emission)
thus reduces LTS.

Focusing attention on the East Africa Community (EAC) region as
simulated by the MIROC-ESM model, the model with the greatest
response to LUC; Figure 6 shows the climate impact of both RCP2.6 and

oC
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Figure 4. Temperature differences averaged for the period 2030-2099 due to the land use change scenario associated with RCP2.6 sim-
ulated with Earth System Model (A) Canadian Earth System Model version 2, B) Institute Pierre Simon Laplace version 5a, C) Model
for Interdisciplinary Research on Climate, and D) Max Planck Institute Earth System Model.
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RCP8.5 LUC. The conversion to crop land in RCP2.6 (Figure 7A,C) leads
to an increase in temperature over south-eastern Tanzania and over
the north of Uganda, accompanied by small increases in precipitation.
The second region of high LUC to the south-west of lake Victoria is not
reflected in a change in temperature, but does seem to be associated
with a precipitation change. The climate signal due to the LUC in
RCP8.5 bears some similarity to RCP2.6, particularly with regard to
temperature changes (Figure 7B,D).

The changes in PR and LTS due to LUC in the two RCPs for the
MIROC-ESM model (Figure 7) highlight the strong correspondence
between temperature changes and malaria. The PR and LTS increase
throughout most of Tanzania in response to the climate warming
caused by LUC in this model, while cooling over the higher ground of
Burundi and Rwanda leads to reduced malaria. It is notable that the
limited rainfall changes have little impact. One exception is the north
of Uganda, where both temperature and rainfall increases coincide.
The result is a small increase in prevalence (<5%).
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Discussion

This work represents the first attempt to isolate and assess the
potential impact of LUC on malaria transmission via its impact on cli-
mate using a dynamical modelling framework. The latest projections of
potential LUC derived from two RCP scenarios of the IPCC 5th assess-
ment report were used. While these experiments represent the current
state-of-the-art in the inclusion of LUC effects in ESMs, the sizes of the
ensembles for these CMIP5 experiments are nevertheless limited, pre-
venting adequate significance testing. The recent work of Kay et al.
(2015) has highlighted the requirement for larger ensemble sizes in
the next phase of the CMIP process (Meehl et al,, 2014). Similarly, in
our analysis only a single malaria model was used, and recent work by
Piontek et al. (2014); Caminade et al. (2014) and Wallace et al. (2014)
has highlighted the considerable uncertainty in individual impacts
models. Tompkins et al. (2016b) addressed this by employing perturbed
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Figure 5. Length of transmission season differences averaged for the period 2030-2099 due to the land use change scenario associated
with RCP2.6 simulated with Earth System Model (A) Canadian Earth System Model version 2, B) Institute Pierre Simon Laplace ver-
sion 5a, C) Model for Interdisciplinary Research on Climate, and D) Max Planck Institute Earth System Model.
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parameter ensembles for single location runs. Thus the limited ensem-
ble size of initial conditions and modelling systems implies that the
results of this study should be taken as merely indicative of potential
impacts. In three of the four available ESMs, LUC has a very limited
impact on climate, contrasting with the MIROC-ESM ESM, which
showed a more significant impact. Thus in three of the models the
changes in simulated malaria transmission as a result of LUC climate
change were very minor, while the MIROC-ESM model shows increases
in precipitation and temperature under scenario RCP2.6 and associat-
ed increases in malaria transmission and resulting prevalence in the
southeast of the continent, including Tanzania in the focus EAC region.
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In contrast, reductions were seen over the Sahel region due to temper-
ature increases occurring in already warm locations exceeding 30°C.

The MIROC-ESM model has a very spatially heterogeneous response
in comparison with the other models. This indicates that certain land
cover conversion pathways (e.g. forest conversion to agriculture)
demanded by the LUC scenario have been focused in isolated grid cells
in the MIROC-ESM’s model implementation of the HYDE land use (LU)
maps. This high heterogeneity in the LUC pathway allocation method
would likely increase the local magnitude of the change. In contrast,
the other models tend to show a more uniform climate response, pos-
sibly indicating a more spatially homogeneous LUC.
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Figure 6. The HEALTHY FUTURES EAC region of changes in rainfall (A, B) and temperature (C, D) averaged for the period 2030-
2099 due to the land use change scenario simulated with the Model for Interdisciplinary Research on Climate for emissions scenarios

(A, C) RCP2.6 (B, D) RCP8.5.
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The fact that LUC leads to very limited climate changes in three of
the ESMs that contributed to the LUCID experiment emphasizes that
many of the previous studies overstate the potential changes during
the next century with their idealized boundary conditions that imple-
ment complete land conversion in a region. However, the wide range of
responses between the four models also highlights the considerable
uncertainty in projecting the climate impacts of LUC in the current
generation of ESMs.

Another concern is the fact that the methodology for implementing
LUC in the ESMs differs from model to model, confounding the attempt
to translate underlying patterns of LUC to the climate change signal
observed. The starkly different responses between the ESMs to the
same driving LUC scenario is not only a result of the differing atmos-
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pheric model processes such as deep convection, but is likely to be con-
nected with the way the LUC is mapped to the land cover classes of the
land surface scheme used in each ESM, and the relative properties of
those classes. The MIROC-ESM model was identified as having a par-
ticularly heterogeneous implementation of the LUC pathways, for
example. Certain LUCs pathways, such as the introduction of irriga-
tion, are not represented at all. Often such changes occur on scales that
are not adequately represented, even with the tile land surface
schemes. It is also recalled that the study only examines one pathway
from LUC to malaria transmission, namely via changes in climate.
Taking irrigation as an example, while it certainly impacts local climate
(Lobell et al,, 2009), it also provides more breeding opportunities and
may result in closer contact between human and the vector (Carnevale
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Figure 7. Zoom over the HEALTHY FUTURES EAC region of changes in parasite ratio (PR) and length of transmission season (LTS)
averaged for the period 2030-2099 due to the land use change scenario simulated with the Model for Interdisciplinary Research on
Climate for (A) PR, RCP2.6 (B) PR, RCP8.5 (C) LTS, RCP2.6 (D) LTS, RCP8.5.

[page 14]

[Geospatial Health 2016; 11(s1):380]



CPress

and Robert, 1987; Mukiama and Mwangi, 1989; Keiser et al,, 2004). In
contrast, the review of ljumba and Lindsay (2008) showed that irriga-
tion could reduce overall risk due the associated socioeconomic devel-
opment.

The issue of scale is an important one, and should be emphasized.
Since the fact that this study has tended to find a relatively limited
impact of LUC on malaria via climate does not contradict or conflict
necessarily with the field observations of Lindblade ef a/. (2000) and
Munga et al. (2009), which indicate that the local changes may be sig-
nificant. Moreover, sub-national scale developments may be missing
from the LUC assessments. Using the HYDE scenarios, it appears here
that Kenya is relatively unaffected by LUC, but it should be recalled that
the projections for land use are large-scale in nature and do not
account for individual national level development plans. For example,
as part of its vision 2030 plan, Kenya plans to develop the north east of
the country in the so-called Lamu Port and South Sudan Ethiopia
Transport (LAPSSET) Corridor project (Johannes et al, 2015). This
project entails large-scale infrastructure development, in addition to
water management schemes and agriculture farming (both plantations
and cattle) initiatives. Apart from the direct impact of such schemes on
land use and land cover, such a plan is likely to increase internal popu-
lation movements substantially, with significant numbers of people
projected to move to the development region, further enhancing LUC.
Such national-scale development projects are not included in present
impact assessment models, which generally rely on coarse estimates of
future development potential.

Conclusions

This work has used state-of-the-art climate model simulations to
drive a dynamical malaria model and demonstrated that LUC has the
potential to impact malaria transmission in Africa, but that the effect
appears minor relative to previous studies of potential climate change
impact (Caminade et al., 2014). In the focus EAC region, LUC leads to
increases in the length of the transmission season of one to two
months in Tanzania in one of the four available climate models. The
study highlighted the wide range of climate responses to the underly-
ing LUC scenarios, emphasizing the uncertainty in the way LUC is cur-
rently incorporated into ESMs. Sub-national and local scale LUC
impacts are likely to be significant but are not represented in the pres-
ent modelling framework. Improving the assessment of the LUC effect
by addressing the above short-comings of the present work would
therefore involve defining a common framework for interfacing LUC
scenarios with the land schemes of ESMs, possibly using local down-
scaling deforestation and LUC tools such as the FOREST-SAGE model
presented in Tompkins et al. (2015). Increasing the ESM ensemble,
both by using a wider range of models as well as increasing the ensem-
ble size with each model, and employing an ensemble of malaria mod-
els would allow uncertainties in the modelling hierarchy to be evaluat-
ed. Finally, fine scale local and regional studies should be conducted to
complement the global integrations. In addition, assessing the impact
of LUC on the availability of breeding sites is a challenge that needs to
be addressed in order to allow other pathways between LUC and dis-
ease exposure to be represented. In order to do this, a much improved
understanding of the small-scale hydrology of the disease is required to
supplement the geographically isolated studies that already exist.
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