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Is missing geographic positioning system data in accelerometry
studies a problem, and is imputation the solution?
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Abstract

The main purpose of the present study was to assess the impact of
global positioning system (GPS) signal lapse on physical activity analy-
ses, discover any existing associations between missing GPS data and
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environmental and demographics attributes, and to determine whether
imputation is an accurate and viable method for correcting GPS data loss.
Accelerometer and GPS data of 782 participants from 8 studies were
pooled to represent a range of lifestyles and interactions with the built
environment. Periods of GPS signal lapse were identified and extracted.
Generalised linear mixed models were run with the number of lapses and
the length of lapses as outcomes. The signal lapses were imputed using
a simple ruleset, and imputation was validated against person-worn cam-
era imagery. A final generalised linear mixed model was used to identify
the difference between the amount of GPS minutes pre- and post-impu-
tation for the activity categories of sedentary, light, and moderate-to-vig-
orous physical activity. Over 17% of the dataset was comprised of GPS
data lapses. No strong associations were found between increasing lapse
length and number of lapses and the demographic and built environment
variables. A significant difference was found between the pre- and post-
imputation minutes for each activity category. No demographic or envi-
ronmental bias was found for length or number of lapses, but imputation
of GPS data may make a significant difference for inclusion of physical
activity data that occurred during a lapse. Imputing GPS data lapses is a
viable technique for returning spatial context to accelerometer data and
improving the completeness of the dataset.

Introduction

The use of geographic positioning system (GPS) devices in physical
activity (PA) and sedentary behaviour (SB) research has been steadily
increasing because of its ability to determine where participants inter-
act with built environment (Kerr et al., 2011; Krenn et al., 2011). These
data sources have the potential to have profound impacts on public
health by establishing more specific and accurate measures of envi-
ronmental influences on SB and PA behaviour, and also providing bet-
ter evidence for public policy change (Jankowska et al.,, 2015). GPS can
show when and how long participants are indoors or outdoors (Quigg
etal., 2010; Lam et al., 2013), locate what routes they take for transport
(Duncan and Mummery 2007; Duncan et al., 2009) and identify PA and
SB behaviour, such as walking, bicycling or driving in specific environ-
ments (Troped et al., 2010; Oliver and Badland, 2010). However, miss-
ing GPS data due to signal lapse is a problem that may introduce sig-
nificant bias into modelled relationships between environment and PA
or SB. Currently no studies have assessed the bias of missing GPS data
in PA and SB studies, and how that bias may influence study outcomes.

Signal lapse is inherent in GPS data, which is collected through a
connection between the GPS device worn by study participants and
multiple satellites in the sky to establish the geographic location of
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each individual. We define a signal lapse as the interruption of contin-
uous GPS data collection, resulting in no collection for a variable
amount of time, followed by reconnection to satellites and the recom-
mencement of GPS data collection. The reasons for lapse of the signal
include physical objects such as buildings, and natural objects such as
cloud coverage or dense tree canopies (Costa, 2011). Examples of sig-
nal lapse are displayed in Figure 1 [georeferenced background satellite
imagery photo provided by SANDAG (2014)]. For population-level PA
and SB studies, a challenge for collection of GPS data is posed by free-
living study participants, who move in and out of buildings, pass
through dense urban areas and engage in a variety of activities that
may involve environments that block GPS signals. Signal lapse is a sig-
nificant concern for PA and SB studies, as GPS data is often time-
matched to accelerometer data. GPS signal lapse can result in unsup-
ported assumptions or misclassification (e.g. any period of signal lapse
can be due to the participant’s location being indoors) and data elimi-
nation (e.g. the removal of a participant from analyses when too many
data recordings are found to be missing), both of which may produce
biased results.

Previous studies have managed signal lapses in GPS data in one of
three ways. One method involves leaving the data as they were origi-
nally collected, with no alteration of the GPS data (e.g. Wheeler et al.,
2010). While this method still allows other time-matched data collected
during the lapse to be kept and utilised, such as accelerometer data,
such data lose spatial context. In spite of this limitation, this approach
may be appropriate for studies focusing on locations of outdoor PA (e.g.
Lachowycz et al., 2012). Another technique for dealing with missing
GPS data is the complete removal of study participants or days of wear
time when they do not meet minimum data criteria (e.g. Oliver and
Badland, 2010). The third technique to manage missing GPS data is
imputation (Ogle and Guensler, 2002; Stopher et al., 2008; Wiehe et al.,
2008; Troped et al., 2010). Such methodologies may differ, but almost
all GPS data imputation methods are based on spatial or temporal
parameters of the previous points. Literature reviews on the use of GPS
in PA studies have been conducted (Maddison and Ni Mhurchu, 2009;
Krenn et al.,, 2011), and found that most imputation methods utilise
arbitrary decisions of time and distance to impute missing points with-
out validation of imputation assumptions.

The goals of this study are twofold: first to assess the demographic
and environmental bias of missing GPS data in PA and SB studies. Are
certain people or populations more prone to having missing GPS data,
and does movement in specific environmental contexts effect data
quality? This is an important question for a better understanding what
populations GPS and PA/SB studies are better suited for, and if certain
environmental contexts are not viable for assessing environment and
PA/SB relationships. Our second goal is to develop and validate a GPS
imputation method as a solution to missing GPS data and test if there
are significant changes of PA and SB time pre- and post-imputation in
home and non-home environments.

Materials and Methods

Study sample

Data from eight studies using GPS and accelerometer devices were
pooled, representing a range of participants, lifestyles and interactions
with built environments. The studies were conducted in San Diego
County, CA, USA between the years of 2010 and 2013, and included both
baseline interventions and observational studies. Demographic data
with reference to age, sex, ethnicity and employment status were col-
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lected for each participant. The total sample included 782 participants
of an average age of 46 years (min 18, max 102), 12.3% Hispanic and
68.6% women.

Data collection

All data were collected using the same standardised procedures.
Participants wore Qstarz (http:/www.qstarz.com) GPS devices (BT-
Q1000XT) and Actigraph (http:/www.actigraphcorp.com) accelerome-
ters (GT3X+). The GPS data were collected every 15 seconds, the
accelerometer data 30 times a second. The GPS data were processed
and joined to the accelerometer data using the Personal Activity and
Location Measurement System (PALMS) (Demchak et al, 2012;
Carlson et al., 2015). Data were aggregated and then merged at the
minute level. Accelerometer data were classified into sedentary behav-
iour (counts per minute below 100), light activity (counts per minute
between 100 and 1040) and everything above light activity (counts per
minute above 1040). This relatively low upper cut-point for activity was
chosen because the sample included many older (>65) adults. As this
analysis is concerned with the utility of GPS data in PA and SB studies,
days were only included in the analysis if they met the criteria for a
valid accelerometer wear day defined as a day containing 600 or more
accelerometer minutes. Non-wear was defined as 90 or more sequen-
tial minutes with an activity count of zero, allowing for 2 minute peri-
ods of activity (Heil et al., 2012). In total, participants wore devices for
1-13 days (mean=5.6, standard deviation=1.89).

Data for land use in San Diego County were downloaded in 2014
from San Diego Geographic Information Source - JPA/San Diego
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Figure 1. Examples of geographic positioning system signal
lapse.
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Association of Governments (SANDAG, 2014). ESRI ArcGIS, v. 10.2 soft-
ware (ESRI, Redlands, CA, USA) was used to assess how areas used for
residence, transportation, shopping, parks and recreation, health care,
office/school, industry, hotel/resort and leisure and others, were related
to signal lapse. Additionally, census data on population counts were
obtained from American Community Factfinder (http:/factfinder.cen-
sus.gov) at the census block group level from which population density
was derived. Data were matched on the minute level, where each
minute or single GPS point was spatially matched with the intersecting
land use and population density.

Assessing the demographic and environmental bias of
missing geographic positioning system data

Missing GPS data were assessed on participant- and day-levels. To
compute descriptive statistics for the periods of missing data, minutes
of missing data were extracted and collapsed into lapses (defined as a
period of missing GPS signal =1 minute), yielding multiple lapses per
day, per participant. It is important to note that lapses may be caused
by either environmental or technological (e.g. lack of battery) issues,
and that these cannot be differentiated with the available data. Minutes
of sedentary, light, and above light activity were assessed for each
lapse, and descriptive statistics were employed to assess the amount of
activity data without GPS signal.

Demographic bias was explored to identify if particular population
sub-groups engaged in activities within their environments that would
interfere with GPS signal more than other groups. A mixed linear
effects model (days nested within person) was used to explore the rela-
tionship between the number of daily GPS lapses and the individual
characteristics of participants. We tested if the number of daily GPS
lapses was associated with sex, age, Hispanic ethnicity, employment
status and number of daily sedentary minutes while controlling for
daily GPS minutes collected. To better understand the environmental
biases of GPS signal lapse, a mixed linear effect model (lapse, nested
in day, nested in person) was used to test if the length of GPS lapses
were associated to environmental characteristics of the lapse (i.e., the
land use category of the last known point before the lapse, population
density of the last known point before the lapse). Due to non-normality
of lapse length (many short lapses), lapse length was square root trans-
formed and placed into the model as a continuous variable. We report
the non-transformed coefficients with the transformed significance as
transformed coefficients that can be difficult to interpret. This model
was controlled for individual level factors found to be significant in the
demographic bias model. Land use was placed into the model as a cat-
egorical variable to compare the effects of land use categories on signal
lapse length. Residential was chosen as a reference category as it had
the highest number of signal lapses.

Imputation algorithm, validation, and comparison

The imputation algorithm was created in the R environment (R Core
Team, 2013) using functions found in the plyr (Wickham, 2011) and
gmt (Magnusson, 2014) packages (imputation algorithm available
upon request). Periods of missing GPS data were imputed where any
lapse had at least one or more valid GPS points preceding it (to allow
for points to impute from) and following it (to ensure GPS battery loss
or other device malfunctioning was not imputed). The algorithm
locates periods of GPS signal lapse, takes the mean centre point of the
20 GPS points that occurred before the lapse (or number of available
points if less than 20) and assigned the resulting mean centre latitude
and longitude to the minutes comprising the missing lapse period. All
data were imputed with no limit with regard to time or distance of
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lapse. This decision was based on the assumption that an individual
was most likely stationary during a signal lapse, and once they started
moving out of the building or location, the signal would begin again.
The algorithm was designed on the lapse level rather than the daily
level. If a lapse would begin at 11:45 PM of one night and end at 3:05
AM the next day, then the missing data would be imputed from one day
to the next. The decision to impute over several days was made because
our sample consisted of many participants beyond retirement age, who
might be spending all day at home for several days. The algorithm does
provide distance between last known GPS point and first GPS point of
data re-uptake to allow for removal of very large distances if desired.

The results of the imputation algorithm were validated against a
dataset of 40 participants who wore a person-worn camera, SenseCam
(Vicon Revue v1.0), in addition to GPS devices and accelerometers.
SenseCam data have been employed to validate travel episodes,
indoor/outdoor time, eating, and physical activity behaviours in previ-
ous studies (Ellis et al., 2013; Doherty et al., 2013; Kerr et al., 2013).
SenseCam photos were taken at least every 20 seconds. The photos
were coded for a person’s context (indoor, outdoor, and in-vehicle), and
behaviour (walking/running, biking, sitting, standing still, and stand-
ing moving within a confined space) (Kerr et al., 2013). Photo classifi-
cations were aggregated to the minute level and joined by timestamp to
GPS signal lapses. If timestamps did not match, a final category of
unmatched data was created. In order to assess if the imputation
assumption of stationarity (the individual had not moved during the
imputed lapse) were true, lapses were assessed for the amount of time
spent in moving and non-moving behaviours, such as in vehicle, walk-
ing, and biking, and standing still/sedentary behaviours. These behav-
iours were further classified as occurring indoors or outdoors.

To better understand the utility of imputation in the context of a PA
or SB study, and to explore if the method might have statistical impli-
cations for PA and SB studies, total minutes per day of non-wear,
sedentary, light and above-light activity within 800 m of the home and
outside of 800 m of the home were compared pre- and post-imputa-
tion using mixed linear effects models to account for days within
participants.

Table 1. Mixed linear effects model results: outcome lapse length.

Intercept 69.00* 127.93
Hotel/resort/leisure 2211 23.74
Industry -37.22 18.50
Transportation -4.44 7.58
Shopping -15.17 9.26
Office/school 21.72 9.12
Health care -42.31 18.83
Parks and recreation -21.01 12.65
Other land use -18.15 18.61
Population density -0.01** 0.0008
Female 114.44 58.60
Age 0.05 1.60
Hispanic -26.93 93.54
Employed -111.37 77.75
Sedentary minutes 2.03** 0.03

*P<.05; ** P<.001.
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Results

Missing geographic positioning system data

The dataset was comprised of 2,007,924 missing GPS points out of
6,171,693 total GPS points, or 32.53%. About half of these missing data
(17.39%) were from GPS signal lapses, where a lapse is defined by the
GPS signal being re-obtained subsequent to being lost. The other half
of these missing data (15.14%) occurred during the beginning of wear
time without a GPS signal, or the signal was lost and never re-obtained
(i.e., at the heads and tails of each participant’s wear). After identifying
and isolating GPS lapses from valid accelerometer wear days, 64.1% or
516 participants across 2033 wear days were identified as having at
least one signal lapse with 15,539 total lapses identified across the
entire dataset. Lapses were an average of 51.85 minutes in length
(£329.60, min 1, max 9650). Participants had an average of 30 (+28.80,
min 1, max 157) signal lapses over their entire wear time, with average
7.6 lapses per day (+6.40, min 1, max 39). The total missing GPS lapse
time averaged 396.30 missing minutes daily (+882.41, min 1, max
1440).

Demographic and environmental bias of missing geo-
graphic positioning system data

The results of the mixed linear effects model for the number of laps-
es found the factor of age to be a significant factor [coeff(standard
error, SE):- 0.0384 (0.012), P<0.05]. No other associations were signif-
icant; however, being female and employed had positive associations
with increasing the number of lapses. Results for the mixed linear
effects model for lapse length are displayed in Table 1, where
Residential is the reference category for land use. Although this model
was performed using square-root transformed values of lapse length,
Table 1 reports the non-transformed coefficients with the transformed
significance. None of the land use categories had any significantly dif-
ferent associations for increasing the length of lapses when compared
to the Residential category. The Hotel/Resort/Leisure category was neg-
atively associated with increasing lapse length [coeff(SE):-22.11
(23.74)] as were the Industry category [coeff(SE): -37.22 (18.50)],
Transportation category [coeff(SE): -4.44 (7.58)], Shopping category
[coeff(SE): -15.17 (9.26)], Office/School category [coeff(SE): -27.72
(9.12)], Health Care category [coeff(SE): -42.31 (18.83)], Parks and
Recreation category [coeff(SE): -21.01 (12.65)], and Other Land Use
category [coeff(SE): -18.15 (18.61)]. All land use categories had small
associations with lapse length, with Healthcare and Industry having
the largest difference, and Transportation the smallest difference from
the Residential category. Population density was found to have a signif-
icantly negative association with increasing lapse length [coeff(SE): -
0.01 (0.0008), P<.001]; however, the coefficient and standard error
were very small. The female sex was positively associated with increas-
ing lapse length, with a large coefficient [coeff(SE): 114.44 (58.60)],
while age also had positive associations with a much smaller coeffi-
cient [coeff(SE): 0.05 (1.60)]. Hispanic ethnicity was found to have a
negative association with lapse length [coeff(SE): -26.93 (93.54)].
Finally, sedentary time was found to be significantly associated with
increasing signal lapse length [coeff(SE):2.03 (0.03), P<0.001], with
each minute increase in sedentary time associated with a 2.03 minute
increase in lapse length.

Imputation of the full sample

The algorithm imputed 100% of lapse data, or 17.39% of the entire
dataset, resulting in 934,890 (15.15%) minutes of missing data remain-
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ing. On average, 396.30 (+882.41, min 1, max 10,410) minutes of data
were imputed per person, per day with an average of 1561.47
(223,304, min 1, max 11,612) points imputed over a participant’s
entire wear. Analysis of the accelerometer data found there to be an
average of 822.81 (£198.29) of accelerometer minutes per day. Using
only matched un-imputed GPS data and accelerometer data, the aver-
age minutes per day of data lowered to 560.53+343.76 minute a day.
After imputation of GPS signal lapses this daily average increased to
717.71£327.91 minutes. The cut-off for the lowest quartile was 110.5
minutes of imputed data (low imputation), 570 minutes in the highest
quartile (high imputation), and 570 in the middle two quartiles (medi-
um imputation). Examples of individuals’ days that fell into these quar-
tiles are displayed in Figure 2. The figure demonstrates the variability
of both when and where GPS lapses occurred throughout an individ-
ual’s day.

Imputation validation

The validation of the imputation algorithm using a subset of the 40
participants and SenseCam photography found that 91.5% of the imput-
ed minutes were classified as occurring indoors and as non-moving.
Less than 1% of the data was classified as in-vehicle and less than 4%
was classified as moving (Table 2). Due to conflicting time-stamps,
3.49% of the SenseCam photo data was unable to be matched with the
GPS data and is therefore unclassified.

Table 3 summarises the total average daily means of activity before
and after imputation, and broken down for within 800 m of the home
and beyond 800 m of the home for each participant. Using a mixed lin-
ear effects model to compare pre- and post-imputation, all physical
activity categories gained a significant amount of minutes after impu-
tation was conducted. Sedentary behaviours within the home environ-
ment gained the largest amount of time [ (CI):80.37 (74.04-80.37),
P<0.001] at 95% confidence. Both categories of above-light gained
almost three minutes after imputation whereas light in-home gained
24.02 minutes and light outdoor gained almost 12 minutes. For all envi-
ronments, 115.18 minutes of sedentary behaviour, 35.92 minutes of
light activity, and 5.55 minutes of above light activity were gained after
imputation.

Discussion

The identification of periods of missing GPS data within the dataset
demonstrated a high amount of GPS signal lapses on both the daily and
participant levels. Although our sample was not necessarily representa-
tive of the population of San Diego county, participants did interact
with a variety of different environments ranging from urban/suburban
to semi-rural while engaging in free-living behaviours. Of valid
accelerometer wear days, 17.39% of GPS data were missing, which
means the environmental context was unknown for these usable PA
and SB data. Although some participants only experienced one signal

Table 2. SenseCam photos analysed for minutes of imputed time
(n=12,077).

Indoors 327 (2.711%) 11,043 (91.5%)
Outdoors 152 (1.26%) 22 (0.19%)
In-vehicle - 111 (0.92%)
Unmatched data 422 (3.49%)
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lapse, most experienced several over their entire wear with an average
of 30 lapses per participant (7.6 per day). This is likely due to habitual
interaction with certain environments and/or the reoccurrence of cer-
tain behaviours (e.g., working in offices without windows) accumulat-
ing over a participant’s full device-wearing period. The variance in the
length of lapses, which averaged at 51.85 minutes with a standard devi-
ation of 329.55 minutes and a median of 2, would indicate that a variety
of activities and environments may contribute to signal lapses.
Testing for demographic and environment bias of the number of
lapses as well as length of lapses found little bias for the types of indi-
viduals who may engage in activities that make them more prone to
GPS signal loss. This is an encouraging finding for other studies using
GPS devices in a variety of adult populations. Age had a significant neg-
ative association with the number of lapses indicating that older indi-
viduals experience fewer signal lapses — a surprising finding given that
many elderly individuals spend more time indoors, especially in this
sample, which included elder-care communities. This may be due to
less movement in and out of buildings, leading to fewer chances for
dropped signals. However, age was not associated with the length of the
average lapse. We also found that increased sedentary behaviour was
associated with longer lapse lengths indicating that movement is an
important aspect of obtaining GPS signal, and that prolonged sitting
episodes will likely result in higher amounts of missing GPS signal.
Participants whose behaviours do not include long bouts of sitting and
do include greater movement throughout their wear day are more likely

Low Imputation

Medium Imputation

to gain and then retain a GPS signal by giving more chances for the
GPS satellites to lock onto the GPS device. This has implications for
those working with populations known to be more sedentary, where
GPS might not be the most appropriate tool or post-collection data loss
mitigation will likely be needed.

Surprisingly, land use categories were not significantly associated
with the signal lapse length, where we expected to find that office and
industrial land use might be locations more prone to longer signal laps-
es and parks or outdoor venues might be less prone. Population density
was the only environmental characteristic significantly associated with
the length of signal lapses. However, it was found to be inversely relat-
ed with lapse length, demonstrating that lower population density is
associated with longer lapses. While this result seems counterintuitive,
it is likely a reflection of where the lapses are occurring, which are in
residential areas with comparatively lower population density than in
urban centres. A large portion of our participants were past retirement
age and living in elder-care communities, and it is likely that they spent
most of their time in their homes or on the campus of their care facility.
Since we did find a strong association between sedentary minutes and
increasing lapse length, we hypothesise that most participants are
sedentary within their homes, and many lapses are occurring there.
Additionally, the very small coefficient indicates that this effect is not
strong.

While we did not find large demographic and environmental biases
in the missing GPS data, we did find that a significant amount of PA

¢ Categories
P Home, coliected GRS

1 Home, Imputed GPS
P Non-home, Collected GPS
Nen-home, Imputed GPS

High Imputation

Figure 2. Total day (24 hours) geographic positioning system signal and imputation in the home (with 800 m of the home) and outside
of the home (beyond 800 m) for three example participants of low-, medium-, and high-imputation days.

Table 3. Daily averages and standard deviation of minutes for valid wear days with significance of imputation significance.

Total Pre 36189 (237.17) 159.10 (114.60) 38.19 (48.61) 442.81 (289.20)
Post 47709 (238.32) 195.02 (114.25) 43.74 (51.22) 503.02 (265.28)
B(CL:95) 115.18 (108.55-176.79)***  35.92 (32.83-39.02)*** 5,55 (4.35-6.75)***

Within home buffer Pre 246.80 (217.30) 10427 (93.26) 2126 (2854) 412.10 (300.50)
Post 327.12 (244.58) 128.30 (97.64) 24.12 (2940) 467.60 (285.33)
B(CL95) 80.37 (74.04-80.37)*** 24.02 (2142-26.63)*** 2.86 (2.07-2.86)***

Outside of home buffer  Pre 115.10 (156.5) 5483 (76.51) 16.93 (34.58) 30.71 (127.55)
Post 149.96 (189.58) 66.73 (88.13) 19.62 (38.34) 3542 (135.51)
B(CL95) 34.83 (30.22-39.44) *** 11.90 (9.72-14.08)*** 2.69 (1.76-3.61)***

°0-99 counts per min; *100-1040 counts per min; $more than 1041 counts per min. ***P<.001.
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and SB occur when the GPS signal is lost. Table 2 illustrates that miss-
ing GPS data is tied to a large proportion of light PA as well as some
higher intensity PA. Before imputation, an average of 36 minutes a day
of light activity and approximately 5.5 minute of above-light activity
occurred during signal lapses. Added up to a weekly level that is an
average of over 4 hours of light and over half an hour of above-light
activity; this represents a substantial amount of PA data that lacks envi-
ronmental context.

In order to regain the spatial context of this accelerometer data, we
developed an imputation method based on the assumption that individ-
uals would most likely not be moving during a GPS lapse (movement
would greatly increase the chance that a satellite can pick up the sig-
nal). The results of the imputation validation using the SenseCam data
subset suggest that this imputation method is accurate and a viable
option for managing missing GPS data due to signal lapse. We found
that 91.5% of signal lapse minutes were classified as Indoors/Non-mov-
ing. It is important to note that San Diego does not have underground
transportation, nor a highly dense multi-story built environment.
Imputation in cities with underground transportation would be possible
by accounting for the metro grid, including entry and exit points in the
imputation model (essentially imputing the metro travel path).
Imputation for environments with dense high-rise structures may be a
more difficult task. This diversity in urban environments does pose a
challenge for the adoption of one unified imputation technique across
different cities. The imputation procedure utilised in this research was
an example of imputing using a general ruleset and mean centre sta-
tistic; however, several other forms of imputation have been utilised
previously (Stopher et al., 2008; Wiehe et al., 2008; Troped et al., 2010).
For this example of imputation we chose not to restrict the algorithm
in any way and to demonstrate what imputing the maximum amount of
data would look like. Researchers can add their own limitations
depending on their population and dataset that could include excluding
imputation over a certain distance, or preventing imputation over mul-
tiple days. As advances continue in machine-learned algorithms to
detect behaviour from accelerometry data (Ellis ef al, 2013), imputa-
tion could also depend on detected behaviour (sitting/standing) from
the accelerometer. For any form of imputation to be fully adopted by
GPS and health data analysis practitioners, decisions and justification
for exact parameters and procedures used need to be reported so that
the process can move towards standardisation.

Figure 2 illustrates the variety of locations and times throughout the
day that GPS signal loss occurs. The figure particularly highlights that
for individuals living in homes with poor signal reception, a large
amount of data may be missing in the home environment. Table 3
results support this observation, and demonstrate that a large number
of missing data occurs within 800 m of the home. Results from Table 2
also highlight the importance of imputation. Every category of activity,
both in and outside of the home, was significantly improved through
imputation. Of particular importance is the above light activity catego-
ry, where 5.5 daily geo-located minutes of activity were added through
imputation, evenly distributed between the home and non-home envi-
ronments. These results suggest that imputation of missing GPS data
may add significant PA and SB data to the model, and decrease model-
ling error associated with missing data.

Conclusions

Modelling of demographic and land use characteristics on presence
of signal lapse and lapse length indicated that there are some demo-
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graphic and behavioural characteristics associated with GPS signal
lapse even after including environmental factors in the model. These
biases are relatively small, but coupled with the large amount of data
loss present for almost all participants. The results of this study indi-
cate that researchers should consider the demographic and behaviour-
al factors of their study population that may make GPS signal lapse a
significant issue. Researchers should also strongly consider imputa-
tion. We found significant increases in data across all activity cate-
gories after imputation, adding up to large amounts of weekly activity.
The imputation technique utilised in this study was validated and
found to be highly accurate. We advocate general imputation as an
effective tool for mitigating data lost through GPS signal lapse as it has
the ability to return spatial context and greater utility to the data set,
with the caveat that researchers must consider their research site for
situations where the assumption of participant stationarity during sig-
nal loss may not apply.
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