
Abstract

Schistosomiasis is a widespread water-based disease that puts
close to 800 million people at risk of infection with more than 250 mil-
lion infected, mainly in sub-Saharan Africa. Transmission is governed
by the spatial distribution of specific freshwater snails that act as
intermediate hosts and the frequency, duration and extent of human
bodies exposed to infested water sources during human water con-
tact. Remote sensing data have been utilized for spatially explicit risk
profiling of schistosomiasis. Since schistosomiasis risk profiling
based on remote sensing data inherits a conceptual drawback if
school-based disease prevalence data are directly related to the
remote sensing measurements extracted at the location of the school,
because the disease transmission usually does not exactly occur at
the school, we took the local environment around the schools into
account by explicitly linking ecologically relevant environmental infor-
mation of potential disease transmission sites to survey measure-
ments of disease prevalence. Our models were validated at two sites
with different landscapes in Côte d’Ivoire using high- and moderate-
resolution remote sensing data based on random forest and partial
least squares regression. We found that the ecologically relevant mod-
elling approach explained up to 70% of the variation in Schistosoma
infection prevalence and performed better compared to a purely pixel-
based modelling approach. Furthermore, our study showed that model
performance increased as a function of enlarging the school catch-
ment area, confirming the hypothesis that suitable environments for
schistosomiasis transmission rarely occur at the location of survey
measurements.

Introduction

Schistosomiasis is a neglected tropical disease caused by blood
flukes of the genus Schistosoma. Schistosomiasis is considered the
most important water-based disease. In mid-2003, an estimated 779
million people were at risk of infection and recent estimates suggest
that more than 250 million people are infected, mainly in sub-Saharan
Africa (Steinmann et al., 2006; Hotez et al., 2014). Human infection
with schistosomes occurs through contact with freshwater bodies
where specific snails proliferate that act as intermediate hosts.
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School-aged children are at highest risk of infection (Bundy and
Blumenthal, 1990), and hence, they are the main target group for epi-
demiological surveys and control interventions (WHO, 2002).

Remote sensing data have been widely used for spatially explicit
risk profiling of schistosomiasis (Seto et al., 2002; Stensgaard et al.,
2005; Brooker, 2007, Simoonga et al., 2009; Walz et al., 2015). The over-
arching aim is to support prevention and control, focussing on high-
risk areas. In most of the previous applications, Schistosoma infection
prevalence estimates at the unit of the school were modelled in a
pixel-based approach using remotely sensed environmental data for
schistosomiasis risk prediction over space (Walz et al., 2015). The
underlying assumption is that information about the presence and
successful completion of the parasite life cycle – features which are
implicit in disease prevalence – are linked to proxies of environmental
suitability for intermediate host snails and parasites. However, the
approach to link school-based schistosomiasis prevalence data with
environmental measures obtained from remote sensing has an inher-
ent shortcoming, as shown in Figure 1. Indeed, the location of an epi-
demiological survey (i.e. school) does not spatially superimpose with
the location of potential disease transmission. In order to obtain rele-
vant information from remote sensing data to characterise disease-
relevant environmental conditions, the information from remote sens-
ing data has to be extracted at the exact location of potential disease
transmission sites, which is different from the school location. To our
knowledge, this spatial discrepancy between model components as
illustrated in Figure 1 has not been addressed in previous schistoso-
miasis risk profiling studies.

Social-ecological processes that govern schistosomiasis transmis-
sion – similar to nearly all ecological phenomena – operate across dif-
ferent scales and vary with the scale of observation (Levin, 1992;
Schur et al., 2012). Thus far, models of schistosomiasis risk have
mainly been developed at national, regional and continental scales
(Clements et al., 2008; Simoonga et al., 2009; Schur et al., 2013;
Chammartin et al., 2014; Lai et al., 2015) using low spatial resolution
remote sensing data (Walz et al., 2015). At this scale of observation, it
has been concluded that, besides climatic conditions, the impact of
humans on habitats of intermediate host snails govern the pattern of
schistosomiasis risk (Brooker, 2007; Stensgaard et al., 2013). Only few
studies modelled schistosomiasis risk at the local scale (Booth et al.,
2004; Clennon et al., 2004; Raso et al., 2005; Beck-Wörner et al., 2007).
These studies showed that topographic variables and the spatial rela-
tion between households and water bodies are important in explaining
the spatial heterogeneity of disease transmission at the micro-scale
(Simoonga et al., 2009). Hence, statistical correlation can vary consid-
erably according to the extent of observed area and scale of aggrega-
tion (Marshall, 1991), which has been identified as a major constraint
of remote sensing-based schistosomiasis risk models (Herbreteau et
al., 2007).

Two of the most widely used remote sensing variables for schistoso-
miasis risk profiling are the normalized difference vegetation index
(NDVI) and land surface temperature (LST) (Walz et al., 2015). An
important reason is that both variables are pre-processed, and hence,
they are readily available (Herbreteau et al., 2007). Additional spectral
indices can be calculated from remote sensing data, which might
improve models as they are directly linked to the ecology of disease
transmission (Herbreteau et al., 2007). Important aspects that impact
remote-sensing measurements besides the surface conditions per se
are the composition of the landscape regarding size and heterogeneity
of relevant features, such as water bodies and riparian structures. It
has been shown that the relevance of remote sensing variables for
modelling schistosomiasis transmission varies between different eco-

zones and has an impact on the model outcome and transferability
(Brooker et al., 2001). The purpose of this paper is to propose and val-
idate an approach to overcome the spatial discrepancy between model
components inherent in pixel-based remote sensing schistosomiasis
risk profiling. To this end we propose an approach based on school-
catchment with potential refinements by constraining modelling only
to potential disease transmission sites. Furthermore, the effect of the
scale of observation is investigated through analysis of remote sens-
ing based environmental data within different buffer sizes around
school locations. The importance of specific remote sensing-variables
is assessed for two different landscapes in Côte d’Ivoire using a suite
of vegetation- and water-related indices and other variables relevant to
the disease transmission ecology.

Materials and Methods

Ethics statement
We present a secondary analysis with data derived from previously

published studies that had received ethical approval by the respective
institutional review boards and national ethics committees (see for
study site Man (Utzinger et al., 2000) and (Raso et al., 2005), and for
study site Taabo (N’Goran et al., 1997, 1998). The studies were con-
ducted according to national and international guidelines. All the data
received for the current analyses were anonymised.

Study area
The study area comprises two sites in Côte d’Ivoire: i) Taabo with a

surface of 8476 km² situated in south-central Côte d’Ivoire around the
man-made Lake Taabo, and ii) Man with a surface of 4381 km² in a
mountainous region in western Côte d’Ivoire. Both sites are located in
the tropical rainforest zone. The temperature is characterised by a
diurnal climate with higher temperature ranges between day and
night than between seasons of the year. The mountainous climate
zone in Man shows one extensive wet season (March-October),
whereas two peaks of precipitation are typical in the study site Taabo
(March-July and September-October) (Dipama, 2010). Lake Taabo has
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Figure 1. Illustration of the spatial discrepancy among the meas-
urement of Schistosoma infection prevalence at the unit of the
school (surrounded in red), the location where disease transmis-
sion has potentially occurred (freshwater body surrounded by a
black dotted line), and the currently used pixel-based measure of
remote sensing data given for the example of a 1x1 km pixel in
Dompleu, Côte d’Ivoire (located within the study site in the Man
region).
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been impounded in the late-1970s, mainly for agricultural and
hydropower production purposes (Savane, 2010). The study area is an
endemic schistosomiasis region, predominantly by S. haematobium,
where moderate to high transmission rates are observed (N’Goran et
al., 1997; WHO, 2010). In the Man region, S. mansoni is the main
schistosome species (Utzinger et al., 2000; Raso et al., 2005;
Chammartin et al., 2014; Assaré et al., 2015). The spatial distribution
of disease prevalence shows a typical focal pattern and ranges from 0
to 100% prevalence in both study sites.

Data
For this study, 6.5 m resolution RapidEye data (Blackbridge, 2015)

with cloud coverage below 5%, a 30 m global digital elevation model
(GDEM) of the Advanced Spaceborne Thermal Emission and
Reflection radiometer (ASTER) (JSS, 2014), and multi-temporal data
from the Moderate Resolution Imaging Spectroradiometer (MODIS;
250 m and 1 km) were used. Pre-processing of RapidEye data involved
orthorectification, and atmospheric and topographic correction using
Atcor (Richter and Schläpfer, 2012) within the Catena pre-processing
tool of the German Aerospace Centre (DLR, 2014). The ASTER GDEM
data provided the basis for topographic analyses given a vertical root
mean square error (RMSE) of 8.68 m (Meyer, 2011). Terra MODIS
products are provided as level 3 data and therefore corrected for radio-
metric, geometric, atmospheric and bi-directional effects (Vermote
and Vermeulen, 1999). The Terra MODIS LST product has been vali-
dated for multiple validation sites with wide ranges of surface and
atmospheric conditions and showed a deviation of ±1 K for tempera-
tures between 263 and 323 K (Wan et al., 2004). For reasons of spatial
prediction of the models, all datasets were resampled to 30 m resolu-
tion, using nearest neighbour resampling for MODIS and bilinear
resampling for RapidEye. Table 1 summarises all remote sensing vari-
ables used for this study.

Data on human infection with schistosomiasis were derived from
the open-access Global Neglected Tropical Disease database (GNTD;
http://www.gntd.org) (Hürlimann et al., 2011). Overall, 75 survey
measurements were extracted for the Man region and 38 for Taabo.
The GNTD database includes relevant information such as number of
people examined, number of people infected with species-specific
schistosomes, date of survey, description of the survey location,
method used for sample recruitment and diagnostic techniques
(Hürlimann et al., 2011). Pre-selecting steps of parasitological data
included the removal of surveys before 1980 to consider the maximal
life span of the parasites (30 years) (Jordan and Webbe, 1993).
Surveys that were not conducted at schools and that used insensitive
diagnostic techniques (e.g. direct faecal smear for detection of S. man-
soni eggs) were removed from the database, as explained elsewhere
(Schur et al., 2011).

Statistical models
Data were analysed by means of two different statistical algorithms:

i) a non-parametric random forest (RF) algorithm (Breiman, 2001),
and ii) a parametric partial least squares regression (PLSR) (Wold et
al., 1984). Both model algorithms are, by design, capable to deal with
the prediction of continuous response data, low numbers of training
samples and multi-collinear predictor variables. Prevalence of
Schistosoma infection (continuously scaled between 0 and 100%) was
the response variable to be explained by predictor variables consisting
of remotely sensed environmental variables (Table 1). As a prerequi-
site for the PLSR model, all variables were standardised using the z-
score transformation, which centres the data in relation to their mean
value and scales them to unit variance (Wold et al., 2001).

Modelling procedures
In this study, an ecologically relevant approach to model schistoso-

miasis risk using remote sensing data was developed. The underlying
hypothesis of this approach postulates that solely aquatic sites and
their vicinity or sites where water may potentially accumulate are eco-
logically relevant and should contribute to the model. Furthermore,
environmental data need to reflect habitat requirements of parasites
and intermediate host snails, and consequently to schistosomiasis
transmission. We selected a buffer around the school locations to rep-
resent the catchment area (Malone et al., 2001; Steinmann et al.,
2006) and masked all areas where water: i) was not detected from
remote sensing images during dry and at the end of the wet season,
and ii) cannot potentially accumulate due to topography. This mask
excludes areas where disease transmission cannot occur (Figure 2).
The results of this ecologically relevant model approach were com-
pared to results from the full catchment model approach, where no
mask of potential disease transmission sites was applied (Figure 2) in

                                                                                                                                Article

                                                                              [Geospatial Health 2015; 10:398]                                                           [page 273]

Figure 2. Flowchart of the ecologically relevant and the full
catchment modelling approaches for schistosomiasis risk profil-
ing. The ecologically relevant modelling approach considers only
potential disease transmission sites for spatially explicit risk pro-
filing of schistosomiasis using remotely sensed environmental
variables, whereas the full catchment modelling approach is
based on remote sensing measurements for a selected buffer zone
around the school location.
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order to determine the effect of transmission site selection.
The impact of the selected extent of the school catchment area was

investigated by spatial buffer analysis for a defined area around the
point measurement of the school location. The models were processed
for buffer radii ranging from 0 to 5000 m at steps sequentially increas-
ing by 100 m. The ecologically relevant approach was only feasible for
radii of at least 500 m. At lower radii, there were no transmission sites,
as explained by too close proximity to the school location. The remote
sensing variables were aggregated by mean values for each buffer
extent, except for the variables settlements and streams, which were
aggregated by their sum (area of settlements) and maximum (stream
order), respectively.

In order to determine which remote sensing variables explain the
spatial distribution of schistosomiasis prevalence, each predictor’s
individual variable importance was calculated using the mean
decrease in accuracy measure implemented in the RF algorithm. This
measure calculates for each predictor variable how much it reduces
node impurity, which is calculated as difference between the residual
sum of squares before and after the split and summed up over all splits
and trees (Hastie et al., 2009). Moreover, differences in variable
importance between the two study sites were compared.

All RF and PLSR model approaches have been validated through
internal cross-validation using the caret package (Kuhn, 2008) in R (R
Core Team, 2012). The measures used to evaluate model quality were
the coefficient of determination (R²) and the root mean squared error
(RMSE). The data splitting for the internal cross-validation was
adjusted to the sample size of each study site and resulted in 10-fold
cross-validation at the Man study site and 5-fold cross-validation in
Taabo. This ensured a comparable number of validation data per group
of test data. The cross-validation procedure was repeated 10 times for
each model and the best model defined through the minimum RMSE
was selected as the final model. Within the cross-validation procedure,
the model-algorithm specific parameters mtry (=number of predictors
tried per split) and ncomp (=number of components used for predic-
tion) were iterated to tune the RF (Liaw and Wiener, 2002) and PLSR
model (Geladi and Kowalski, 1986), respectively.

Results

Figure 3 depicts the performance of schistosomiasis risk models
using the RF and PLSR algorithms at the two study sites in Côte
d’Ivoire. The graphics illustrate model fits of the ecologically relevant
and the full catchment modelling approaches for all buffer radii from 0
to 5000 m in steps of 100 m. For both PLSR models (Taabo and Man),
the selected buffer radius around the school location revealed a con-
siderable effect on model accuracy, as indicated by lowest R² values if
environmental variables were directly extracted at the school location
and higher R² values as buffer areas around the school location
increased. However, this positive effect of increasing buffer sizes on
model performance was not recognisable by the RF algorithm. The eco-
logically relevant model approach yielded significantly better results
on average for the Taabo site compared to the full catchment model
approach (P<0.001, paired Wilcoxon signed rank test). At the Man
study site, this superior performance of the ecologically relevant model
approach was not reflected. Instead, both models were not significant-
ly different for the PLSR model (P=0.78) and the full catchment
approach performed better with the RF model (P<0.001). Model per-
formance was generally better in the Taabo site compared to the Man
region. The ecologically relevant modelling approach reached a maxi-

mum explanatory power for a selected buffer radius between 4 and
5 km in Taabo, where the PLSR model explained up to 70% of the spa-
tial distribution of Schistosoma infection prevalence. Meanwhile, the
RF algorithm performed slightly worse than PLSR, as indicated by
lower R² values and explaining a maximum of 67% of the observed dis-
tribution. For the case of the full catchment modelling approach, the
maximum explanatory power was also achieved for the PLSR model in
Taabo, however, with a generally lower R² of up to 0.63.

The RMSE of different modelling approaches and algorithms at the
study sites reflected the trends described in Figure 3 and are illustrat-
ed in Figure 4. It confirmed – similar to the maximum R² values – a
minimum error of 36.3% of the predicted prevalence for the PLSR mod-
elling approach with a selected buffer radius between 4 and 5 km in
the Taabo site. Our study explored a multitude of schistosomiasis-rel-
evant remote sensing variables listed in Table 1 and assessed their
individual contribution to explain the spatial distribution of disease
risk. Figure 5 shows the importance of the most relevant variables for
the ecologically relevant modelling approach in the two study sites and
highlights that variable importance differs between the different
investigated settings in Côte d’Ivoire. For example, the variable
Euclidean distance from nearest freshwater body was highly important
for all school catchment radii in the Man region and had comparably
little importance for the model in the Taabo site. The topographic vari-
ables altitude, slope, sinks and streams were of high importance to
explain schistosomiasis risk in Man, but did not contribute to model
disease risk in Taabo. At this site, the spatial prediction of schistoso-
miasis risk was mainly explained by the mean and median of Terra
MODIS LST, which was of considerably lower or no importance at all in
the Man region. There are no conspicuous differences between the
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Figure 3. Performance of statistical schistosomiasis risk models
using the partial least squares regression (PLSR) and random for-
est (RF) model algorithms for the two study sites of Man and
Taabo in Côte d’Ivoire. Each graph illustrates the model perform-
ance indicated by the R² for the selected buffer radius around the
school location and compares the result of the ecologically rele-
vant (red) and the full catchment (blue) modelling approaches.
The lines reflect the results of spline interpolation and the grey
bar represents the confidence interval. Note that the extraction of
the pixel value with no buffer corresponds to 0 m buffer radius.
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ecological and full catchment modelling approaches with regard to the
variable importance, except for the marked higher importance of the
variable sink depth in the full catchment model in the Man region.
This might correspond to the RF algorithm identifying parts of the
mask of potential disease transmission sites automatically.

The spatial predictions of the most accurate PLSR models based on
the ecologically relevant modelling approach are shown in Figure 6. In
general, the spatial predictions depict the risk of infection at potential
disease transmission sites. For the Taabo site, the model predicted
Lake Taabo in the centre of the study site and several sections of the
Bandama River running from north-west to south-east of the study set-
ting crossing Lake Taabo as areas where the risk of schistosomiasis
transmission is highest. The spatial prediction of schistosomiasis
prevalence in the Man region predicted low disease risk in the moun-
tainous part and high risk along the river valleys running towards the
south of the study site.

Discussion

The proposed ecologically relevant modelling approach used in com-
bination with a carefully selected school catchment buffer allows
bridging the spatial gap between the measurement of disease preva-
lence and relevant environmental conditions for schistosomiasis
transmission. The issue of anisotropy inherent in the spatial structure
of prevalence data (Chammartin et al., 2013) is directly addressed by
this ecologically relevant modelling approach. The buffer analysis pur-
sued here underscores that the extent of the area observed around a
school location has a major effect on the performance of a remote
sensing-based schistosomiasis risk model. The improvement of model
performance with the observation of an increasing school catchment
area confirms the spatial conflict of schistosomiasis risk profiling
using an environmental measurement at the unit of the school. The
results of the PLSR model (Figures 3 and 4) indicate that starting from
a distance of 2 km and up to 5 km, the school catchment area inte-
grates more relevant environmental conditions that represent schisto-
somiasis transmission conditions corresponding to school-based
measures of prevalence. The effect of different scales of aggregation
on model performance has previously been shown for aggregating data
on different administrative levels (pixel, district and national), where

treatment needs were either over- or underestimated depending on
the level of spatial aggregation and focality of disease distribution
(Schur et al., 2012). A general improvement of the previously applied
pixel-based approach at the location of schools is provided by this
study, both conceptually and from a point of view of model perform-
ance. From the 32 remote sensing variables investigated for schistoso-
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Table 1. Overview of remote sensing data and variables used for schistosomiasis risk modelling in this study.

Data source     Variables                               Spatial resolution (m)                  Time of acquisition                           Reference(s)

RapidEye                Spectral reflectance band 1-5                            6.5                         3 January 2015 (Taabo), 5 January 2015 (Man)           Blackbridge (2015)
                                 Spectral indices         NDVI                                                                                                          -
                                                                       NDWI                                                                                                                                                               McFeeters (1996)
                                                                         EVI                                                                                                                                                                 Huete et al. (2002)
                                                                        SAVI                                                                                                                                                Huete (1988); Huete and Liu (1994)
                                                                       MSAVI                                                                                                                                                                  Qi et al. (1994)
                                                  Euclidean distance to water, 
                                                              settlement area                                                                                                                                                                      -
ASTER GDEM        Altitude, slope, sink depth, stream order       30                                           July 2009 - September 2011                                   (JSS, 2014)
MODIS                   NDVI, EVI
(MOD13Q1)          (minimum, maximum, mean, median)            250                                        January 2010-December 2010                          Huete et al. (1999)
MODIS                    LST and DLST (day/night)                                1000                                       January 2010-December 2010                                 Wan (1999)
(MOD11A2)           (minimum, maximum, mean, median)               
NDVI, normalized difference vegetation index; NDWI, normalized difference water index; EVI, enhanced vegetation index; SAVI, soil-adjusted vegetation index; MSAVI, modified soil-adjusted vegetation index; LST,

Figure 4. Performance of statistical schistosomiasis risk models
using the partial least squares regression (PLSR) and random for-
est (RF) model algorithms for the two study sites of Man and
Taabo in Côte d’Ivoire. Each graph illustrates the model perform-
ance indicated by the root mean square error (RMSE) for the
selected buffer radius around the school location and compares
the result of the ecologically relevant (red) and the full catchment
(blue) modelling approaches. The lines reflect the results of
spline interpolation and the grey bar represents the confidence
interval. Note that the extraction of the pixel value with no buffer
corresponds to 0 m buffer radius.
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Figure 5. Variable importance of selected remote sensing variables for each buffer radius in the two study sites of Man and Taabo in
Côte d’Ivoire, illustrated for the ecologically relevant model. The measure of variable importance is indicated by the increase in node
purity as implemented in the random forest algorithm. All variables are listed in Table 1.
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miasis risk profiling in this study (Table 1), there were only few that
contributed to an explanation of the spatial pattern of schistosomiasis.
Furthermore, the importance of remote sensing variables varied
strongly from one study site to another (Figure 5). In the mountainous
region around the town of Man, schistosomiasis risk has predomi-
nantly been explained by the distance to freshwater bodies and topo-
graphic variables, which fits to the strong topographic gradient and
confirms the positive correlation between schistosomiasis prevalence
and stream order of the nearest water body or altitude as derived by
Beck-Wörner et al. (2007). The variable sink depth was identified as
new important variable by the full catchment modelling approach in
the Man region. Topographic variables are considered as proxies for
relevant ecological conditions for schistosomiasis-related parasite and
intermediate host snail species, such as water accumulation, flow
velocity and dispersal (Beck-Wörner et al., 2007; Clennon et al., 2007ì).
In the more levelled lake-side region around Taabo, mean and median
LST and temperature difference between day- and night-time as well
as distance to the closest freshwater bodies were the most important
variables to explain the spatial distribution of schistosomiasis risk
(Figure 5). As shown before by Malone et al. (1994) for the Nile delta
in Egypt, remotely sensed temperature is a useful proxy to model
hydrological conditions. The differential importance of variables
according to study site indicates that valuable information from
remote sensing data for specific landscapes exists. Their importance
might blur when applied in models across different regions, where dif-
ferent relationships dominate. This confirms the result of Brooker et
al. (2001) in Tanzania, where only those models that were fitted with-
in the same ecological zone showed reasonable performance. The high
spatial resolution of RapidEye (6.5 m) and ASTER GDEM (30 m) were
relevant to delineate the potential disease transmission sites for this
ecologically relevant modelling approach. However, the statistical
model revealed that the variables that best represent the specific land-

scape characteristics with regard to potential habitats of parasites and
intermediate host snails were important explanatory variables. As
RapidEye data do not provide information on either topography or tem-
perature, data from this sensor did not contribute relevant variables
for the statistical models.

The comparison between the ecologically relevant and the full
catchment modelling approaches has shown that the former approach
improved schistosomiasis risk models in the study site Taabo only.
Analyses demonstrated that close to 70% of the variance could be
explained by the ecologically relevant model approach using remote
sensing data only. Given the complex social-ecological interaction that
underlies schistosomiasis transmission (Utzinger et al., 2011),
remote sensing can provide a valuable contribution for schistosomia-
sis risk assessment in this study region. However, the comparably poor
performance of schistosomiasis risk models in the Man region could
be related to the difficulty in detecting water bodies due to its small-
scale heterogeneity and frequent coverage by riparian forests.
Additionally, the contribution of socioeconomic and cultural factors
seems more relevant than environmental variables to explain the spa-
tial risk of schistosomiasis on the local scale in this part of Côte
d’Ivoire (Raso et al., 2005).

Conclusions

The superior model performance of the ecologically relevant model-
ling approach in the Taabo site was well reflected by an appropriate
spatial prediction of disease risk according to the distribution of refer-
ence data. However, the predicted disease risk of single hotspots not
in the vicinity of the well-investigated water sites around Lake Taabo
cannot be evaluated due to the lack of validation data on disease preva-
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Figure 6. Spatial prediction of schistosomiasis prevalence for the study sites Man and Taabo in Côte d’Ivoire, based on an ecologically
relevant model approach. This spatial prediction was derived from the best fitted models with a buffer radius of 4000 m and 4400 m
for the two study sites of Man and Taab, respectively. The height of the yellow bar reflects the level of prevalence between 0 and 100%.
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lence. The ecologically relevant modelling approach explicitly models
the potential disease transmission sites, which generally avoids the
prediction of high disease risk at non-suitable areas such as steep
topographic elevations, as found isolated in risk predictions of the full
catchment model approach. This spatial prediction can support the
planning of disease prevention and control measures in a spatially
explicit manner and supports the identification of new causal rela-
tions of disease transmission in different ecological regions. It will be
interesting to further validate our models in other schistosomiasis -
endemic parts of sub-Saharan Africa and to monitor model perform-
ance in the face of enhanced control programme activities.
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