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Spatial and temporal changes in household structure locations
using high-resolution satellite imagery for population assessment:
an analysis in southern Zambia, 2006-2011
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Abstract

Satellite imagery is increasingly available at high spatial resolution
and can be used for various purposes in public health research and
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programme implementation. Comparing a census generated from two
satellite images of the same region in rural southern Zambia obtained
four and a half years apart identified patterns of household locations
and change over time. The length of time that a satellite image-based
census is accurate determines its utility. Households were enumerated
manually from satellite images obtained in 2006 and 2011 of the same
area. Spatial statistics were used to describe clustering, cluster detec-
tion, and spatial variation in the location of households. A total of 3821
household locations were enumerated in 2006 and 4256 in 2011, a net
change of 435 houses (11.4% increase). Comparison of the images
indicated that 971 (25.4%) structures were added and 536 (14.0%)
removed. Further analysis suggested similar household clustering in
the two images and no substantial difference in concentration of
households across the study area. Cluster detection analysis identified
a small area where significantly more household structures were
removed than expected; however, the amount of change was of limited
practical significance. These findings suggest that random sampling of
households for study participation would not induce geographic bias if
based on a 4.5-year-old image in this region. Application of spatial sta-
tistical methods provides insights into the population distribution
changes between two time periods and can be helpful in assessing the
accuracy of satellite imagery.

Introduction

Incorporating data from high-resolution satellite images and global
positioning systems (GPS) into geographical information systems
(GIS) has become increasingly useful, accurate, and widely available.
Spatial resolution has dramatically increased to less than two meters
for multispectral images and less than half a meter for panchromatic
images. Availability has also increased, with a growing number of com-
panies launching satellites for commercial use as well as some data
freely available via web services such as Google Earth™ and Bing™
(Belward and Skgien, 2014). Data from satellites are spatially precise
and spatial accuracy can be validated by GPS (Lowther et al., 2009;
Vazquez-Prokopec et al., 2009; Checchi et al., 2013).

High-resolution satellite images have diverse applications, such as
the measurement of land use, population movement, change in civil
infrastructure, conservation, monitoring of humanitarian emergen-
cies, and the study of infectious diseases (Radke e al., 2004; Dambach
et al., 2009; Schmidt and Kedir, 2009; Checchi et al., 2013; Boyle et al.,
2014). In public health, the use of high-resolution satellite imagery
has been identified as a cost-effective approach to develop disease sur-
veillance systems, monitor disease trends, and document topographi-
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cal changes that may influence disease transmission (Fernandez, 2008;
Lefer et al., 2008; Chang ef al., 2009; Kamadieu, 2009; Lowther et al.,
2009; Wei et al., 2012; Soti et al., 2013; Franke et al., 2015; Nsoesie et
al., 2015). Another use for satellite imagery is in the selection of house-
holds for targeted interventions. For example, satellite imagery was
used in Zambia to enumerate structures and select target areas to
receive indoor residual spraying for malaria control (Franke et al.,
2015; Kamanga et al., 2015).

Household enumeration based on high-resolution satellite imagery
has been used to measure population changes in refugee camps, and
has been identified as a practical method for generating a sampling
frame for public health research in sub-Saharan Africa (Lowther et al.,
2009; Moss et al., 2011; Wampler et al., 2013; Escamilla et al., 2014;
Franke et al., 2015). Satellite image-based census enumeration has
also been employed to create population distribution maps that can be
useful for many epidemiological calculations and studies, as well as for
public health planning and targeting interventions (Chang ef al., 2009;
Linard et al., 2012; Wampler et al., 2013; Kondo et al., 2014).
Unfortunately, existing census and demographic datasets for low-
income countries, where disease burdens are commonly highest, are
often based on outdated population enumeration data (Tatem et al.,
2007; Linard et al., 2010, 2012). Recently, studies have validated the use
of satellite imagery and GPS to provide sampling frames for ethno-
graphic and public health surveys (Lowther ef al., 2009; Wampler et al.,
2013) and to estimate population size (Lowther et al., 2009; Checchi et
al., 2013; Wampler et al., 2013; Hillson et al., 2014). However, the length
of time a satellite image remains accurate and useful is unclear.
Determining the accuracy of an image depends on the context, and
varies based on the research question. For example, imagery utilized
for epidemiological studies relying on household locations for survey
implementation may be more temporally sensitive than studies deter-
mining and involving general land cover characteristics. Describing
changes in the distribution of household structures visualised on satel-
lite images is a novel application; previously, this technique has been
restricted mainly to the description of refugee camps or areas of con-
flict (Galway et al., 2012; Checchi et al., 2013).

As a component of the Southern Africa International Centers of
Excellence for Malaria Research (ICEMR), households are selected for
enrolment into a prospective study of malaria transmission using sim-
ple random sampling from an enumerated list. Households in the sam-
pling pool are identified and enumerated from a high-resolution satel-
lite image and their coordinates confirmed by GPS at enrolment. For
this sampling strategy to be effective, the coordinates of selected
households must be accurate. Equally important is that the pool of enu-
merated households is accurately identified as collected field data are
assumed to be representative of the target population. The temporal
accuracy (shelf-life) of high-resolution satellite imagery was assessed
by comparing images obtained in 2006 and 2011 of the study area in
rural southern Zambia.

Materials and Methods

Study area

The catchment area of Macha Hospital in Choma District, Southern
Province, Zambia is one of three sites of the ICEMR. The study site is
a rural area approximately 575 km? at an average elevation of 1100
meters and consists of open savannah woodland with land clearings for
subsistence agriculture (Moss et al., 2011). All houses and non-resi-
dential structures are single story.
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Geographical information system methodology

A satellite image task order was generated by DigitalGlobe Services,
Inc (Denver, CO, USA) and a multispectral 2.4-m resolution image was
acquired on 01/12/2006. This image was pan-sharpened to 0.62-meter
resolution using the resolution-merge function. A second task order
was generated by Apollo Mapping (Boulder, CO, USA) of the same study
area for acquisition of a GeoEye-1 image obtained in mid-2011 with a
0.5-meter resolution. Six tiles from the imagery archives, collected
between April and July 2011 (21/04/2011, 24/04/2011, 13/05/2011,
16/05/2011, and 18/07/2011) were added into a mosaic covering the
study area. Orthorectification, using rational polynomial coefficients,
was performed to improve spatial accuracy. Image processing was con-
ducted in Erdas Imagine 2010 (Hexagon Geospatial, Norcross, GA,
USA). Each image was imported into ArcGIS 9.2 (ESRI, Redlands, CA,
USA). Visual inspection of the imagery was performed during the on-
screen digitising process, during which structures of appropriate size
and shape were identified as potential households. A typical household
was typically recognised by a clearing of the natural brush with one or
more domestic structures. Smaller structures, such as cooking houses
or animal kraals might be present as well. A household was defined as
one or more of these structures that function as a family unit. During
this manual enumeration process, a map feature (point) was created
for the centroid of each household. Comparison of the images allowed
for the identification and coding of households that remained at the
same location, were newly built, or were removed in the four and a half
year period between the two images.

As an alternative to the manual enumeration process described
above, household identification was originally attempted, without suc-
cess, using automated feature extraction software. These software
algorithms incorporate spatial context while classifying object-specific
features specified by the user. However, in this study area and similar
study areas in developing countries, the assortment of materials used
for roofs (bush material, asbestos sheets, and corrugated metal) and
walls (mud brick and concrete) impeded the ability to accurately and
reliably discern houses. Additionally, our malaria data is collected and
mapped at a household level, which, as stated, is often a collection of
individual houses of varying number and geographic expanse.

Statistical analyses

Spatial statistics were used to assess clustering, cluster detection
and spatial variation in household location between the 2006 and 2011
satellite images to describe and quantify changes in spatial patterns of
households and to identify geographic areas of significant change.

Spatial clustering is the property that describes how tightly compact
or dispersed a set of mapped locations are. The K-function, which esti-
mates the expected number of other events within a range of distances
of each event, was used to assess spatial clustering (Waller and Gotway,
2004). The K-function was estimated for both the 2006 and 2011
mapped household locations and the difference was plotted as a func-
tion of distance to assess change in the level of spatial clustering of
household locations. Significant differences in spatial clustering were
assessed using the Monte Carlo random labelling approach (Diggle,
2008). To complement the assessment of spatial clustering, spatial
variation in the location of households was also explored. Spatial inten-
sity, defined as the expected number of events per unit area, was esti-
mated using the non-parametric kernel density approach and mapped
to highlight spatial variation in the concentration of events (Waller et
al., 2004; Diggle, 2008). Spatial intensity was estimated for both the
2006 and 2011 mapped household locations. A map of the difference in
spatial intensity between 2006 and 2011 was generated to show
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changes in spatial variation of household locations between these two
time periods. K-function and spatial intensity analysis were performed
using the R Statistical Software with contributed spatstat package
(Baddeley and Turner, 2005; R Statistical Software, 2013).

A cluster detection analysis was performed to assess clusters of sig-
nificant change in the number households from 2006 to 2011. In com-
parison to the property of spatial clustering, a spatial cluster describes
the local property of a subarea with a significant difference in the
expected number of events. The existence of such a cluster may not be
captured in the previously described analyses but could have profound
effects on the sampling strategy and other related objectives that are
based on enumerated satellite imagery. The study area was divided into
1-km grid cells. For each cell, the total number of newly added and
removed households from 2006-2011, as well as the ratio of net change
(difference in the added and removed houses) to the 2006 cell popula-
tion, were determined. The cluster detection software SaTScan v9.4
(http//www.statscan.org) was used to search for clusters (contiguous
sets of grid cells) with significantly high net change in household pop-
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ulation from 2006 to 2011. The cluster detection was based on the
SaTScan normal model to accommodate positive and negative net
change and was performed controlling for proximity to roads (defined
as the total length of all road segments in each grid cell). A tarred road
was constructed in 2008 between the time points of the two images.
Cluster detection analysis controlling for proximity to roads, a known
driver of household settlement in this area, identifies clusters beyond
what would have been explained by these features.

Results

A total of 3821 household structures were enumerated in 2006 and
4256 in 2011 (Table 1). Between 2006 and 2011, 971 (25.4%) structures
were added and 536 (14.0%) structures removed (no longer present)
(Table 1). Thus, by mid-2011, there was a net increase in 435 (11.4%)
household structures from 2006. All enumerated household structures
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Figure 1. Change in households between the enumerated 2006 and 2011 satellite images for the study area in Southern Province,

Zambia.
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as well as the change (added and removed households) were mapped
(Figure 1).

There was no significant difference in the level of spatial clustering
for the 2006 household locations compared to the 2011 household loca-
tions. The difference in K-functions for 2006 to 2011 remained close to
the horizontal zero line of no difference and did not approach statistical
significance in either direction (Figure 2). Assessment of the intensity
maps suggested the spatial variation in household concentrations were
consistent from 2006 to 2011, although household density reached 32
houses per km? in 2011 compared to 27 per km? in 2006, reflecting the
positive net change in households (Figure 3). The difference in inten-
sity maps suggested that areas with the highest net change (both pos-
itive and negative) occurred where there were higher concentrations
of households. An area of negative net change (more households
removed than expected) appeared along the southern border of the
northeast quadrant where there was moderate household density in
both 2006 and 2011 (Figure 3).

The results of the SaTScan analysis identified one spatial cluster
with a combined significantly negative net change (Figure 4). Within
the cluster, significantly more household structures were removed
between 2006 and 2011 than expected (P<0.001). Although statistically
significant, the weighted mean net change in the cluster was -0.23
houses compared to 0.15 houses outside the cluster.

Discussion

Satellite images depict the Earth’s surface at a precise moment, pro-
viding a snapshot in time. Often missing from the literature, particu-
larly in the field of public health, is an assessment of the degree of
change over time and the potential impact such changes have on public
health research, planning interventions, and population sampling.
Assessment of change is also critical for longitudinal projects that
involve planning, ongoing data collection, and outcome evaluations
over space and time. Over a 4.5-year period, the number of households
identified in a rural area of Zambia increased 11.4%; however, the
household distribution patterns were maintained. These methodologi-
cal approaches to examining changes in satellite imagery between two
time periods can be used in other settings and for different research
questions. The cost of acquiring new satellite imagery, although
decreasing, remains an obstacle to their use in public health studies.
Researchers have to determine whether existing archived imagery,
which is significantly less expensive, is suitable for the research proj-
ect and for how long a purchased image will remain useful. In public
health studies, population movement is often a concern. Triggers such
as changes in access and availability of transportation (e.g. road con-
struction), new industrial developments, and changes in government
policy can provide an indication that the population distribution in a
given area may be changing. This analysis demonstrates how, with the
use of spatial statistical techniques, these features can be incorporated
into an assessment of change across multiple high-resolution satellite
images of the same area. Identifying a net difference in the number of
households between two time periods alone does not adequately
describe the dynamics of household distribution. Further investigation
highlighted that there were nearly twice as many households added as
were removed. However, no significant change in the spatial distribu-
tion of household locations was identified in both large-scale spatial
trends in the concentration of households and smaller scale spatial
clustering of households. Although a statistically significant cluster of
lower than expected net change in households was identified, the mag-
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nitude of the difference was not deemed to be of practical significance
for population sampling. This study incorporated time-intensive manu-
al identification of households that was necessitated by the varying
materials used in the construction of these houses and the need to
identify groups of houses rather than individual structures. Automated
feature extraction, including identification of houses, has been suc-
cessfully utilised in other studies (Tullis and Jensen, 2003; Lo, 2007;
Lowther et al., 2009; Moss et al., 2011; Wampler et al., 2013; Escamilla
etal.,2014; Franke et al., 2015; Kamanga et al., 2015). Regardless of the
method used to identify the map feature of interest the spatial statisti-
cal approach to understand the changes in imagery between time peri-
ods remains applicable. This study had some limitations. First, the
assessment of household location change relied on observations from
two images; no interim images were considered. Thus, longitudinal
assessments at smaller temporal scales could not be determined.
Second, the household enumeration process was based upon visual
inspection of the images, potentially leading to the misclassification of
non-residential structures as households or households as non-resi-
dential structures. Attempts were made to use automated feature

Table 1. Change with respect to the enumerated households for
the 2006 and 2011 satellite imagery.

Households 2006 3821 na
Households 2011 4256 na
Households added between 2006 and 2011 97 25.4
Households removed between 2006 and 2011 536 14.0
Net increase 435 114

na, not available.
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Figure 2. Difference in K functions comparing spatial clustering
of enumerated household locations, 2006 to 2011.
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extraction software but none were able to account for the differing
nature of the household materials. However, misclassified households
were likely to be few or resulted in non-differential misclassification as
the same methods were used for each image. Third, observations were
based on enumerating household structures not actual people. While
the number of household structures would likely be correlated with
population size, on small spatial scales changes in population may not
always be reflective of changes in household locations. Lastly, rural areas
in southern Africa or in other developing countries may have more or
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less household movement over time, thus limiting the generalisability of
our findings. However, the methods used to assess changes in household
structure patterns can be applied in different settings.

Conclusions
Satellite imagery is increasingly used for activities such as study
planning, data collection, distribution of resources, or targeting of
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Figure 3. A) Mapped spatial intensity of enumerated household locations from the 2006 and 2011 satellite image; B) map of the dif-

ference in spatial intensity from 2006 to 2011.
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Figure 4. Net change in number of household structures within 1-km grid cells from 2006-2011, Choma District, Zambia.

activities. Understanding changes in the distribution of households
over time is of importance to researchers relying on satellite imagery.
Researchers should consider and evaluate the accuracy of satellite
imagery as the time from acquisition to use increases.
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