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Estimating small area health-related characteristics of populations:

a methodological review
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Abstract

Estimation of health-related characteristics at a fine local geo-
graphic level is vital for effective health promotion programmes, pro-
vision of better health services and population-specific health planning
and management. Lack of a micro-dataset readily available for
attributes of individuals at small areas negatively impacts the ability of
local and national agencies to manage serious health issues and related
risks in the community. A solution to this challenge would be to devel-
op a method that simulates reliable small-area statistics. This paper
provides a significant appraisal of the methodologies for estimating
health-related characteristics of populations at geographical limited
areas. Findings reveal that a range of methodologies are in use, which
can be classified as three distinct set of approaches: i) indirect stan-
dardisation and individual level modelling; ii) multilevel statistical
modelling; and iii) micro-simulation modelling. Although each
approach has its own strengths and weaknesses, it appears that micro-
simulation-based spatial models have significant robustness over the
other methods and also represent a more precise means of estimating
health-related population characteristics over small areas.
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Introduction

Health-related characteristics of a population in a society are
significant to health promotion programs and to the provision of
better health services. The efforts of feasible health planning gen-
erally target limited areas such as the local health region or small
area health units, while the population-specific health program
planning often requires precise estimates of health behaviour at
these levels, for which health-related data are not always avail-
able. Even if regional level knowledge of the quantitative dimen-
sions of health-related behaviour can be attained by conducting a
costly sample survey, such surveys seldom generate reliable data
for small geographic surroundings, such as the statistical local
areas (SLAs) in Australia, counties in United States (USA) or
wards (electoral divisions) in the United Kingdom (UK).
Therefore alternative techniques are necessary to get small-area
estimates of health indicators.

Researchers or policy makers sometimes rely on national or
state-level datasets to understand the health needs of their commu-
nities. The lack of a national dataset for characteristics of individ-
uals at small area levels negatively impacts the ability of local and
national agencies to manage serious health issues in the commu-
nity and their associated risks factors. A solution to this problem
would be to develop a model that simulates spatial micro-popula-
tion datasets at a fine geographic level. This can be achieved by
using small area estimation (SAE) techniques — commonly known
as the statistical modelling approaches, such as indirect standard-
isation and individual level modelling (Schaible, 1996; Charlton,
1998; Bajekal et al., 2004; Scholes et al., 2008), multilevel statis-
tical modelling (Ghosh and Rao, 1994; Pfeffermann, 2002; Rao,
2003; Saei and Chambers, 2003; Rahman er al., 2010;
Pfeffermann, 2013; Lehtonen and Veijanen, 2015; Rao and
Molina, 2015) and micro-simulation modelling (Brown et al.,
2004; Chin and Harding, 2006; Rahman, 2008; Edwards and
Clarke, 2009; Rahman ef al., 2013; Rahman and Harding, 2014;
Rahman and Upadhyay, 2015; Rahman and Harding, 2016).

The SAE procedures can provide robust estimates of the pop-
ulation health behaviour in small geographic areas to support
comparisons within and between local areas such as SLA levels
and state- or national level estimates. Although methodologies of
the indirect standardisation and individual level modelling
approaches are simpler than the multilevel modelling approaches,
they are not robust in terms of computational processes (Bajekal
et al., 2004). The latest micro-simulation modelling approaches
are conceptually more advanced than the statistical modelling
methods, and they are also methodologically and computationally
more sophisticated. However, it is yet to be assessed which small
area technique produces the most valid, statistically reliable and
precise estimates of health-related characteristics.

The basic problem with surveys at the state- or national level
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is that they are not designed for efficient estimation of the situation
in small areas (Heady et al., 2003; Rahman, 2009). For any small
area containing respondents to a survey, a conventional estimator
of the prevalence of health-related characteristics would be con-
structed from the survey data. Such conventional estimators main-
ly have the following limitations (Skinner, 1993): i) prevalence
estimates can only be computed for a subset of all areas which con-
tain respondents to the survey; and ii) for those small sampled
areas the achieved sample size will usually be very small indeed
and the estimator will thus have a low precision.

The low precision will be reflected in rather wide confidence
intervals (CI) for the survey estimates that are statistically unreli-
able. Special statistical models or micro-simulation techniques are
therefore required to generate reliable estimates for small areas.
For instance, the state- or national level survey data or confiden-
tialised unit record files (CURFs) data from government or non-
government agencies normally have, at best, only a broad geo-
graphical indicator of the state- or the territory level. Small-area
data are wusually unavailable and must therefore be
synthesized/simulated (Levy, 1979; Heady et al., 2000; Harding et
al., 2003; Chin and Harding, 2006). Due to the lack of enough
sample information in small geographic areas, there is much inter-
est in creating simulated or synthetic estimators for small areas in
any country (Rahman and Harding, 2011). The estimates of small-
area health-related characteristics such as the smoking behaviour
of youth and adults, characteristics by overweight and obesity efc.
at small-area levels are not readily available for policy making or
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evaluation purposes. This article provides a significant appraisal of
the methodologies for the estimation of health-related characteris-
tics of populations in geographically limited areas.

A range of methodologies have been used to estimates small-
area health-related characteristics (Figure 1). Traditionally there
are two types of SAE — direct and indirect model-based estima-
tions. The former is based on survey design and includes three esti-
mators: the Horvitz-Thompson (H-T) estimator, generalized
regression (GREG) and the modified direct estimator. Indirect
SAE methodologies are divided into statistical and geographic
approaches (Rahman, 2008), the first of which are based on differ-
ent statistical models (i.e. implicit and explicit models), while geo-
graphic modelling uses micro-simulation.

In the statistical modelling, implicit model-based approaches
include three types of estimations — synthetic, composite and
demographic estimators, whereas explicit models are categorised
as area level, unit level and general linear mixed models. Based on
the research interest, each of these explicit models is widely stud-
ied to obtained small-area indirect estimates using the (empirical-)
best linear unbiased prediction (E-BLUP), empirical Bayes (EB)
and hierarchical Bayes (HB) methods (Rahman ez al., 2010;
Pfeffermann, 2013; Rao and Molina, 2015). On the other hand, the
geographic modelling approaches are based on spatial micro-sim-
ulation models, which essentially create synthetic/simulated
micro-population data to produce simulated estimates (Rahman
and Upadhyay, 2015; Rahman and Harding, 2016). Synthetic
reconstruction and reweighting are commonly used in micro-sim-
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Figure 1. A summary of different techniques and estimators for small area estimation.
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ulation, and each is stimulated by different techniques such as
combinatorial optimization (CO), generalized regression weight-
ing (GREGWT) and Bayesian reweighting algorithms to produce
simulated estimators (Figure 1).

All of these SAE methodologies have not been applied for
health modelling, especially not for estimating health-related char-
acteristics. There are several reasons for this, e.g. the lacuna of ini-
tial data requirements for some methods and the distribution of
predictors at the small area level is unknown. In addition, the
appropriateness of each method depends on research objectives
and settings. Hence, SAE methodologies can be classified as three
sets of distinct modelling approaches, i.e., 1) indirect standardisa-
tion and individual level modelling; ii) multilevel statistical mod-
elling; and iii) micro-simulation modelling technology.

Indirect standardisation and individual level mod-
elling

This approach is easy and straightforward. It usually follows a
simple indirect standardisation procedure or models that are based
on individualistic fallacy (Alker, 1969), i.e. individual level covari-
ates from the national- or state level datasets such as CURFs or
from Census data.

Simple indirect standardisation procedures involve applying
national-level estimates derived from survey data to small-area
level population counts to generate small-area estimates. Suppose
a researcher is interested in an indirect estimate of the proportion
of youth (aged 18-24 years) smoking in a particular SLA in
Australia. At first, the researcher can estimate the national/state
level proportion of youth smoking from the national health survey
data. Applying these national estimates to the census counts of
youth within the same age group for the particular SLA would give
an estimate of the number of youth that smoke in that SLA, from
which the proportion could be estimated simply by dividing the
number of youth smoker by the total census count of youths in that
particular SLA. Essentially, therefore, the national prevalence rates
of smoking for youth is weighted by the proportion of youth in that
pre-specified age group. Gibson and Asthana (2001) used this
method to calculate the prevalence of heart disease, and Pickering
et al. (2004) used it to generate the estimates for smoking at the
small-area level in England. Kang er al. (2016) used such a
Bayesian spatial modelling framework to estimate the health out-
come measures of the standardised incidence ratio (SIR) and rela-
tive excess risk (RER) for the cancer disease at small areas across
Queensland in Australia.

The main advantages of this procedure are: i) it is easy and
inexpensive to apply since the cell proportions at the local level are
available from the Census, and the national estimates for demo-
graphic classes are easily obtainable from national surveys such as,
for example, the National Health Survey of Australia; ii) the
approach is sufficiently flexible to make estimates at the national
level - a possible option is to adjust the method by calculating rates
for different types of areas using some form of area classification
(such as urban and rural, quintiles of deprivation or income etc.),
and use them to the constituent small areas in each type; and iii)
the estimates produced by this method for each small area within a
larger area can be ratio-adjusted so that a weighted average of the
adjusted small area estimates equals the direct estimate for the
larger area. On the other hand the main weakness of this approach
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is that it considers the notion that the national level prevalence
rates for each subgroup apply uniformly everywhere. That means
it assumes that the differences in health behaviour measures
between areas are solely due to differences in their socio-demo-
graphic composition. However, research has shown that individual
health-related behaviour, even within the same social group, varies
by contextual factors operating at the small-area level (Macintyre
et al., 2002). To deal with such small-area differences in health-
related behaviour, a more complex model is needed to effectively
capture the variation between areas that exists over and above that
due to differences in their demographic and social composition
(Bajekal et al., 2004).

An extension of the indirect standardisation method is known
as the individual level modelling approach. This type of modelling
uses the modelled relationship between individual health
behaviour measures obtained from obtainable data against a set of
covariates for the same individuals recorded in the survey. In gen-
eral, the covariates chosen for the model are those that are avail-
able as counts for all small areas (for example, covariates from the
Census or CURFs data). The individual level modelling estimates
the probability of the health behaviour of a person given a set of
specific known characteristics of that person such as age, sex, edu-
cation, marital status, economic class, efc. Regression models — in
particular logistic regression, linear regression efc. — can produce
such probabilities and a selection of more and functionally better
covariates may greatly improve the model fit. The model-based
probabilities are then converted into estimated proportions in each
subgroup of the individuals (defined by the covariates) who fall
into the relevant health category. These proportions are then
applied to the covariate counts available from the Census to derive
an overall estimate for the small area in much the same way as for
simple indirect standardisation procedure. This modelling
approach has been used by Flowers (2003), who applied a logistic
regression model to calculate the probabilities of coronary heart
disease for agesexsocial classethnicity groups.

Logistic regression can model how the probability of an event
may be affected by one or more predictor variables or covariates,
which means that it can detect changes in measurements brought
about by addition of a new predictor to the regression equation. A
remarkable feature of this model is that it makes no assumption
about the distribution of the predictor variables. They do not have
to be normally distributed, linearly related or of equal variance
within each group. A mathematical expression of logistic equation
is as follows:

logit{p(x)) = log{%} — Byt B bt B, Eqd

where f is the intercept of the regression equation, f; the regres-
sion coefficient of the predictor variable x; (i=1,2,...k) and p the
logistic function.

Note that, even though the inclusion of more and better selec-
tion of survey covariates is likely to greatly improve the fit of such
individual level models, researchers are restricted in the choice of
covariates for estimation by the requirement to have equivalent
covariate information for all areas. Hence the main drawback of
individual level modelling concerns its data requirements. This
form of small-area health behaviours estimation requires an exact
correspondence between the covariates used in the model and the
data available from the Census or other administrative data
sources. However the limited number of cross classifications of
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socio-demographic information such as age, sex, ethnicity, socioe-
conomic class available from the census restricts the choice of
covariates in these models.

Multilevel statistical modelling

A more complex set of models in use for small-area health-
related characteristics estimation is known as multilevel statistical
modelling. The approach extends more traditional statistical tech-
niques by explicitly modelling social context. For example, it can
explain the variability in human behaviours and attitudes, as well
as how their behaviours and attitudes are modified and constrained
by shared social contexts (such as the family composition, commu-
nity, and residential location, etc). In other words, multilevel statis-
tical models can assess the contributions of individual and small-
area level factors to both between-individual and between-area
variability, showing how individual level and area level factors can
contribute to the variability at both levels. This type of analysis
also allows for the possibility that different factors contribute to
within small area and between small area variability, and permits
estimation of area level effects after accounting for compositional
differences across small areas (Twigg and Moon, 2002). Using the
multilevel modelling technique, statistical models can be applied
to survey data that simultaneously account for both individual and
small-area level effects or small-area random effects on health-
related behaviour. Hence the models are also known as statistical
mixed models or random effects models.

In multilevel statistical modelling, a random effects specifica-
tion at the small-area level is necessary. This specification general-
ly assumes that significant systematic variation between small
areas remains after taking account of the effects of covariates in the
model (Rahman and Harding, 2010). Such unexplained variation is
modelled through the addition of small-area specific random
parameters to the fixed effects (Saei and Chambers, 2003).
Therefore multilevel models have extended the ability to incorpo-
rate unexplained variability between small areas into the health-
related behaviour estimation procedures.

Using mathematical notation a simple expression of a two-
level model can be written as:

SS, =a,; + B,Income + ¢, Eq.2

where j(=1,2, ... ,m) refers to level-2 units (i.e., small areas or
domains) and i(=1,2, ... ,n) to level-1 units (i.e., individuals or
objects), while SSj represents the smoking status of the i individ-
ual within the j” small area, o; and f; represent the intercept and
slope parameters, respectively, which are random, i.e. they vary
from one small area to another, and ¢; is the error term for the
model. If we replace the random parameters o; by Sy=/pot+ey and f;
by p,=p+e; and by where e; and e;; are random elements with
parameters, then the above two-level model can be expressed as

SS, = By + By Income + (e, + e, Income) + ¢, Eq. 3

There has been considerable work on more complex structures
in multilevel modelling (for example REALCOM: Developing
multilevel models for REAListically COMplex social science data
project at the University of Bristol in the UK; Browne et al., 2001;
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Goldstein, 2003; Steele ef al., 2007; Rasbash et al., 2009; CMM,
2015). In general, populations of interest to economic and social
researchers have a hierarchical or nested structure. This type of
populations can be thought of as a pyramid with different levels.
For example, individuals in households located in a geographically
defined small area can be seen as living at three levels: individuals
as the base level, households as the intermediate level and small-
area communities as the highest level. Furthermore, some popula-
tions have a cross-classified structure. For example, patients can be
defined by their family doctor and by the hospital they attend. So
far the developments in multilevel statistical modelling have most-
ly been concerned with analysing data with a nested structure.
Nevertheless, although there is no limit to the number of levels of
a hierarchy within populations in theory, in practice researchers are
rarely in the position to carry out analyses with more than four lev-
els of nesting due to computational constraints.

According to Bajekal et al. (2004), two main features of mul-
tilevel statistical models make them suitable for producing synthet-
ic estimates for small areas. Firstly, multilevel models are suited to
the nature of social surveys where individuals are clustered within
households which in turn are clustered within suburbs or postcode
sectors. Cluster information provides more accurate standard
errors (SEs) and Cls that are generally more conservative than the
traditional estimates obtained by ignoring the presence of cluster-
ing in the data (Goldstein, 2003). Secondly, by allowing the use of
covariates measured at various levels of the hierarchy, a multilevel
model enables researchers to explore the extent to which any dif-
ference between geographical small areas (such as wards or SLAs)
are associated with individual, household and small-area level
characteristics.

Twigg et al. (2000) outlined a multilevel statistical modelling
approach in small-area health-related behaviour estimation in an
innovative way. They used both individual and area-level covari-
ates to obtain prevalence estimates of smoking and problem-drink-
ing for each ward in England by combining data from a health sur-
vey of England with small-area census data. The approach was an
advance towards capture of small-area effects on health-related
behaviour compared to simple standardisation and individual level
modelling. The proposal by Twigg and colleagues involved three
stages. Firstly, the small areas covered by the health survey, a mul-
tilevel model of individual smoking behaviour using both individ-
ual (sex, age and marital status) and area level predictors (for
example, the survey estimate of the percentage of private rented
households in the postcode sector) was fitted to the survey data. In
the second stage, the model parameters of individual and area
effects, as well as their interactive effects, were combined to esti-
mate the proportion of smokers in each combination of age, sex
and marital status based on ward residents with varying propor-
tions of private renters and car owners. At the last stage, these esti-
mates were applied to the corresponding census counts to provide
a synthetic estimate of smoking prevalence for all wards in
England.

The Office of National Statistics in UK used a more restricted
multilevel statistical model, in which health-related behaviour,
such as the smoking status of individuals living in the survey areas,
were predicted based on area level covariates only (Heady et al.,
2003; Pickering et al., 2004). This approach results in a set of
regression coefficient estimations that relate to area variations.
These coefficient estimates are then attached to the known area
means, or proportions of the covariates for all small areas taken
from the Census and other administrative data sources, to obtain
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synthetic estimates of health-related behaviour. This restricted
approach claims that controlling for differences in a small area pro-
file is all that is needed for predicting area level differences in
health-related behaviour. However concerns about the issue of dis-
aggregation of estimates represent a potential limitation of this
method.

There are some significant advantages of multilevel statistical
modelling. Firstly, the approach offers a more explanatory model
of health-related behaviour than methods that conduct analyses at
the individual level. In particular, with respect to people’s health-
related behaviour, the multilevel statistical models take into
account both the effects of individual circumstances and the social
and physical environment in which they live. The inclusion of indi-
vidual level covariates such as age, sex and social status in the
model in combination with the corresponding census counts per-
mits the further generation of separate estimates for relevant demo-
graphic groups within each small area as well. Secondly, the mul-
tilevel statistical modelling approach cannot only generate small
area estimates of health-related characteristics, but it can also cal-
culate the statistical reliability measures such as Cls for those esti-
mates. Thirdly, the populations of interest to social and economic
researchers have a nested structure or a cross-classified structure
and multilevel statistical models analyse the levels of these struc-
tures simultaneously. As a result, questions about the appropriate
level of analysis are redundant. Fourthly, this modelling technique
can fruitfully be applied to repeatedly measured data and to multi-
variate data, and is especially valuable in situations when data are
missing. Finally, multilevel models can easily be fitted by different
softwares, i.e. multilevel windows (MLwiN), hierarchical linear
modelling (HLM) and statistical analysis system (SAS), efc.

A number of potential limitations should be borne in mind
when applying the multilevel statistical modelling approach in
practice. Inclusion of covariates at the individual level in the model
imposes quite stringent data requirements, as there must be exact
correspondence between these covariates and the Census counts.
The limitations on the number of cross tabulations available for
small areas such as wards/SLAs from the Census restrict the
choice of covariates. Therefore important individual-level predic-
tors of health-related characteristics may be eliminated from the
model simply because their distribution at the small-area level is
unknown. Additionally, estimating the SEs for the synthetic esti-
mates based on a multilevel statistical model based both on indi-
vidual and area-level covariates is considerably more complex
than the approaches discussed previously. Another disadvantage of
area-level models is the ecological fallacy in which relationships
between characteristics of individuals are often wrongly inferred
from data about groups at the area level, e.g., SLAs. The term eco-
logical fallacy describes the false assumption that relationships
revealed from aggregated data (e.g., proportion of a population in
a given area) can be used to make predictions about the individuals
used to devise these aggregated data, and vice versa (Robinson,
1950; Selvin, 1958), a mistake that can lead to errors in the estima-
tion of relationship magnitude as well as direction when dealing
with spatial units. Changes in relationship magnitude and direction
can also emerge by simply changing the size of the spatial unit
used when analyzing data collected over large areas (Hamil et al.,
2016). This statistical anomaly is referred to as the modifiable
areal unit problem (MAUP) (Dark and Bram, 2007) and is of par-
ticular concern given the increasing use of remotely-sensed data or
synthetic data for applied spatial research (Pettorelli e al., 2014).
Another aspect of MAUP is the placement of spatial units, i.e. the
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zone effect, which can also affect the magnitude and directionality
of relationships (Gotway and Young, 2002, 2007).

The number of published papers shows that the multilevel sta-
tistical modelling approach is becoming more popular in different
fields of social and economic research. Roux (2008) summarised
past work that has used multilevel statistical models to investigate
the multilevel determinants of health. Although multilevel mod-
elling is applicable to the study of a broad range of socio-demo-
graphic groups or socioeconomic contexts, the vast majority of
applications in the health field have focused on geographically
defined contexts, such as countries (Chung and Muntaner, 2007),
states (Kim et al., 2006; Kim and Kawachi, 2007), counties
(Muntaner et al., 2006; Jonker et al., 2013) and most commonly
neighbourhoods defined in various ways when dealing with small-
er administrative areas (Chaix et al., 2007; Rundle et al., 2007; Yu
et al., 2008; Roux and Mair, 2010). The types of group or area
level constructs that have been studied in different research include
income inequality (Subramanian and Kawachi, 2006), socioeco-
nomic position (Meyer et al., 2014), gender differences (Burke et
al., 2009; Kim et al., 2013), social capital (Lindstrom ef al., 2003;
Mohan et al., 2005; Kim et al., 20006), residential segregation,
women’s status, and neighbourhood characteristics (e.g., neigh-
bourhood disadvantage or other similar measures, such as social
and physical environments) (Moon et al., 2007; Roux, 2008;
Metcalfe et al., 2011; Chum and O’Campo, 2013; West et al.,
2014; Geronimus et al., 2014; O’Campo et al., 2015). Most of
these studies have used multilevel statistical modelling to isolate
associations of group or area level factors with individual level
health outcomes after accounting for individual level confounders
(e.g., individual level variables associated with health outcomes
and with group or community membership and, therefore, with
group or community characteristics).

Micro-simulation modelling technology

This approach is currently receiving attention by health
researchers (e.g. Burden and Steel, 2016, and references therein)
for its robustness to use geographical information at small-area
levels and examination of small-area impacts of policy changes
(Rahman and Harding, 2016). A growing literature indicates that
micro-simulation models are becoming increasingly popular and a
powerful tool within health research to estimate current health-
related behaviour, future prevalence rates, cost of treatment, provi-
sion of care needs, and the potential outcomes of policy interven-
tion at small-area levels (for example see, Brown et al., 2004;
Brown and Harding, 2005; Smith et al., 2007; Procter et al., 2008;
Rahman and Harding, 2011, 2014). This is a promising technique
for developing detailed synthetic or simulated micro-data describ-
ing household characteristics at the small-area level by combining
aggregate census data and more detailed individual record files or
households survey datasets (Ballas ef al., 2003; Chin and Harding,
2006; Rahman, 2009, 2012; Rahman et al., 2013; Rahman and
Upadhyay, 2015; Rahman and Harding, 2016). However the cre-
ation of reliable synthetic micro-data at the small-area level is
often challenging for some regions. For example, spatially reliable,
disaggregated data are not readily available in the real world. Even
if such data would be available in some form, they typically suffer
from severe limitations, either due to lack of characteristics or lack
of geographical detail.

Micro-simulation modelling can be conducted by reweighting
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a generally national level sample so as to estimate the detailed
socioeconomic and demographic characteristics of populations and
households at the small-area level. An effective reweighting tech-
nique combines individual or household micro-data, currently
available only for large geographical areas, with spatially disaggre-
gated data to generate synthetic micro-populations for small areas.
Thus, the presence of geographical information and detailed
household characteristics which both have impact on health-relat-
ed behaviour in the synthetic spatial micro-population indicates the
applicability of a micro-simulation modelling. The features of
micro-simulation modelling technology and the associated theo-
ries, tools and techniques behind this approach are provided in a
number of studies (for instance see, Ballas et al., 2006; Chin and
Harding, 2006; Chin et al., 2006; Rahman et al., 2013; Rahman
and Harding, 2016) and hence a very brief appraisal of them is pro-
vided.

Two types of methodologies for creating simulated micro-pop-
ulation datasets are in use: i) synthetic reconstruction; and ii)
reweighting. The former approach includes data matching or
fusion (Moriarity and Scheuren, 2001; Tranmer et al., 2001) and
iterative proportional fitting (Williamson, 1992; Norman, 1999),
while the latter utilizes GREGWT (Bell, 2000; Chin and Harding,
2006; Rahman, 2012) and combinatorial optimisation (CO)
(Huang and Williamson, 2001; Ballas ef al., 2003; Rahman, 2008).
As reweighting techniques are currently seems to be more popular
for creating spatial micro-data than the synthetic reconstruction
techniques (Rahman and Harding, 2016), a brief account is given
here.

GREGWT is an iterative generalised regression algorithm
written in SAS macros to calibrate survey estimates to bench-
marks. Calibration can either be looked at as a way of improving
estimates or as a way of making the estimates add up to bench-
marks (Bell, 2000; Rahman, 2009). This means that the grossing
factors or weights on a dataset containing the survey returns are
modified so that certain estimates agree with externally provided
totals known as benchmarks. This use of external or auxiliary
information typically improves the resulting survey estimates that
are produced using the modified grossing factors. The algorithm
used in GREGWT is based on a constrained distance function
known as the truncated Chi-square distance function that is min-
imised subject to the calibration equations for each small area (for
details about the calibration equations, see Rahman, 2008). The
method is also known as linear truncated or restricted modified
Chi-square (Singh and Mohl, 1996; Rahman, 2009) or the truncat-
ed linear regression method (Rahman et al., 2010). The truncated
Chi square distance function used in the GREGWT algorithm is as
follows:

W, - D,)*
D2=2—( =P ey, Eq. 4
< D,

>
X Dk fOl‘ .

where D; is the given sampling design weights, W, the new
weights, and L; and Uy the pre-specified lower and upper bounds,
respectively, for each unit £ in sample S.

The basic advantage of this method over linear regression is
that the new weights must lie within a pre-specified boundary con-
dition for each small area unit. The upper and lower limits of the
boundary interval could be constant across sample units or propor-
tional to the original sampling weights. The GREGWT algorithm
uses the Newton-Raphson method of iteration (http://mathworld.
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wolfram.com/NewtonsMethod.html) to minimize this distance
function. It adjusts the new weights in such a way that it minimises
above distance equation and produces the simulated estimates. The
synthetic estimates produced by GREGWT technique have their
own SEs. GREGWT calculates these SEs using a group jackknife
approach, which is a replication-based method, which uses repli-
cate weights in micro-simulation modelling, and the problem is
basically computational, not statistical. By this method one would
end up with 30 weights for each small area. For details about the
group jackknife approach see, for example, Rahman (2008) and
references therein.

Although the MMT approach is generally robust, it suffers
from the disadvantage that there has to be a fairly large number of
observations in each sample selection stratum (Rahman and
Harding, 2016). In practice, it is rare in a survey sample to achieve
this number of observations, especially at small-area levels or for
micro level data. As a result, when there are too few observations
in a sample stratum, the resulting SE estimates should be statisti-
cally unreliable. Note that about 30 observations per stratum is a
good minimum working number and we may produce this number
of observations by suitable combination of classes. However a
problem for micro-simulation modelling is the size of the final file:
e.g., 1,300 columns (SLA)*30 weights=39,000 columns; then
39,000 columns x 12,000 households = 468 million cells in the
final file.

Another method to simulate spatial micro-population datasets
is the CO algorithm. This process involves selecting an appropriate
combination of household records from available survey micro-
data offering the best fit for known benchmark constraints in the
selected small areas. In the CO algorithm, an iterative process
begins with an initial set of households randomly selected from the
survey data to see the fit to the known benchmark constraints for
each small area. Then a random household from the initial set of
combinations should be replaced by a randomly chosen new
household from the remaining survey data to assess whether the fit
improves. The iterative process continues until an appropriate
combination of households that best fits known small-area bench-
marks has been achieved (Voas and Williamson, 2000; Tanton et
al., 2007; Rahman and Harding, 2014). A simplified CO process is
given elsewhere (for instance, see Huang and Williamson, 2001;
Rahman, 2008). The overall CO process involves the following
five steps. First, collect a sample survey micro-data file (such as
CURFs in Australia) and small-area benchmark constraints (for
example, from Census or administrative records). Second, select a
set of households randomly from the survey sample, which will act
as an initial combination of households from a small area. Third,
tabulate selected households and calculate total absolute difference
from the known small area constraints. Fourth, choose one of the
selected households randomly and replace it with a new household
drawn at random from the survey sample, and then follow step 3
for the new set of households combination. Fifth, repeat step 4
until no further reduction in total absolute difference is possible.

In the CO algorithm, the fit of a combination of individuals to
known small area benchmark constraints is evaluated by the fotal
absolute error (TAE), which is the sum of the absolute differences
between estimated and observed counts. By simple notations TAE
is defined as:

Eq. 5
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where, Oj; and Ej; are the observed and expected counts, respective-
ly, for the i row in the j* column. Unlike the distance function in
GREGWT, the TAE should be minimizing to zero here. Ideally, an
optimal solution (the selection of a combination of households that
best fits the known benchmarks) would have a TAE of 0, which
means there is no difference between the observed and the estimat-
ed counts, in another words a perfect fit. However the measures of
SE are not available yet for the simulated estimates produced by
the CO technique. In theory, it may be possible to obtain all possi-
ble combinations of households from a finite dataset and the set of
combination that best fits the small area benchmarks. However, in
practice, it is almost unachievable due to computing constraints for
an extremely large number of all possible solutions. To overcome
this problem, the CO approach uses several ways of performing
intelligent searching, effectively reducing the number of possible
solutions. Williamson et al. (1998) described this problem in more
detail and explored various techniques of intelligent searching for
the CO process, including the ‘hill climbing’ approach, the generic
algorithm approach, and the simulated annealing approach. The
authors found that modified simulated annealing stood out as the
best solution. To improve the accuracy and consistency of outputs,
Voas and Williamson (2000) developed a sequential fitting proce-
dure, which satisfies a level of minimum acceptable fits for every
table used to constrain the selection of households from the survey
sample data. Significant features of the GREGWT and CO are
summarised in Table 1. The focus here is on methodological issues
of these micro-data simulation methods.

One of the newest techniques to MMT is the Bayesian predic-
tion-based reweighting technique for generating spatial micro-pop-
ulation dataset. This method considers the complete scenario of

micro-population data units at the small-area level and produces
the statistical reliability measure of small-area estimates (Rahman
and Upadhyay, 2015).

Suppose Q represents a finite population and €; the subpopu-
lation of the small-area i. If S; denotes the observed sample units in
the i area, then we have S, UE,. =Q, CQ forV,, where §,
denotes the unobserved units in the small-area population. Let Yj
represent a variable of interest for the j* observation in the popu-
lation at the i”* small area. Thus, we always have the estimate of
population total at i small area as:

ty, = ;YU"'ZYU
= =

The basic steps involved with this process of spatial micro-data
simulation are as follows.

Eq. 6

First, obtain a suitable joint prior distribution of the event
under research E;, say smoking status in the population at the i
small area, i.e. p(E;) for V.

Second, find  the conditional distribution  of
unobserved sampling units given the observed data, i.e.

p(Yx] :jegi |Yx, :jesi) for V.

Third, derive the posterior distribution using Bayes’ theorem,
i.e. p(6|S,X); E;C 6, where 0 is the vector of model parameters and
X an auxiliary information vector.

Fourth, get simulated copies of the entire population from this
posterior distribution by the Markov chain Monte Carlo (MCMC)
simulation technique.

The method is based on a joint posterior density of parame-

Table 1. A comparison of the generalised regression weighting, combinatorial optimisation, and Bayesian reweighting methodologies.

Use the Newton-Raphson iteration
based on a distance function

Attempt to minimize the distance
function subject to the known benchmarks

Use a stochastic approach of iteration
based on a combination of households

Attempt to select a set of combination that best
fits the known benchmarks

Use MCMC simulation method based
on a Bayesian prediction function

Attempt to simulates complete scenarios
of the whole population at a small area

Use the Lagrange multipliers
tools to minimise the distance function

Weights are in fractions and a boundary
condition is applied to new weights to achieve
a solution where the benchmark constraints
are fixed for the algorithm

Use a range of intelligent search tools
in optimizing combinations of households

Weights are in integers and there

is no boundary condition on new weights.
The benchmark constraints at small
areas are not fixed for the algorithm

Use the Bayesian methodology
to obtain the joint posterior density of parameters

Weights are in fractions and there is no
boundary condition on new weights.

The benchmarks at small areas are variables
for the algorithm

Typically focus on simulating micro-data
at small-area levels and aggregation
is possible at larger domains

Estimates have their own standard
errors obtained by a group jackknife approach

Offers a flexibility and collective coherence
of micro-data, so analysis is possible at any level
of aggregation

There is no information about standard errors measure
in literature and nothing is practicable yet

Typically focus on simulating complete micro-data at
small areas and aggregation is possible at larger
domains

Estimates have their own standard
errors obtained by the Bayesian approach

In some cases, convergence does not occur
and requires adjusting the boundary limits
or a proxy indicator for non-convergence

Sensitive to disagreements between
target benchmarks, and the iteration
procedure can be unstable near a
horizontal asymptote or at local extremum

There are no convergence issues.
But the final selected combination may
still fail to fit specified benchmark constraints

Insensitive to disagreements between target benchmarks,
and the iteration algorithm can be fairly stable at local
extremum within the solution

In some cases, convergence does not occur and
requires adjusting the prior density and/or linking
model.

Insensitive to disagreements between
benchmarks, and the simulation algorithm can be
stable at local extremum within the solution

There is a standard index to check
the statistical reliability of the estimates

There is no standard index to check the statistical
reliability of the estimates

Able to create the statistical reliability measures
Le. Bayes' credible interval

GREGWT, generalized regression weighting; CO, combinatorial optimization.
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ters for the observed sample units ¥; and unobserved population

units Y; at the i small area (Rahman and Harding, 2016):

v+p+N;-1

> f(7y)

_ _N,+p+l _
SBIIY ) =[E 2 |1, +37 ¢ Eq.7

where f is the coefficient parameters of the (k-1) predictor vari-
ables regression model under the p —dimensional matrix-7 errors
assumptions with the location parameters zero, scale parameters =
and shape parameter v (i.e. degrees of freedom),

0=, -X,p)Y, X+, - X, )Y, - X,p)

SO 1Y) = COL DS, +T- X ATHIT - XA >

for

_(N,=n)p _
o ("
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C(Y,. H) N Th
e

Eq. 8

is the prediction distribution with the location matrix

= o . . —p—k+1
X,(X;X,)" XY, and the covariance matrix EZ—ZT:;[SY ®H],

(here the symbol @ refers to the Kronecker product of the matrices
Sy and H). H), f=(XX)"X]Y,, S, =(¥,-XB) (Y, - X.p),
H=I-X,(X/X,+X,X,)"X], aswell as n; and N,, are the sam-
ple units and the total population units at i area.

The key feature of this new method is that it simulates com-
plete scenarios of the whole micro-population in a small area,
which means it can produce more reliable small-area estimates and
their variance estimation. It also enables the creation of the statis-
tical reliability measures, such as the Bayes’ credible interval
(BCI) of the small-area estimates from micro-simulation models,
which are still a challenging issue for other reweighting tech-
niques. This is a probabilistic approach, which is quite different
from the deterministic approach used in GREGWT (Chin and
Harding, 2006) and the intelligent searching tool simulated anneal-
ing used in CO (Williamson et al., 1998; Huang and Williamson,
2001). Nevertheless, the new approach can adopt the generalised
regression model operating in the GREGWT algorithm to link
observed units in the sample and unobserved units in the popula-
tion. In contrast, from the viewpoint of the CO technique, this new
system uses the MCMC simulation with a posterior density-based
iterative algorithm. As the Bayesian joint posterior probabilities of
the parameters are estimated through the MCMC method, this spa-
tial micro-data simulation methodology is somewhat linked with a
MCMC sampling. However, it is rather different from the multiple
imputation technique advanced by others (Rubin, 1987). The basic
computation process of this new approach is predominantly asso-
ciated with a prediction distribution of unobserved population
units given the sample units.

Moreover, one of the issues with this reweighting technique is
to identify a suitable prior distribution for each event of interest, as
well as an appropriate model for linking observed sample data and
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unobserved units for each small area. These can be difficult in
practice as they may vary with unaccounted problems in the real
world. It is also quite common that every modelling approach will
have to deal with at least a few complex tasks possibly related to
suitable model selection and/or computation. Although selection of
an appropriate prior and a better linkage model are identified as
two challenging tasks for this approach, the Jeffreys’s (1961)
invariance theory-based prior and Matrix-7 errors linking models
selected for this methodology have worked decently by producing
appropriate results (Rahman and Upadhyay, 2015).

A detailed appraisal of different methodologies to produce
small area health characteristics estimates has revealed that there
are three diverse sets of modelling approaches utilised by
researchers, which are the indirect standardisation and individual
level modelling, multilevel statistical modelling; and micro-simu-
lation modelling technology. Although each of these modelling
approaches, with its real world applications, has already been dis-
cussed above, a further highlight on significant comparative syn-
opsis of these three sets of methodologies is depicted in Table 2.

The findings demonstrate that the indirect standardisation and
individual level modelling approach is useful only when the esti-
mation involves applying national level estimates derived from
survey data to small-area level population counts to generate
small-area estimates. This means that the modelled relationship
between individual health-behaviour measures can be obtained
from readily available data against a fixed range of covariates for
the same individuals recorded in surveys. Although this approach
has been used by many researchers for small-area health-behaviour
estimation, the data requirement for this method is always of con-
cern. For instance, it requires an exact correspondence between the
covariates used in the model and data available from the Census or
other administrative data sources. The limited number of cross
classifications of socio-demographic information such as age, sex,
ethnicity, socioeconomic class available from the Census restricts
the choice of covariates in these models.

Discussion

Most of the developed nations are utilising small-area estima-
tion methodologies as essential means to support the process of
knowledgeable and effective decision-making and policy analysis
for various issues at local or regional levels. The micro-simulation
modelling technology-based spatial models are more precise ways
in which two or more sources of data can be combined (Rahman,
2016; Whitworth er al., 2016; Rahman and Harding, 2016).
However they encounter some methodological and computational
complexity. The key objective of generating simulated micro-pop-
ulation datasets at the small-area level is to create data that does
not currently exist for small areas. Therefore, validation of simu-
lated micro-data is difficult and may be considered one of the
drawbacks of MMT. However, the new Bayesian prediction-based
model has overcome this drawback by simulating the complete
scenario of micro-population units at the small-area level and then
producing the statistical reliability measures (the BCI) of the SAEs
from MM T-based model (Rahman and Upadhyay, 2015). There are
also ways to deal with the validation problem for other MMTs. For
instance, one way of validating micro-simulation modelling out-
puts is to re-aggregate estimated datasets to larger levels at which
observed datasets exist and compare the estimated distributions
with the observed. Recently, two new types of validation tech-
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niques have been developed and successfully exercised by
researchers (for examples, see Rahman and Harding, 2013;
Rahman et al., 2013; Rahman and Harding, 2016), which are more
reliable and scientifically standard means for validating the esti-
mates from micro-simulation modelling technology. Yet scholars
are working to improve the validation methods and/or trying to
develop a further one for the non-Bayesian reweighting based
micro-simulation models (Whitworth et al., 2016; Rahman, 2016).

The multilevel statistical modelling approach is frequently
used by researchers to explain the variability in human character-
istics and how their characteristics are modified and constrained by
shared membership of social contexts. The method has an extend-
ed ability to incorporate unexplained variability between small
areas into the health-related attributes estimation procedures, and
can be applied to survey data that simultaneously accounts for
either individual and small area level effects or small area random
effects on health-related behaviours such as smoking. Although
there is no limit to the number of levels of a hierarchy within pop-
ulations in theory, it is very difficult to carry out analyses with
more than four levels of nesting in practice, which is due to com-
putational constraints. As the multilevel model includes the indi-
vidual level covariates this method also imposes quite stringent
data requirements, like individual level modelling, and hence

important individual level predictors of health-related characteris-
tics may be dropped from the model due to unknown distributions
of these variables at the local level. The estimation procedure of
SEs for the estimates is also rather complex in multilevel statistical
modelling.

The micro-simulation modelling technology-based spatial
models have emerged recently as a very useful alternative for
small-area estimation of health-related characteristics. The key
challenge for this approach is requirement for reliable synthetic
spatial micro-data. Findings have revealed that two reweighting
methods, the GREGWT and CO, are commonly used tools to pro-
duce small-area micro-data. The former utilises a truncated Chi-
squared distance function and generates a set of new weights by
minimising the total distance with respect to some constraint func-
tions. In contrast, the CO technique uses an intelligent search algo-
rithm, which selects an appropriate set of households from survey
micro-data that best fits the benchmark constraints by minimising
the total absolute error/distance. The new weights give the actual
household units, which are the best representative combination.
Thus, CO is a selection process for reaching an appropriate combi-
nation of sample units rather than calibrating the sampling design
weights to a set of new weights. A comparison between the
GREGWT and CO reveal that they are using quite different itera-

Table 2. A comparison of the three approaches to small area health-related characteristics estimation.

General ~ Models are based on individual-level covariates ~ Models are based on multilevel covariates Models are based on synthetically created
comment  from surveys or Census data from surveys or Census data micro-population datasets that integrate a
set of variables from surveys or Census data
Advantages Easy and inexpensive to apply and the estimate  Easy to apply and a more explanatory model Rather sophisticated and state of the art
is unbiased for large samples that can provide CIs of the estimates method that can generate measures
of statistical reliability of the estimates
Flexible to calculate estimates at the national Flexible to allow both effects of an individual’s Robust approach in terms of the choice of
level for adjustment use by calculating estimates ~ circumstances and at any level of hierarchy further aggregation or disaggregation of the
for different spatial scales of the social system, demographic cluster small-area estimates on the basis of different
and physical environment spatial scales or demographic domains
The estimates produced by this method Able to explore the extent of any differences Able to utilise the small-area level synthetic
for each small area within a larger area between the small areas and small-area micro-data file for further analysis and
can be ratio-adjusted so that a weighted level characteristics. A range of computing updating. It is also possible to measure
average of the adjusted small area estimates software is also available for multilevel modelling  small-area effects of any policy change.
equals the direct estimate for the larger area Other traditional statistical approaches do not
have the same robustness
Limitations This approach considers the notion that the The method imposes quite stringent data The approach is extremely computing-intensive

Applications

national level prevalence rates for each
subgroup apply uniformly across all small areas,
in fact this is not viable in many cases.
The choice of covariates in the model

is restricted by the data requirement

to have equivalent covariate information
for all of the small areas.

Borrows strength from the overall data
but cannot increase the effective sample.
The estimates are often unreliable

due to misclassification of the models
and/or use of inconsistent auxiliary data

Mostly used for large sample sizes

coming from reliable agencies.

Most small-area data files are not large enough
in many areas.

requirements as they demand an exact match
between the covariates used in the model
and available Census counts.

Important individual level predictors may

be eliminated from the model simply because
their distribution at the small-area level

is unknown.

Estimating the SEs for the estimates,

which use both the individual level and area
level covariates, is considerably more complex
than the individual level modelling technique

Widely used for multivariate and repeatedly
measured data, sets with missing observations
or with clustering information, etc.

with regard to the size of the final file.

Depends solely on a good micro-data generation
technique. Several techniques are in use, but a
better and commonly available reweighting
method is yet to be developed.

When there are too few observations

in a sample stratum, the resulting SE estimates
become statistically unreliable. Also validations
of the small-area estimates are challenging for
some models

Quickly becoming a popular methodology in
developed nations and frequently used for
small-area estimation and social policy analysis.
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tive algorithms and their properties also vary considerably. The CO
routine has a tendency to include fewer households but give them
higher weight — and, conversely, the GREGWT routine has a ten-
dency to select more households but give them less weight.
However, the overall performances are fairly similar for both
micro-data simulation techniques from the standpoint of use in
micro-simulation modelling.

Ultimately, the findings suggest that although each of these
three modelling approaches has its own strengths in relation to
generating small-area health-related characteristics estimation.
The micro-simulation modelling technology is more robust than
other methods in the sense that further aggregation or disaggrega-
tion is possible on the basis of the choice of spatial scales or
domains. In addition, since the methodology uses a list-based
approach to micro-data representation, it is possible to use the
micro-data file for further analysis and updating.

Conclusions

This paper has reviewed the methodologies for estimating
health-related characteristics of populations at small-area levels.
Such estimations of various health disparities offer more informa-
tive knowledge than other approaches, and it can help to provide
direction for developing advance policies to reduce inequities
across any population. By linking the spatial models with the static
micro-simulation models, it is also possible to assess small-area
effects of policy changes. MMT approaches allow what-if scenar-
ios in terms of policy changes, which is missing in the other
approaches. Finally, from the overall appraisal, it is apparent that
MMT is a comparatively precise way to estimate small-area
health-related characteristics and evaluate policy changes. Our
future research should employ this new approach to produce the
estimates of these characteristics — in particular, the estimates of
smoking behaviour of adults and/or estimates of the prevalence of
overweight and obesity of adults at the small-area level in
Australia.
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