How much incident lung cancer was missed globally in 2012? An ecological country-level study

Benn Sartorius,¹ Kurt Sartorius¹,²
¹School of Nursing and Public Health, University of KwaZulu-Natal, Durban; ²Faculty of Commerce, University of the Witwatersrand, Johannesburg, South Africa

Abstract

Lung cancer incidence is increasing in many low-to-middle-income countries and is significantly under-reported in Africa, which could potentially mislead policy makers when prioritising disease burden. We employed an ecological correlation study design using country-level lung cancer incidence data and associated determinant data. Lagged prevalence of smoking and other exposure data were used to account for exposure-disease latency. A multivariable Poisson model was employed to estimate missed lung cancer in countries lacking incidence data. Projections were further refined to remove potential deaths from infectious/external competing causes. Global lung cancer incidence was much lower among females vs males (13.6 vs 34.2 per 100,000). Distinct spatial heterogeneity was observed for incident lung cancer and appeared concentrated in contiguous regions. Our model predicted a revised global lung cancer incidence in 2012 of 23.6 compared to the Globocan 2012 estimate of 23.1, amounting to ~38,101 missed cases (95% confidence interval: 28,489-47,713). The largest relative under-estimation was predicted for Africa, Central America and the Indian Ocean regions (Comoros, Madagascar, Mauritius, Mayotte, Reunion, Seychelles). Our results suggest substantial under-reporting of lung cancer incidence, specifically in developing countries (e.g. Africa). The missed cost of treating these cases could amount to >US$ 130 million based on recent developing setting costs for treating earlier stage lung cancer. The full cost is not only under-estimated, but also requires substantial additional social/family inputs as evidenced in more developed settings like the European Union. This represents a major public health problem in developing settings (e.g. Africa) with limited healthcare resources.

Introduction

Lung cancer remains the most common cancer worldwide, and recent surveys illustrate persistent high levels of lung cancer and an increasing trends of female prevalence in many developed regions like North America and Europe (WHO-IARC, 2014; Islami et al., 2015; Lortet-Tieulent et al., 2014). Many low to middle income countries also show increasing levels of male-led incidence in regions like Eastern and Central Europe, particularly in Hungary, Poland and Serbia (WHO-IARC, 2014; Lortet-Tieulent et al., 2014; Tesfaye et al., 2007). A recent study in 27 countries belonging to the European Union (EU) indicates that the economic costs of lung cancer for 2009 were €18.8 bn and the biggest contributor in economic productivity (Edge et al., 2010). Meanwhile, the potential cost of lung cancer in developing countries is projected to increase further because of the trend of rising incidence in the next decade (Farnsworth et al., 2004; Murray, 1997; Nishida and Kudo, 2013). Recent estimates report that the developing countries account for 56% per cent of the global burden of lung cancer incidence (WHO-IARC, 2014) and contain an estimated 1.38 billion smokers, who are associated with a 7-fold higher risk of acquiring lung cancer (Nishida and Kudo, 2013). Given the high economic cost, rising lung cancer incidence in developing countries is likely to further impact available health resources due to the limited resources of these regions (Shorocks, 2013).

The complexity of lung cancer incidence is illustrated by the stratified nature of its biology and geno-environmental determinants (Minagawa et al., 2007; Tesfaye et al., 2007) that show both inter- and intra-country variations. The Globocan 2012 report shows marked inter-country incidence differences that are compounded by intra-country differences across regions, ethnic groups (WHO-IARC, 2014; Lortet-Tieulent et al., 2014), gender (Islami et al., 2015), a long latency period (30 years) and the degree of inhalation (Farnsworth et al., 2004). Although smoking is widely accepted as the primary agent that triggers lung cancer (Bruce et al., 2000; Cohen et al., 2005), evidence exists that shows that the disease is also linked to other social determinants like passive smoking, indoor cooking, occupational hazards, motor vehicle emissions and industrial pollution (Lary et al., 2014; Youlden et al., 2008). A combination of factors therefore suggests diverse inter- and intra-country differences in the incidence of lung cancer that are further magnified by the inequality gap between socioeconomic groups (Deaton, 2013). In addition, the management of lung cancer is compromised because its incidence may be significantly under-reported in (many) developing countries because of lack-
ing data or poor quality thereof (WHO-IARC, 2014; Ferlay et al., 2010). Although the geography of lung cancer incidence is well recorded in the literature (Tesfaye et al., 2007), the under-reporting of its incidence in many countries could potentially mislead policy makers when prioritising disease burden. A need therefore exists to identify geographic areas that lack or significantly under-report lung cancer as this has implications for disease prioritisation, resource allocation and tailored policy interventions (Islami et al., 2015; Tesfaye et al., 2007). Lung cancer management in developing countries will continue to be compromised by its complexity as well as under-estimation of the impact of the disease because of poor or lacking data. The aim of this study was to quantify potential under-estimation of lung cancer using GLOBOCAN 2012 data and available lagged determinant (risk factor) data. The level and implications of this under-estimation are discussed in order to propose some relevant policy implications.

Materials and Methods

Incidence data

Age- and gender-standardised lung cancer incidence as well as raw counts for 184 countries were extracted from the GLOBOCAN 2012 database (WHO-IARC, 2014). A detailed description of the data sources, methodologies and potential limitations have been published previously (WHO-IARC, 2014). Data from countries are classified according to availability and quality, namely: A [high quality national data or high quality regional (coverage greater than 50%)], B [high quality regional (coverage between 10% and 50%)], C [high quality regional (coverage lower than 10%)], D [national data (rates)], E [regional data (rates)], F [frequency data], G (no data).

Determinants

The following key determinants were included in the analysis. Published data for historical levels and trends in age-standardised prevalence of smoking by country were utilised (Ng et al., 2014). These data are for 187 countries and estimated age-standardised prevalence of smoking in 1980, 1996, 2006 and 2012. We used estimates from 1980 in our model as this would most closely correspond with the 30-year latency period described below. Missing smoking prevalence estimates for countries were imputed using a Bayesian spatial conditional autoregressive (CAR) model to use neighbouring country values. Historical outdoor air pollution data with reference to particulate matter concentrations less than 10 microns in diameter (PM10) expressed as micrograms per m3 were extracted from the World Bank Data repository for the period 1990-2012 (World Bank, 2013). We used estimates for 209 countries from 1990 in our model (data were not available prior to that in the repository). Proportions of households using solid fuel for cooking (indoor pollution) by country in 1990, 2000 and 2010 were extracted from Bonjour et al. (2013) and these are based on data extracted from the World Health Organization (WHO) Household Energy Database (WHO, 2009, 2012). Data used by Bonjour et al. (2013) covered 153 countries with at least one survey per country between 1974 and 2010. For countries lacking solid-fuel data but classified as high-income countries, they assumed the proportion using solid fuels for cooking to be <5% (Bonjour et al., 2013). We used estimates for 184 countries from 1990 in our model. Gross domestic product (GDP) data per capita (in US$) by country in 1980 were also extracted from the World Bank Data repository (World Bank, 2013). Furthermore, mortality from competing causes of death (specifically communicable disease and injury) were extracted for each country from the Global Burden of Disease Project Study 2013 (Naghavi et al., 2015) to realistically reduce projected under-estimation from the model as some incident lung cancer would not have been realised (Figure 1).

Latency period between exposure and lung cancer

A review of available literature suggests an approximate 30-year population latency period between smoking prevalence and subsequent lung cancer mortality (Burbank, 1972; Devesa et al., 1987; Finkelstein, 1991; Polednak, 1974; Weiss, 1997). This estimate was used to estimate the period to be used between historical population level smoking exposure and its subsequent impact on current lung cancer incidence. This study employed an ecological country-level correlation design.

Data analysis

Spatial analysis

Local indicators of spatial autocorrelation (LISA) (Anselin, 1996) were estimated using the freely available GeoDa software (Anselin et al., 2006). Local Moran’s I statistic based on rates (cases and associated populations at risk) was used to identify the existence of significant spatial clustering of lung cancer by gender. GeoDa implements the recommended Empirical Bayes (EB) standardisation procedure (Assuncao and Reis, 1999) in its global Moran scatter plot and LISA maps i.e. standardisation of the raw rates. Significance was set at 5% after 99,999 iterations.

Determinant (risk factor) data. The level and implications of this under-estimation are discussed in order to propose some relevant policy implications.

Materials and Methods

Incidence data

Age- and gender-standardised lung cancer incidence as well as raw counts for 184 countries were extracted from the GLOBOCAN 2012 database (WHO-IARC, 2014). A detailed description of the data sources, methodologies and potential limitations have been published previously (WHO-IARC, 2014). Data from countries are classified according to availability and quality, namely: A [high quality national data or high quality regional (coverage greater than 50%)], B [high quality regional (coverage between 10% and 50%)], C [high quality regional (coverage lower than 10%)], D [national data (rates)], E [regional data (rates)], F [frequency data], G (no data).

Figure 1. Fraction of mortality due to competing infectious disease and injury by country. The values on the vertical axis represent ISO 3166 country codes.
Statistical analyses

Analyses were performed using STATA software version 13.0 (StataCorp, 2011). Using observed numbers of age standard incident lung cancer cases and associated population at risk, we calculated incidence rates and associated 95% Poisson confidence limits. Country level lung cancer incidence was considered significantly above average if the lower 95% confidence interval (CI) limit ($\alpha=0.025$) of the incidence proportion would be above the global average (Pickle et al., 1987). We employed a regression framework to quantify and identify determinant associated with lung cancer utilised previously. We employed an ecological (country-level) generalised linear Poisson modelling approach with robust standard errors (to correctly adjust the standard errors and not over-estimate significance) to estimate risk ratios (RR) for each determinant vs lung cancer incidence. Factors significant at the 10% level, based on the bivariate regressions, were selected for inclusion into a multivariable model. The final multivariable model was then used to predict potentially missed lung cancer cases based on observed covariate values, along with 95% confidence intervals (uncertainty). We only predicted missing lung cancer incidence in countries with potentially under-reported or missing national level cancer data as described in the outcome data section above.

Results

Global incidence

The overall global estimated incidence rate for lung cancer in 2012 was found to be 23.1 per 100,000 population (before accounting for potential

Figure 2. Countries above the global average age standardised lung cancer incidence (plus 95% confidence intervals) per 100,000 population in 2012. The horizontal red line represents the overall global incidence.

Figure 3. Map depicting observed age-standardised lung cancer incidence per 100,000 population by gender (A, female; B, male) in 2012.
under-reporting) with male incidence more than twice that of females. The highest overall age-standardised incidence of lung cancer was in Hungary (51.6 per 100,000) followed by Serbia, Democratic Republic of Korea and Macedonia with rates of 45.6, 44.2 and 40.8 per 100,000 respectively (Figure 2). Six of the top 20 are classified as developed countries. China and USA were the leading countries in terms of absolute burden of new cases in 2012 with 652,842 and 214,226 cases, respectively, followed by Japan (94,855), India (70,275) and Russia (55,805). Very low incidence rates were observed in Middle and Western Africa (likely as a result of under-estimation due to poor data quality), with the lowest incidences estimated in Niger (0.2 per 100,000), Tanzania (0.7), Malawi (0.9) and the Democratic Republic of Congo (1.0).

Spatial risk by gender

Global and country-level incidence was generally much lower among females compared to males (globally 13.6 vs 34.2 per 100,000, respectively). The highest female incidence rates were mainly contained in developed countries like North America [Canada (rank 2) and USA (3)] and Western Europe [Denmark (1), Hungary (5), Netherlands (6), Iceland (7), Ireland (8), Norway (9) and United Kingdom (10)] (Figure 3A). The highest burden of absolute incident female cases was observed in China (193,347) and USA (102,172).

Conversely, high levels of male incidence (Figure 3B) were more widespread and included Europe, North America, the Eastern Mediterranean and Asia while lower levels were reflected in Africa (except for South Africa). The highest male incidence was largely concentrated in south-eastern and south-western Europe and Central Asia. The 10 leading countries (in descending order) were: Hungary, Armenia, Macedonia, Serbia, Turkey, Montenegro, Poland, Kazakhstan, Romania and the Democratic Republic of Korea. The highest burden of absolute incident male cases was again observed in China (459,495) and USA (112,054).

Prominent differences in the clustering of gender-specific incidence (based on neighbouring contiguity) were also observed (Figure 4). Significant spatial clustering of higher male lung cancer incidence was largely concentrated in Central-Eastern Europe and Northern Asia (Russia) with isolated significant high-risk countries in Africa (South Africa, Libya, and Morocco) and South America (Argentina). Significant spatial clustering of higher female incidence was largely concentrated in Central-Eastern Europe with isolated significant high-risk countries in Africa (South Africa, Morocco, i.e. similar to males) and Cuba. Significant clustering of low lung cancer incidence was largely confined to Africa for both genders (again see potential under-estimation in data and methods section).

Lung cancer incidence and associated historical determinants

Summary statistics for the selected determinants are presented in Table 1. Global prevalence of age standardised smoking in 1980 was estimated to be 25.9% [95% CI: 25.1, 26.6] by Ng and colleagues (2014). However, this varies by continent, with the highest historical prevalence of smoking and historical GDP per capita in Europe (~31% and US$12,389, respectively). The highest historical exposure to indoor pollution was observed in Africa (~77%). A detailed summary of all the determinants is shown in Table 1.

Figure 4. Significant (P<0.05) spatial clustering of age-standardised lung cancer incidence (per 100,000 population) by gender (A, female; B, male) in 2012.
Causal associations

Age-standardised smoking prevalence in 1980 as well as indoor and outdoor pollution levels in 1990 were all significantly associated with lung cancer incidence based on bivariate regressions. Figure 5 shows the strong positive correlation between lagged prevalence of smoking (in 1980) and observed lung cancer incidence in 2012.

Following multivariable adjustment, increasing smoking prevalence and outdoor pollution remained significant risk factors for current age-standardised lung cancer incidence with relative risks (RR) of 1.12 and 1.01, respectively (Table 2) for each unit increase respectively. Figure 6 below depicts the distribution of predicted age-standardised incidence of lung cancer for countries with lack of, or poor (under-estimated) data.

Under-estimation of lung cancer incidence by region, country and additional direct cost

Predictions from our model suggest that the true global incidence of

Table 1. Summary of historical determinant values by continent.

<table>
<thead>
<tr>
<th>Continent</th>
<th>Age-standardised smoking prevalence (%) in 1980</th>
<th>Indoor pollution (% of households using solid fuel for cooking) in 1990</th>
<th>Outdoor pollution (PM$_{10}$ per m3) in 1990</th>
<th>GDP per capita (US$) in 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>12.74 (11.23,14.26)</td>
<td>77.08 (68.88,85.27)</td>
<td>60.88 (48.66,73.71)</td>
<td>821 (517,1126)</td>
</tr>
<tr>
<td>Americas*</td>
<td>17.11 (13.93,20.3)</td>
<td>32.83 (24.91,40.74)</td>
<td>42.93 (35.35,50.51)</td>
<td>3171 (2100,4242)</td>
</tr>
<tr>
<td>Asia</td>
<td>23.66 (21.28,26.03)</td>
<td>43.2 (32.32,54.09)</td>
<td>84.81 (66.19,103.44)</td>
<td>6571 (2508,10,653)</td>
</tr>
<tr>
<td>Europe</td>
<td>30.78 (29.08,32.48)</td>
<td>13.38 (8.16,16.59)</td>
<td>51.21 (43.73,58.69)</td>
<td>12,389 (8267,16,511)</td>
</tr>
<tr>
<td>Oceania°</td>
<td>30.33 (25.01,35.64)</td>
<td>44.67 (15.5,73.44)</td>
<td>31.24 (23.85,38.62)</td>
<td>4028 (1097,6958)</td>
</tr>
</tbody>
</table>

Table 2. Bivariate and multivariable adjusted (using a Poisson regression model) determinants associated with lung cancer in 2012.

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Unadjusted risk ratio (95% CI)</th>
<th>P</th>
<th>Adjusted risk ratio (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age-standardised prevalence of smoking in 1980 (%)</td>
<td>1.09 (1.03,1.16)</td>
<td>0.004</td>
<td>1.12 (1.05,1.18)</td>
<td><0.001</td>
</tr>
<tr>
<td>Outdoor pollution in 1990 (PM$_{10}$ per m3)</td>
<td>1.02 (1.01,1.03)</td>
<td>0.001</td>
<td>1.01 (1.00,1.02)</td>
<td>0.020</td>
</tr>
<tr>
<td>Indoor pollution (% of households using solid fuel for cooking)</td>
<td>1.03 (1.01,1.04)</td>
<td><0.001</td>
<td>1.01 (0.99,1.00)</td>
<td>0.193</td>
</tr>
<tr>
<td>GDP per capita (US$)</td>
<td>0.999 (0.999,0.999)</td>
<td>0.007</td>
<td>0.999 (0.999,1.000)</td>
<td>0.813</td>
</tr>
</tbody>
</table>

Table 3. Top ten largest absolute number of potentially missed incident lung cancer cases by country in 2012.

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>Missed cases*</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nepal</td>
<td>South Asia</td>
<td>2902</td>
<td>2833-2970</td>
</tr>
<tr>
<td>Bolivia</td>
<td>South America</td>
<td>1463</td>
<td>1401-1526</td>
</tr>
<tr>
<td>Papua New Guinea</td>
<td>Pacific</td>
<td>803</td>
<td>763-844</td>
</tr>
<tr>
<td>Greece</td>
<td>South East Asia</td>
<td>587</td>
<td>569-604</td>
</tr>
<tr>
<td>Congo</td>
<td>Central Africa</td>
<td>526</td>
<td>497-554</td>
</tr>
<tr>
<td>Lao</td>
<td>South East Asia</td>
<td>439</td>
<td>417-461</td>
</tr>
<tr>
<td>Kosovo</td>
<td>South East Europe</td>
<td>380</td>
<td>342-420</td>
</tr>
<tr>
<td>Burundi</td>
<td>Central Africa</td>
<td>225</td>
<td>204-247</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>Western Africa</td>
<td>147</td>
<td>129-166</td>
</tr>
<tr>
<td>Macao, China</td>
<td>East Asia</td>
<td>118</td>
<td>97-141</td>
</tr>
</tbody>
</table>

CI, confidence interval. *Absolute number.
lung cancer in 2012 may have been 23.6 per 100,000 (95% CI: 23.4-23.7) even after adjustment for competing causes of mortality compared to reported estimates of 23.1 per 100,000 i.e. –2.2% or 0.5 additional incident cases per 100,000 population globally. In absolute terms, this could have resulted in potentially 38 101 missed cases (95% CI: 28 489-47 713) in 2012.

The under-estimation by WHO region, illustrated in Figure 7A, compares the ratio of predicted incidence by the model vs observed incidence where a value significantly in excess of 1 suggests under-estimation. Our model suggests that lung cancer incidence has been significantly under-estimated in a number of regions, particularly Central Africa, Central America, Western Africa, Eastern Africa and the Pacific region. In absolute numbers, the burden of under-estimated cases is largest in South Asia (5900 cases) followed by Central America (5812 cases) and South America (3312 cases).

The under-estimation of the burden of lung cancer incidence, illustrated in Figure 7B, compares the ranked predicted incidence to the observed incidence in all the WHO sub-regions. The largest absolute burden increase was predicted in Central America with potentially 3.5
Discussion

Our results confirm some common established determinants of lung cancer that include lagged smoking prevalence (Allison, 1978), indoor (Bruce et al., 2000) and outdoor pollution (Cohen et al., 2005) in order to develop a predictive model for potential under-reporting. The multivariable adjusted results confirm historical prevalence of smoking as the most prominent risk factor for current lung cancer incidence. Previous literature suggests that smoking is linked to 85 per cent of lung cancer incidence (Nishida and Kudo, 2013). We used the global prevalence of age standardised smoking in 1980 (estimated to be 25.9%) as our primary predictor of incidence (Ng et al., 2014). This lagged prevalence was based on the assumption of an approximate 30-year latency period between exposure and incidence lung cancer rates (Gandini et al., 2008; Weiss, 1997).

The multivariable (adjusted) results also indicated a higher risk of lung cancer that was related to indoor pollution which had a positive association with the two variables that has been found in a majority of studies related to use of coal stoves (Lissowska et al., 2005; Mumford et al., 1987) and passive smoking (Hirayama, 2000). The association, however, excluded the high prevalence of indoor pollution in Africa due to wood and coal stoves because of the presumed high level of under-reporting of lung cancer incidence in this region (Ferlay et al., 2010; Lam et al., 2004).

The bivariate (unadjusted) results confirmed a highly significant association between outdoor pollution (PM2.5) that has also been suggested as a potential trigger for lung cancer (Lewtas, 2007; Raaschou-Nielsen et al., 2013; Youlden et al., 2008). This particular kind of air pollution could be influenced by a large range of pollutants that includes radon, asbestos, chromium, cadmium and arsenic, organic chemicals, radiation and coal smoke. A recent study has also demonstrated the potential of remote sensed and meteorological data products as being reliable representation of global observations of PM2.5 for epidemiologic potential of remote sensed and meteorological data products as being radiation and coal smoke. A recent study has also demonstrated the radon, asbestos, chromium, cadmium and arsenic, organic chemicals, gested as a potential trigger for lung cancer (Lewtas, 2007; Raaschou-Nielsen et al., 2013).

Further analysis of the 10 countries with the highest numbers of absolute missed lung cancer cases suggested that many them were African or Central-South American countries, where high levels of poor or lacking cancer data were to be found (Curado et al., 2007; Forman et al., 2013). Interestingly, separate projections of lung cancer incidence in Africa that indicate lung cancer will be a leading cause of mortality by 2020 may contradict the low Globocan 2012 incidence levels in many African countries (Mathers and Loncar, 2011; Murray, 1997). Another concern is that the suggested high levels of under-reporting of lung cancer incidence in developing countries like Lesotho, Sierra Leone, Namibia, Madagascar, Rwanda and Burundi is projected against a backdrop of limited healthcare resources (Narasimhan et al., 2004). A recent study in 27 EU countries suggests that the costs of lung cancer for 2008 was EUR 18.8 bn and that a considerable portion of this expense had to be covered by friends and relatives (Edge et al., 2010). The full cost of lung cancer in the EU is not only underestimated, but also currently requires substantial inputs by friends and relatives (Jemal et al., 2011). This has implications for developing regions like Africa where a rising incidence of the disease is projected in coming years (Youlden et al., 2008).

Based on a recent study from Northern Africa (Tachfouti et al., 2012) which attempted to cost the treatment of early and advanced stage lung cancer for the first year after diagnosis, the above mentioned missed cases at the global level could have amounted to a ranged estimated cost of ~US$ 175,264,600 (95% CI US$: 131,049,400-219,479,800) provided an assumed average early stage cost of US$ 4600 per patient (worst case scenario) and US$ 130,305,420 (95% CI US$: 97,432,380-163,178,460) if all assumed average late stage cost of US$ 3420 per patient (best case scenario from cost perspective). These estimates would be far greater if first world treatment costs were factored in as well as indirect costs (e.g. social and lost productivity).

Limitations of the study

Given the ecological study design, the potential for ecological fallacy cannot be discounted. As this is a secondary data analysis, missing or incorrect incidence and lagged determinant data could potentially impact the model and our projections. The potential limitations of the Globocan data are discussed in more detail (WHO-IARC, 2014). National cancer reporting systems vary by country, and data quality may thus have varied between regions. Multivariable models allow taking into account confounding factors (Benichou, 2001) and the model needs to be as complete as possible. We cannot therefore discount that potentially important missing determinants of lung cancer may have confounded our findings. Poor quality of the included determinants could also have impacted the estimated number of missed cases in particular countries, leading to over or under-estimation of lung cancer incidence.
Conclusions

The WHO Framework Convention on Tobacco Control should continue its work and expand the comprehensive implementation of the framework to all 168 countries that ratified this policy in March 2010 (Tesfaye et al., 2007). In particular, the results suggest significant clusters of high-high male and female incidence across neighbouring countries that could provide synergies for WHO regional policy development. Nevertheless, changing inter-country and gender patterns will pose differential levels of future risk for lung cancer requiring additional resource requirements.

Global environmental policies to reduce emissions continue to be disabled by a lack of participation from the world’s leading polluters including North America and China. The signatory parties of the Kyoto Protocol are increasingly being questioned because of the absence of binding resolutions to reduce emissions that are fair to all. International and national health agencies should be urged to geographically target countries that reflect under-reported incidence and develop and/or strengthen programmes, as well as establish cancer registries to prioritise interventions given a limitation of resources in many developing countries (Edge et al., 2010; Tesfaye et al., 2007). The high-high clusters of countries showing an elevated level of incidence in our results suggest regional efficiencies could be obtained by international health bodies if they coordinate programmes for these clusters. Blocks of countries in Central-South America, Asia and Africa, for instance, could be targeted in order to develop synergistic interventions to both manage the disease, as well as better implement programmes like the WHO Framework Convention on Tobacco Control.

References

[Geospatial Health 2016; 11:396]
StataCorp, 2011. Stata statistical software: release 12. StataCorp LP, College Station, TX, USA.