
Abstract

Schistosomiasis is one of the most prevalent parasitic diseases
impacting human health in the tropics and sub-tropics. The geograph-
ic distribution of Schistosoma mansoni, the most widespread species,
includes areas in Africa, the Middle East, South America and the
Caribbean. Snails of the genus Biomphalaria act as intermediate host
for S. mansoni. Biomphalaria straminea is not indigenous in China but
was accidentally introduced to Hong Kong from South America and has
spread to other habitats in the southern parts of the country. This
species is known for its great dispersal capacity that highlights the
importance of the snail as a potential host for S. mansoni in China. In

this connection, although no such infection has been recorded in the
field so far, the continuous expansion of China’s projects in endemic
areas of Africa and import of the infection via returning workers or vis-
itors deserve attention. The purpose of this study was to map and pre-
dict the spatial distribution of B. straminea in China. Snail occurrence
data were assembled and investigated using MaxEnt software, along
with climatic and environmental variables to produce a predictive risk
map. Of the environmental variables tested, the precipitation of
warmest quarter was the most contribution factor for snail’s spatial
distribution. Risk areas were found in southeastern China and it is
expected that they will guide policies and control programmes to
potential areas area of snail abundance and used for spatial targeting
of control interventions for this invasive species.

Introduction

Invasive species have been the focus for many studies in diverse
fields such as biology, agriculture, transportation, and economics
(Carlton, 1996; Higgins et al., 1999; Kareiva, 1996; Meyerson and
Mooney, 2007; Williamson, 1999). Man-derived ecological modifica-
tion, land reclamation, and movement to new areas resulted in intro-
ductions of species to novel landscapes (Peterson, 2003). It is difficult
to identify the key factor for successful invasion and colonization that
can be employed for a predictive understanding of which species rep-
resent potential invaders (Perrins et al., 1993; Peterson, 2003). Instead
some climate factors are used to predict the behaviour of invasions
based on the concept of ecological niches as a constraint to the distri-
butional potential of species (Grinnell, 1924). Species can only estab-
lish populations in areas that meet the ecological requirements found
in native areas of these species. 
The study of invasive Biomphalaria species acquires an additional

importance due to their potential role as intermediate hosts for
Schistosoma mansoni that impact human health in tropical and sub-
tropical countries (Basch, 1976; Mandahl-Barth, 1957; Morgan et al.,
2001). While factors such as dispersion by floods, plants, aquarium
fish shipment, and aquatic birds’ migration are linked to the wide-
spread distribution of this intermediate host, other environmental fac-
tors regulate their abundance and establishment in new areas.
Although these snails can tolerate variations in physical, chemical and
biological parameters in the environment where they live (Kloos et al.,
2001; Utzinger et al., 1997; Woolhouse, 1992), there is a threshold limit
for this tolerance. Several biotic and abiotic factors in the environment
control Biomphalaria abundance and distribution (Brown, 1994;
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Rollinson, 2011). Nevertheless, some species of Biomphalaria have
proven successful in occupying new ecological niches that in turn led
to schistosomiasis expansion, even to non-endemic areas (Sturrock,
1973; Yousif et al., 1996; Lardans and Dissous, 1998; Pointier et al.,
2005a; Teodoro et al., 2010).
Biomphalaria straminea is highly invasive, apparently due to its

association with aquatic plants trade (Pointier et al., 2005b). It is an
important intermediate host for S. mansoni transmission in South
America especially Brazil (Paraense and Corrêa, 1989; Melo et al., 2006;
Fernandez and Thiengo, 2010). Reports of natural infection of this
snail species with S. mansoni were recorded from different parts of
Brazil (Malek, 1985; Fernandez and Thiengo, 2010; Galvão et al., 2010;
Barboza et al., 2012). Although it is less important for S. mansoni trans-
mission in areas where its distribution overlaps with B. glabrata
(Carvalho, 1992), it has been implicated in disease transmission in
some Brazilian states, i.e. in Fordlandia in the state of Para (Machado
and Martins, 1951) and Goiania in the state of Goias (Cunha, 1967). In
addition, its importance in schistosomiasis transmission is linked to
its wide distribution in almost all water basins in Brazil especially in
the Northeast, south of Bahia and in the northeastern part of the state
of Minas Gerais (PAHO, 1968; Paraense et al., 1986). This wide distri-
bution can be attributed to the fact that B. straminea has a high capac-
ity to resist periods of drought (Barbosa and Barbosa, 1994). The ability
of this snail species to occupy and replace other Biomphalaria species
following its introduction proves that it is not only an invasive and com-
petitive species, but also a good colonizer of natural environments
(Michelson and Dubois, 1979; Barbosa et al., 2014). 
In China, the snail was introduced to Hong Kong in 1974 (Meier-

Brook, 1974) and subsequently dispersed to different water habitats in
Guangdong Province in southern China (Gao et al., 2013; Wang et al.,
2013; Attwood et al., 2015). The presence of this species in China and
it potential expansion is important from a public health perspective as
a potential transmitter of Schistosoma mansoni to mainland China
where is only the endemic area for S. japonica (Collins et al., 2012;
Zhou et al., 2016a). Yet, to date no studies have described the potential
distribution of this snail in China. 
Although malacological surveys based on manual snail collection are

simple and straightforward, they are time-consuming and logistically
challenging. A possible alternative way to overcome these challenges is
to determine factors that regulate the snail abundance, and use this
information to predict its presence in un-surveyed areas (Kristensen et
al., 2001; Stensgaard et al., 2006). Suitable and better models for the
distribution and transmission of schistosomiasis can be obtained by
integrating the essential biology of the parasite, the intermediate snail
host and the definitive human host (Stensgaard et al., 2013). Many
studies have demonstrated the relation between environmental and cli-
matic factors and the distribution of Biomphalaria species and preva-
lence of S. mansoni (Woolhouse and Chandiwana, 1989; Bavia et al.,
1999; Brooker and Michael, 2000; Kristensen et al., 2001; Malone et al.,
2001; Raso et al., 2005; Simoonga et al., 2009; Malone and Bergquist,
2012). Many of these factors are easy to incorporate in a geographical
information system (GIS) for the analysis of species suitable habitats
and providing estimates of the potential spread of that species (Haltuch
et al., 2000; Elith et al., 2006). In addition, data on climate and environ-
ment, such as land surface temperature and vegetation indices can
easily be obtained from various earth orbiting satellites, and represents
a rapid way to develop spatial models of snail distribution (Stensgaard
et al., 2005). Prediction maps developed by spatial technologies and
species distribution models (SDMs) provide adequate understanding
of the potential distribution of various species. Such maps are useful in
the management of invasive species (Peterson, 2003; Peterson and

Shaw, 2003). 
Different spatial modelling techniques have been used to model

Biomphalaria distribution such as maximum entropy (MaxEnt)
(Scholte et al., 2012; Stensgaard et al., 2013; Pedersen et al., 2014),
genetic algorithm for rule-set prediction (GARP) (Stensgaard et al.,
2006), and geostatic indicator Kriging (Guimarães et al., 2009). There
are also non-regression models such as the Bayesian geostatistical
approach for modelling Biomphalaria spp., distribution (Raso et al.,
2005; Vounatsou et al., 2009; Standley et al., 2012; Schur et al., 2013).
The data employed in the present study are presence-only data for B.
straminea in China. These data were used to produce predictive risk
maps of the spatial distribution of this potential intermediate host snail
using MaxEnt modelling approach using environmental and climatic
proxies, obtained from remote sensing (RS) and climate databases, as
constraints for the snail distribution. The MaxEnt model is well suited
to make predictions from presence only-data, and has been shown to
outperform other species distribution modelling software, especially
when sample sizes are low (Elith et al., 2006; Phillips et al., 2006;
Phillips and Dudík, 2008; Stensgaard et al., 2013). Occurrence-based
approaches statistically link spatial data to species distribution records
(Elith et al., 2010). The generated maps are useful for the targeting this
invasive and potential schistosomiasis snail host for control interven-
tions. The main purpose of this study is to link the distribution of a
species to environmental and/or climatic factors to create a prediction
map, in order to understand the distribution pattern of the invasive
species Biomphalaria in China. (Elith et al., 2006; Zhou et al., 2016b). 

Materials and Methods

Study area and malacological surveys 
Shenzhen City, located in southern China, lies between longitudes

113º.46 and 114º.37E and latitudes 22º.27 and 22º.52N. Shenzhen was
selected to build our initial training MaxEnt model because
Biomphalaria snails are well established in many water systems of the
city. In addition, Shenzhen is adjoining Hong Kong in which the first
introduction of B. straminea was reported and followed by subsequent
dispersal (Meire-Brook, 1974; Attwood et al., 2015). The malacological
surveys were conducted during 2015 in many freshwater habitats
throughout urban and rural areas of Shenzhen city to map the distribu-
tion of B. straminea (Figure 1). Sampling was quantified, with two col-
lectors investigating 100 m length of the water body for 30 minutes and
collecting all Biomphalaria found. The snail dip-net with long handle
was used for snail collection. Samplings were carried out at different
water levels and at least ten dip-nets were taken from each water body.
Each location was georeferenced with a handheld geographical posi-
tioning systems (GPS) device (Garmin GPSMap 60CS, Garmin Ltd.,
Kansas City, MO, USA) and the coordinates were recorded. Collected
snails were transferred to the laboratory and identified using integrat-
ed morphological and molecular approach (Paraense, 1961; Paraense,
1975; Attwood et al., 2015). 

Environmental layers
Environmental data were obtained from different freely accessible

remote sensing data sources, as summarised in Table 1. Briefly, climat-
ic data were obtained from Worldclim global dataset (available from:
http://www.worldclim.org; Hijmans et al., 2005). These data provide
interpolated monthly climatic information from weather stations aver-
aged over a 50-year period (from 1950 to 2000) at the 1-km spatial res-
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olution. The altitude variable was derived from the Hydro-K data set of
the United States Geological Survey (USGS) at the same spatial reso-
lution. The bioclimatic variables were selected based on their perceived
biological relevance for intermediate host snail distributions (Appleton
and Eriksson, 1984; Stensgaard et al., 2013). Also, temperature of the
warmest and coldest quarter was included due to the sensitivity of
Biomphalaria snails to temperature changes (Appleton, 1977; Pflüger,
1981). 

Model implementation
Distribution modelling was implemented using the MaxEnt

approach that is efficient in modelling the potential distributions of
species using presence-only datasets (Elith et al., 2011). MaxEnt model
estimates niches by finding the distribution of probabilities closest to
uniform (maximum entropy), constrained by known observations (i.e.
environmental and/or climatic variables) (Phillips et al., 2006). The
training model for B. straminea distribution in China was built in
MaxEnt software version 3.3.3k (https://www.cs.princeton.edu/
~schapire/maxent/) using 27 GPS coordinates for Biomphalaria occur-
rences representing data from the current study, data from the National
Institute of Parasitic Diseases (NIPD), Chinese Center for Disease
Control and Prevention (CDC), and previously published data (Attwood
et al., 2015). Occurrence data were divided into training data, the 75%
of occurrence point data that was used for model prediction and test
data, the 25% of occurrence point data that was used for model valida-
tion (Phillips et al., 2006). The model was evaluated using a threshold-
independent index to calculate the area under the receiver operating
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Figure 1. A map showing the locations of Biomphalaria straminea abundance in China.

Table 1. Environmental and climatic variables used in the regres-
sion analysis model to predict the occurrence of Biomphalaria
straminea in China.

Data type                                                                 Source

Altitude variable at the 1-km resolution               Hydro-K data set (USGS)
BIO1 (annual mean temperature)                         Worldclim Global Climate
                                                                                      (http://www.worldclim.org/)
BIO2 (mean diurnal range)                                                              
BIO3 (isothermality)                                                                         
BIO4 (temperature seasonality)                                                    
BIO5 (max. temperature of warmest month)                             
BIO6 (min. temperature of coldest month)                                
BIO7 (temperature annual range)                                                 
BIO8 (mean temperature of wettest quarter)                            
BIO9 (mean temperature of driest quarter)                              
BIO10 (mean temperature of warmest quarter)                       
BIO11 (mean temperature of coldest quarter)                          
BIO12 (annual precipitation)                                                          
BIO13 (precipitation of wettest month)                                       
BIO14 (precipitation of driest month)                                          
BIO15 (precipitation seasonality)                                                  
BIO16 (precipitation of wettest quarter)                                     
BIO17 (precipitation of driest quarter)                                        
BIO18 (precipitation of warmest quarter)                                   
BIO19 (precipitation of coldest quarter)                                     
USGS, United States Geological Survey (https://www.usgs.gov/).
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characteristic (ROC) curves (AUC), which measures the accuracy of
predictive distribution models (Lobo et al., 2008). AUC values near one
indicate high predictive performance of the model, while values small-
er than 0.5 indicate low model predictive ability (Phillips et al., 2006;
Peterson et al., 2008; Phillips and Dudík, 2008). Visualization display
was carried out in ArcGIS version 10.1 (ESRI; Redlands, CA, USA). The
final models were plotted with a 1-km spatial resolution. The probabil-
ity of snail presence was expressed as a map layer of habitat suitability
on a scale of 0-0.9 for non-suitable and suitable habitat, respectively.

Results

Snails habitats
In Shenzhen, the Biomphalaria habitats were mostly located in

urban areas and it included areas of fishing and agricultural activities.
The habitats were standing water bodies such as reservoirs, streams,
and rivers (Figure 1). Most of locations were typical habitats for snails
and all were positive for the presence of Biompharia with variable pop-
ulation densities. B. straminea was collected mostly from lentic sites
(flooded furrows and ponds) than from lotic sites (streams and rivers). 

Distribution model
Based on occurrence data for B. straminea, we generated a distribu-

tion map for the potential areas of snail occurrence in China (Figure
2). The map shows the suitable areas for snail presence. Jackknife

analysis (http://www.physics.utah.edu/~detar/ phycs6730/handouts
/jackknife/jackknife/) of variables, response curves and percent contri-
butions of variable to the model indicated that, among the environmen-
tal and climatic variables used, precipitation of warmest quarter
showed the highest contribution to the predictive model (Figure 3).
A full description for the estimates of relative contributions of each

environmental variable is presented in Table 2. Percent of contribution
was estimated by adding the increase in regularized gain to the contri-
bution of the corresponding variable, or subtracted from it if the
change to the absolute value of lambda is negative and randomly per-
mute the values of each environmental variable on training presence
and background. The model was re-evaluated on the permuted data,
and the resulting AUC is shown in the table, normalized to percent-
ages. While factors such as temperature seasonality, precipitation of
driest month, altitude, and mean temperature of wettest quarter were
also effective contributors to the model, others such as precipitation
seasonality, precipitation of coldest quarter, precipitation of wettest
quarter, mean temperature of driest quarter, annual mean tempera-
ture, and minimum temperature of coldest month had no contribution
to the spatial distribution model.
The possible habitats for B. straminea are coded in colours from light

green to darker red, representing fewer to greater models. The models
suggest that there is a high relative probability of presence, indicating
that new, yet un-occupied areas could be suitable habitats for B.
straminea exist outside the sampled areas; these are mainly distributed
in the south of china including Shenzhen and its surrounding areas in
Guangdong province, south of Guangxi, and Fujian provinces as well as
area outside china such as the North of Taiwan. The logistic threshold
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Figure 2. Predicted potential distribution for Biomphalaria straminea using all occurrence records and climatic and environmental
variables. Dark red indicates a higher probability of occurrence, while green indicates a low probability of occurrence.
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for the model ranged from 0.010 to 0.396 with an AUC value of 0.99,
indicating a good model performance and high predictive ability. 

Discussion

The present study represents the first predictive map for China with
regard to the spatial distribution of B. straminea, an invasive species
known for its potential ability to transmit S. mansoni. A MaxEnt model-
ling approach was employed to analyze a presence-only dataset for B.
straminea. The model showed a gradient in suitability for B. straminea
habitats across southern China ranging from areas of low to high suit-
ability (Figure 2). The MaxEnt output represents the likelihood of nat-
ural habitat suitability - or the potential distribution; despite the fact
that it does not give the realized distribution of snails in relation to cli-
matic and environmental factors (used as covariates). Our models
showed a high predictive accuracy with AUC value above 0.9, which is
a best model-fit category (Phillips and Dudík, 2008). 
Previous studies showed that SDMs such as MaxEnt are useful for

the identification of environments that can sustain organisms outside
their native areas (Phillips et al., 2006). MaxEnt and other SDMs have
been applied to study intermediate host distribution (Scholte et al.,
2012; Stensgaard et al., 2013; Pedersen et al., 2014). MaxEnt’s principle
for estimating the distribution of the species is through finding maxi-
mum entropy for distribution (the distribution closest to uniform) with
the constraints that the expected value of each variable constraint
matches its empirical average. The advantage of MaxEnt over other
modelling techniques is that it can perform prediction using presence-
only data even with few samples (Phillips et al., 2004). When using
presence-only in MaxEnt, the pixels of the study area define the space
of MaxEnt probability distribution. The pixels of occurrence recorded
constitute the sample points and the responsible features are climatic
or other environmental variables (Phillips et al., 2006). In our study,
presence-only data describes the occurrences records of B. straminea.
Although it is advantageous to have the absence data as well, some-
times it is difficult to find these data due to misidentification or inac-
cessibility at some water bodies. The advantage of using presence-
absence data is that it gives valuable information about surveyed loca-
tions (enabling analyses of biases) and prevalence (Phillips et al.,
2009). However, sometimes absence data may introduce confounding
information because of errors in identifying suitable habitats.
Moreover, absence data may be misleading because the species or envi-
ronment is not at equilibrium (Elith and Leathwick, 2009). SDMs
assume that the target species is at equilibrium or close to equilibrium
with current environmental conditions (the species has already occu-
pied all suitable habitats and is absent from all unsuitable sites
(Guisan and Thuiller, 2005). SDMs also assume that the species’ eco-
logical niche is stable in space and time, which mean that it occupied
similar environmental conditions as in the native range (Guisan and
Zimmermann, 2000). The distribution model could be misleading if the
species is missing from locations where climate is actually suitable
(areas which can support its establishment following introduction). As
a result, spatial models will under- predict potential habitats (Václavík
and Meentemeyer, 2012). 
Climatic variables such as temperature and precipitation influence

species distribution at both global and meso-scales. It is important
therefore to carefully select the variables to use for modelling as this
will likely influence the degree of model ability to predict presence
areas outside the study area or with different environmental conditions
(Tambo et al., 2014). This study was capable to provide the precision

guideline for the management of invasive species (Peterson and
Robins, 2003) and the determinants to predict the impact of climate
change on their distribution (Thomas et al., 2004). Climate changes
tend to influence the spatial distribution of Biomphalaria with increas-
ing suitable habitats for the snails in the future in addition to the cur-
rent ones. In our model of prediction, precipitation of warmest quarter
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Table 2. Estimates of relative contributions of the environmental
variables to the MaxEnt distribution model of Biomphalaria
straminea.

Environmental variable                          Percent        Permutation
                                                             contribution     importance

Precipitation of warmest quarter                            72.3                          23.8
Temperature seasonality                                            14.4                             0
Precipitation of driest month                                      4                               0
Altitude                                                                             4                               0
Mean temperature of wettest quarter                    2.6                           67.1
Isothermality                                                                  0.9                            8.3
Precipitation of wettest month                                 0.7                            0.6
Mean temperature of coldest quarter                     0.3                              0
Mean temperature of warmest quarter                  0.2                              0
Precipitation of driest quarter                                  0.2                              0
Annual precipitation                                                     0.1                              0
Mean diurnal range                                                      0.1                            0.1
Maximum temperature of warmest month            0.1                              0
Temperature annual range                                         0.1                              0
Precipitation seasonality                                              0                              0.1
Precipitation of coldest quarter                                 0                               0
Precipitation of wettest quarter                                 0                               0
Mean temperature of driest quarter                         0                               0
Annual mean temperature                                           0                               0
Minimum temperature of coldest month                 0                               0

Figure 3. Response curve of Biomphalaria straminea to the cli-
matic variable, precipitation of warmest quarter.
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was the most contributing climatic factor to the model. Environmental
and climatic factors have a variable effect on Biomphalaria spatial dis-
tribution depending on the species and geographic areas of occur-
rence. Both temperature and precipitation were identified as important
environmental factors governing the distribution of South American
species of Biomphalaria (Scholte et al., 2012). Also, Guimarães et al.
(2013) showed that precipitation, minimum temperature, the estimat-
ed vegetation index (EVI) and sanitation were positively correlated
with B. glabratal abundance and consistent with the adequate environ-
mental conditions for the transmission of schistosomiasis. The authors
concluded that, the regression models confirmed the importance of the
use of environmental variables to characterize the snail habitat in the
endemic area of the state of Minas Gerais in Brazil. Bavia et al. (2001)
also showed that the distribution of schistosomiasis in Bahia, at
municipalities level, is related to the vegetation index (NDVI) and tem-
perature using low-resolution sensor data such as the advanced very
high-resolution radiometer (AVHRR). Table 3 reviews some of the spa-
tial technologies used to study the distribution of B. straminea in South
America and the most contributing climatic or environmental factors to
the distribution model. 
In the case of African species Biomphalaria, most of the SDMs stud-

ies indicated that warmer climate is expected to minimize the range of
snails distribution (Stensgaard et al., 2013). NDVI and day tempera-
tures values were also found to govern B. pfeifferi and B. sudanica dis-
tribution and S. mansoni transmission in Uganda (Stensgaard et al.,
2005). Moreover, Pedersen et al. (2014) showed that temperature play
an important role in B. pfeifferi potential distribution in Zimbabwe and
indicated that climate change may significantly alter the future spatial
distribution of this snail species. Also, NDVI and maximum tempera-
ture were important factors determining the spatial distribution of B.
pfeifferi in Ethiopia (Malone et al., 2001). Although SDMs based on the
temporal climate have similar accuracy to realistic models (Hijmans
and Graham, 2006), it is difficult to measure accuracy under future cli-
mate conditions. SDMs approaches do not include any physiological
information about invasive species or their mode of spread and compe-
tition with local species. These approaches depend on empirical data

and can thus be judged as more trustworthy because correlation
between climate and distribution does not necessarily imply a causal
relationship between climate and distribution (Dormann, 2007).
However, there is a high degree of correlation among environmental
variables and the best predictors of species distribution may therefore
be hidden and different from the ones governing species establish-
ment. In the current study, for example, precipitation of warmest quar-
ter was the most contributing environmental factor for B. straminea
distribution model although this snail species is known as drought-
resistant. There is thus a complication in the modelling of invasive
species because they do not simply follow the factors regulating their
abundance in their native range. Instead, they can undergo adaptive
evolution to the new environmental condition in the newly invaded
areas (Huey et al., 2005; Colwell and Rangel, 2009).
A thorough understanding the biology of possible hosts of schistoso-

miasis is necessary for any control strategy. In this respect, the current
study is a critical addition to the tools needed to efficiently manage sur-
veillance, control the potential intermediate host, B. straminea and pre-
vent schistosomiasis transmission to mainland China. Although there
are no records for the implication of B. straminea in S. mansoni trans-
mission in China so far, the current model of snail distribution merits
further attention in view of the increased number of schistosomiasis
mansoni infected Chinese returning from endemic areas in Africa, as
well as the possibility of introduction of infected snails in a similar way
to what resulted in the current colonization of B. straminea in southern
China (Wang et al., 2013). Moreover, the ability of B. straminea to tol-
erate hypertrophic conditions increases its potential for spread to
organically polluted sites involving human activity. There is thus a clear
risk for the establishment of S. mansoni-infected foci with functional
transmission if the parasite were also introduced (Yipp, 1990). Spatial
technologies have been extensively used to study vector distribution
and parasite prevalence with relevance for medical and veterinary med-
icine, encouraging studies of the potential impact of climate change
and revealing the spatial and climatic parameters which determine the
distribution limits of diseases at various scales (Lobitz et al., 2000;
Tanser et al., 2003; Rogers and Randolph, 2006; Malone and Bergquist,

                   Article

Table 3. Review of spatial techniques used to study the spatial distribution of Biomphalaria straminea in Brazil.

Satellite sensor              Effective covariates                                          Procedure/technique                                                  Reference

-                                        Population density and the duration                                             GIS/intergraph MGE°a                                                                                        Bavia et al. (1999)
                                                   of the annual dry period                                                                                                                                                                                
AVHRR                                                     NDVI; dT                                                          GIS/SPRING# modular GIS software                                                 Bavia et al. (2001)
-                                                                  Rainfall                               Differential global positioning systems (DGPS)§ and GIS software                    Kloos et al. (2001)
MODIS; SRTM                                     TNs; NDVIw                                                            Multiple linear regression/GIS                                                 Guimarães et al. (2008)
-                                                                        -                                                                  Geostatic indicator Kriging/SPRING                                            Guimarães et al. (2009)
                                                                                                                                                  (georeferenced information 
                                                                                                                                                           processingsystem)                                                                                 
-                                                                  Rainfall                                                             GPS/ArcGis 9.3 (ESRI software)^                                                  Galvão et al. (2010)
-                                                      Annual precipitation;                                                       Maximum entropy/MaxEnt                                                        Scholte et al. (2012)
                                                  temperature seasonality; 
                                                 temperature annual range                                                                           
-                                                                        -                                                                GIS in ArcGIS 10.0 (ESRI software)^                                             Barbosa et al. (2013)
-                                                                        -                                                                                GIS/TerraView 4.1.0$                                                             Barbosa et al. (2014)
GIS, geographical information system; MGE, modular geographic environment; AVHRR, advanced very high resolution radiometer; NDVI, normalised difference vegetation index; dT, average diurnal temperature differ-
ences; MODIS, moderate resolution imaging spectroradiometer; SRTM, shuttle radar topography mission; TNs, summer minimum temperature; NDVIw, winter normalized difference vegetation index. °http://www.grs-
gis.com/mgemga.html; #a freeware GIS and remote sensing image processing system; §http://www.esri.com/news/arcuser/0103/differential1of2.html; ^http://www.esri.com/software/arcgis; $http://www.dpi.inpe.br/ter-
raview_eng/index.php 
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2012). According to King et al. (2006), the next generation of schisto-
somiasis control will largely depend on using new monitoring tools and
effective transmission containment including statistical ecological
modelling that would include spatial technologies. 

Conclusions

The results presented here show that there may be potential for B.
straminea to disperse further in China as the mode here indicates large
suitable habitats in areas around its current distribution. The results
also confirm the important role played by climatic factors in regulating
freshwater snail distributions and indicate the usefulness of Worldclim
databases in SDMs. Although the predictive map obtained by MaxEnt
seems efficient in analysing and predicting presence-only data for
understanding geographical and ecological distributions of this snail
species, comparisons with other SDMs are also needed. The obtained
risk map for B. straminea distribution in China can be used to inform
proper public health strategies, guiding fieldwork in places with higher
occurrence probability of the new invasion of a potential intermediate
host species for S. mansoni in China. The map might be used as predic-
tor for potential S. mansoni distribution in case of any accidental intro-
duction of the parasite to areas harbouring this snail. Since the pres-
ence of the intermediate host snails of S. mansoni is a proxy for the dis-
ease distribution, the risk map can guide spatial targeting of control
interventions.
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