
Abstract
Leishmaniasis is a parasitic disease caused by different

species of protozoan parasites. Cutaneous leishmaniasis (CL) is
still a great public health problem in Iran, especially in Isfahan
Province. Distribution and abundance of vectors and reservoirs of
this disease is affected by different factors such as climatic,
socioeconomic and cultural. This study aimed to identify the
hotspot areas for CL in Isfahan and assess the relations between
the climatic and topographic factors with CL incidence using spa-
tial analysis. We collected data on the total number of CL cases,
population at risk, vegetation coverage, altitude and climatic data
for each district of the province from 2011 to 2015. Global
Moran’s Index was used to map clustering of CL cases across dis-
tricts and the Getis-Ord (Gi*) statistics was used to determine
hotspots areas of the disease in Isfahan. We applied overlay anal-
ysis to assess the correlation between the climatic and topographic
factors with CL incidence. We found the CL distribution signifi-
cantly clustered (Moran’s Index=0.17, P<0.001) with the Ardestan
and Aran va Bidgol (P<0.01) districts along with the Naein and
Natanz districts (P<0.05) to be strong hotspot areas. Overlay anal-

ysis revealed a high incidence of CL in areas with relative humid-
ity of 27-30%, mean temperature of 15-19°C, mean precipitation
of 5-20 mm, maximum wind speed about 12-16 m/s and an alti-
tude of 600-1,800 m. Our study showed that spatial analysis is a
feasible approach for identifying spatial disease pattern and
detecting hotspots of this infectious disease.

Introduction
Leishmaniasis is a parasitic disease caused by several different

species of protozoan parasites (Holakouie-Naieni et al., 2017),
and there is no definitive treatment for this disease
(Nilforoushzadeh et al., 2007). Two different hosts are required to
complete the life cycle of the Leishmania parasite, where humans
and some other mammals, especially canines (that also act as
reservoirs), are the definitive hosts with sand flies belonging to the
genus Phlebotomus in Old World and Lutzomyia in New World
acting as intermediate hosts (Bates, 2007; Akhoundi et al., 2016;
Bari and Rahman, 2016). 

The least fatal form of the disease, cutaneous leishmaniasis
(CL), is caused by Leishmania major and is the most common
clinical form of disease in the Middle East. However, the disease
affects an additional 60+ countries in tropical and subtropical
regions (Jacobson, 2011). The global incidence is 0.7-1.2 million
new cases per year worldwide (Alvar et al., 2012) and around 1.7
billion people are estimated to live in areas where leishmaniasis is
common (Pigott et al., 2014). CL is a serious public health prob-
lem in many rural areas of Iran (Akhavan et al., 2010). A total
number of 589,913 cases of CL was reported between 1998 and
2013, with the annual incidence of 30.9 per 100,000 in the Iranian
population (Holakouie-Naieni et al., 2017). Isfahan Province in
Iran is an endemic region for CL and the main vector with respect
to humans is the Phlebotomus papatasi sand fly with the gerbil
Rhombomys opimus being the main nonhuman reservoir
(Yaghoobi-Ershadi et al., 2005; Yaghoobi-Ershadi, 2012).
Distribution and abundance of vectors and reservoirs of this dis-
ease is affected by different climatic, socioeconomic and cultural
factors (Desjeux, 2001; Mollalo et al., 2014). Moreover,
unplanned urbanization and environmental changes such as irriga-
tion, dam construction and desertification increase the risk of
infection (WHO, 2008; Nilforoushzadeh et al., 2014). 

Recent advances in geographic information systems (GIS) and
remote sensing (RS) have promoted the study of spatial epidemi-
ology and environmental factors affecting the vector-borne dis-
eases (Kassem et al., 2012). GIS can determine resource alloca-
tion and is a valuable approach in implementation of control mea-
sures (Barbosa et al., 2014). A number of epidemiological studies
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around the world have used GIS-based methods in risk mapping
studies and identifying endemic area of diseases (Sudhakar et al.,
2006; Bhunia et al., 2010; Salahi-Moghaddam et al., 2010;
Mollallo et al., 2014, 2015; Rajabi et al., 2014; Hagenlocher and
Castro, 2015). These techniques have been used for developing
landscape predictors of sand fly abundance as an indicator of
human vector contact. Bhunia et al. (2010) studied the effects of
several topographic indexes on the prevalence of visceral leishma-
niasis (VL) using GIS and RS. They investigated the relation
between altitude, temperature, humidity, rainfall and the nor-
malised difference vegetation index (NDVI) with the prevalence of
the disease in the north-eastern Indian sub-continent, while Salahi-
Moghaddam et al. (2010) studied VL in an endemic area of Iran
using the GIS approach and Mollalo et al. (2014) focused on the
relationship between the vegetation cover and occurrence of CL in
Golestan Province in Iran based on satellite images.

The aims of the present study were to 1) identify the geograph-
ical distribution of CL in Isfahan Province; 2) search for hotspot
areas; and 3) assess the relations between the climatic and topo-
graphic factors with CL incidence in Isfahan Province using the
spatial analysis during the period 2011 to 2015.

Materials and Methods 

Study area
Isfahan Province is located between 31° 43′ to 34° 22′ N and 49°

38′ to 55° 31′ E and lies in the central parts of the Iranian plateau
covering an area of 107,027 km2. Iran is a mountainous country
mainly situated ≥1000 m above the mean sea level. The provincial
capital is the historic city of Isfahan. According to the census of
2015, it consists of 23 districts with about 4,600,000 inhabitants. The
province has a moderate and dry climate on the whole, and is a well-
known endemic area of leishmaniasis (Figure 1). 

Data collection and preparation
In order to conduct this study, information on the total num-

ber of CL cases, population at risk, climatic data, vegetation cov-
erage and altitude were gathered for each district of the province. 

Climate data
Climatic data including mean precipitation, mean temperature

and mean humidity were obtained from Tehran Meteorological
Center, collected from synoptic stations in Isfahan and neighbour-
ing provinces, including Lorestan, Kohgiloyeh VA Boyerahmad,
Semnan, Chaharmahal & Bakhtiyari, Yazd, Fars, Qom and
Markazi. These data were entered in ArcGIS, version 10.3 (ESRI
Inc, Redlands, CA, USA) and dealt with in several steps: first, the
yearly average of climatic data was calculated for 34 stations from
April 2011 to March 2016; a point layer was created for 34 synop-
tic stations in a second step followed by ordinary Kriging was car-
ried out for interpolation and calculation for all districts to derive
a predicted value for unmeasured locations. Weights were based on
the distance between the measured points, the prediction locations,
and the overall spatial arrangement among the measured points
(http://support.esri.com). The output for this step is a raster layer
that was subsequently overlaid on the Isfahan polygon layer at the
district level. Finally, the spatial analyst extension of ArcGIS, was
used for calculating the average of each climatic variable. This
function summarizes the values of a raster within the zones of

another dataset (zonal statistics) and reports the results as a table
(ArcMap 10.3, Spatial Analyst; ESRI Inc., Redlands, CA, USA). 

Vegetation coverage
Information on vegetation status of study area was obtained

from the Moderate Resolution Imaging Spectroradiometer
(MODIS) consisting of 16-day composites with 250-meter spatial
resolution. These data were used to calculate the NDVI, one of the
most commonly used measures to of landscape ecology and useful
for the study of the epidemiology of vector-borne disease (Bavia et
al., 2005). The NDVI is related to the proportion of photo-synthet-
ically absorbed radiation and is calculated as follows: 

NDVI = (NIR-RED)/(NIR+RED)                                         Eq. 1

where NIR stands for near infrared light and RED for red light
(Jackson and Huete, 1991; Meijerink et al., 1994). The NDVI data
for Isfahan Province covering April 2011 to March 2016 was
downloaded from the United States Geological Survey (USGS)
website (https://lpdaac.usgs.gov). 

Digital elevation model data
A digital elevation model (DEM) is an ordered array of num-

bers that represents the elevation over a specified segment of the
landscape (Meijerink et al., 1994). The DEM data for our study
area was obtained from the Shuttle Radar Topography Mission
(SRTM) through the USGS website (https://lta.cr.usgs.gov/SRTM)
and overlaid on Isfahan polygon with district boundaries. Finally,
zonal statistics was used for computing average of altitude for each
district of Isfahan. 

Population data
Population data for all 23 districts of Isfahan was obtained

from National Bureau of Statistics of Iran.

Cutaneous leishmaniasis data
We obtained confirmed CL cases for Isfahan Province from the

Isfahan University of medical sciences and Department of
Communicable Disease Control (CDC) of the Iranian Ministry of
Health in Tehran. The CL incidence rate was calculated as follows: 

            
Eq. 2

The total population at risk was defined as population for each
district or province, which was obtained for each year. 

Spatial analysis
A choropleth map was produced to show distribution of CL

cases at the district level using a range of colours. Spatial data often
are clustered, which means that stronger relationships may be pre-
sent between proximate observations (Fotheringham and Brunsdon,
1999). Therefore, to explore spatial heterogeneity of disease distri-
bution we used the Global Moran’s Index in ArcGIS, version 10.3
to map the clustering of CL cases across districts in Isfahan.
Moran’s Index is a commonly used indicator of spatial autocorrela-
tion (i.e. the correlation of a single variable between pairs of neigh-
bouring observations) as well as non-random accumulation that
indicates clustering. This index ranges from −1 to +1, where the
value 1 means perfect positive spatial autocorrelation (high values
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or low values cluster together), and −1 perfect negative spatial
autocorrelation (a checkerboard pattern), while 0 shows full spatial
randomness. Z-scores and P values are calculated along with
Moran’s Index to evaluate its significance (Moran, 1948).

Moran’s Index is a global statistic and does not show the local
structure of spatial autocorrelation (Chen, 2013). Therefore, we
used the Getis-Ord (Gi*) statistics (1995) to determine high-risk
areas, i.e. hotspots of the disease. This statistic is suitable for dis-
tinguishing between cluster structures of high or low strength. In
our case, a high value would represent a cluster of high incidence
values of CL (a hotspot), while a low value would represent a low-
level cluster (a coldspot). The Gi* statistic is usually standardized
based on its sample mean and variance, which means that a Z-
score can be calculated to indicate the degree of statistical signifi-
cance. Positive and negative Gi* statistics with high absolute val-
ues show events created by clusters of high and low values, respec-
tively. Conversely, a zero Gi* value implies random distribution of
the spatial events observed.

To assess the correlation between DEM, NDVI, humidity, tem-
perature, precipitation and maximum wind speed with CL inci-
dence, we applied overlay analysis. At first, we produced three lay-
ers of information including a geographical map the study area

(Isfahan), six layers representing each of the environmental factors
interpolated with the Kriging method, and a layer indicating the
CL distribution. The different layers were overlaid in various com-
binations, including a final step of all layers together. 

Results
Our study showed that incidence of CL in the Isfahan at the

district level was significantly clustered (Moran’s Index=0.17,
z=4.02, P<0.001). A total of 13,790 confirmed CL cases were
reported in the Isfahan Province during 2011-2015 period, with a
maximum incidence rate of 62 per 100,000 in 2014 (Figure 2). The
choropleth map of CL incidence in the 5-year time frame is shown
in Figure 3, which demonstrates that Ardestan and Natanz had the
highest incidence. 

The results of the Getis-Ord (Gi*) statistic, used to identify
hotspots areas of CL during 2011-2015, showed that both hotspots
and coldspots existed at the district level with the former seen in
Ardestan and Aran va Bidgol (P<0.01) and Naein and Natanz
(P<0.05), while Chadgan was identified as a coldspot area with a

                   Article

Figure 1. Study area, Isfahan Province and its districts, centre of
Iran.

Figure 2. Incidence rate of cutaneous leishmaniasis in Isfahan
Province in the period 2011-2015.

Figure 4. Hotspot map of cutaneous leishmaniasis in Isfahan
Province in the period 2011-2015.

Figure 3. Choropleth map of incidence of cutaneous leishmania-
sis in Isfahan Province in the period 2011-2015.
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CL incidence of 0.05<P<0.1 (Figure 4). 
Figure 5 shows the overlay of DEM on the map of CL inci-

dence. A high incidence of CL was found at altitudes between 600
and 1,800 m. Overlaying of the NDVI and CL incidence layers
showed a high incidence of CL in areas with a low level of herb
coverage (0.073-0.110) (Figure 6). We also found a high incidence
of CL in areas with relative humidity of 27-30% (Figure 7), mean
temperature of 15-19°c (Figure 8), mean precipitation of 5-20 mm
(Figure 9) and maximum wind speed of 12-16 m/s (Figure 10).

Discussion
The present study investigated spatial patterns of CL incidence

in an endemic area of Iran using the GIS and RS, during 2011-
2015. The assessment of spatial characteristics of the CL cases by
Moran’s Index and derived Z-scores indicated that CL cases, as a
whole, were clustered in the study area. We identified hotspots as
well as coldspots for CL incidence, which were clustered in a spe-
cific area. The fact that the highest and lowest CL incidences were
found in 2011 and 2015, respectively, could be due to intervention-
al programmes, such as reinforced training, health education, dis-
ease surveillance and strengthened vector/reservoir control inter-
ventions, which were performed these years. 

As can be seen in Figure 5, CL incidence was predominantly
found at altitudes between 600 and 1,800 m, which represents
moderately low-laying parts of the province and, indeed, the coun-
try as a whole, which includes large areas of 2,000 m above the sea
mean level. We identified several high-risk areas of CL in middle
of Isfahan, mainly in Natanz and Ardestan. Other studies have also
demonstrated the high incidence of CL in Ardestan
(Nilforoushzadeh et al., 2014). The finding that CL was more
prevalent in areas with moderately low and low altitudes is in
accordance with a large number of other studies reporting an
inverse relationship between altitude and CL incidence (Guernaoui
et al., 2006; Bhunia et al., 2010; Holakouie-Naieni et al., 2017).
Guernaoui et al. (2006) collected 2,742 specimens belonging to
nine phlebotomine species and reported that P. papatasi, the vector
of L. major, is more common in the lowlands. Bhunia et al. (2010)
showed the significant effect of altitude on spread and outbreaks of
VL and found a high prevalence at low altitudes, while most of the
highlands had only few cases. A possible explanation could be that
active transmission of CL increases when the population density
increases as it does with decreasing altitude (Cohen and Small,
1998). Moreover, the higher temperature, lower humidity and the
character of vegetation cover in areas with lower altitude may con-
tribute to a higher rate of CL due to the positive effect of these vari-
ables on vector populations and reservoir hosts (Salahi-
Moghaddam Abdoreza et al., 2010; Ali-Akbarpour et al., 2012;
Mollalo et al., 2015). 

NDVI is commonly used to separate three types of land cover:
surfaces with sparse vegetation (NDVI<0.2), surfaces partially
covered by vegetation (0.2≤NDVI≤0.5) and surfaces fully covered
by vegetation (NDVI>0.5) (Momeni and Saradjian, 2007). In addi-
tion, it has been shown that an extensive vegetation cover provides

shade which reduces the surface temperature, while the air temper-
ature decreases through the process of evapotranspiration
(Chaithanya et al., 2017); therefore, low-level vegetation coverage
is almost always accompanied by higher temperatures and evapo-
ration as well as less rainfall and lower relative humidity, a situa-
tion which provides favourable conditions for sand flies (Mollalo
et al., 2014; Shirzadi et al., 2015). Accordingly, our study found a
high incidence of CL cases in areas with low vegetation
(NDVI<0.165). This finding is in line with reported findings by
Bavia et al. (2005) in Brazil, by Bhunia et al. (2010) in India and
by Gadisa et al. (2015) in Ethiopia.

We also found hotspot areas in semi-arid regions with moder-
ate levels of humidity (Figure 7). These areas have also been
shown as important foci of CL in Ethiopia (Gadisa et al., 2015), in
India (Sudhakar et al., 2006), in Brazil (Barbosa et al., 2014) and
several investigators in Iran have reported similar results (Ali-
Akbarpour et al., 2012; Shirzadi et al., 2015). The contribution of
humidity is, however, difficult to separate from the effect of rain-
fall because of the interaction of these two factors. It has been
shown that peaks in rainfall can lead to reductions in sand fly num-
bers since excess precipitation reduces the amount of suitable rest-
ing sites for adult sand flies, limits their flight activity, and inter-
feres with reproduction by sweeping away the eggs (Medlock et
al., 2014). 

Annual variation between moderately high wind speed and CL
distribution showed a positive relationship in our study. A recent
study has shown that P. similis, the potential vector of L. tropica in
Greece, is more common in areas with low (5.9–7.7 m/s) and
medium (7.7–8.6 m/s) mean wind speeds compared to very low air
movement (<5.9 m/s). However, above wind speeds 8.6 m/s the
risk decreased substantially (OR = 0.8; 95% CI=0.6–1.0; P= 0.002)
(Ntais et al., 2013). An investigation in Darab District located in
Fars Province in southern Iran showed that a wind speed above 3
m/s had a preventive effect on P. papatasi, the dominant sand fly
in that area (Askari et al., 2017). Contradictory results from differ-
ent researches may be explained by the dual role of wind speed in
disease distribution. For example, although sand fly biting oppor-
tunities is mitigated by strong winds, the flight distance can
increase (Wu et al., 2016). Moreover, the interaction between cli-
matic factors in the epidemiology of vector-borne disease should
be considered, since some climatic factors such as temperature,
humidity and wind speed always operate together and interact with
each other in nature (Seid et al., 2014). 

There are some limitations for this study. The CL surveillance
system in Iran is a passive system, so underreporting is a strong
possibility, especially in the rural areas. Furthermore, some errors
may occur in the surveillance system, such as unreliable diagnosis
and notification, or cases acquired in areas other than where they
were diagnosed and reported. In addition, climate is only one of
many groups of factors influencing vector distribution, while other
factors such as vector ecology and socio-economic factors vary
from one area to the other and should also be considered in the
study of vector ecology. However, we assessed only climatic fac-
tors, while we fully understand that comprehensive research needs
to consider also other factors, such as cultural, socioeconomic,
immigration, demographic, sanitation and vector diversity.
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Figure 5. Digital elevation model plotted on the study area
map and overlaid with cutaneous leishmaniasis incidence
(2011-2015).
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Figure 6. Normalised difference vegetation index plotted on
the study area map and overlaid with cutaneous leishmaniasis
incidence (2011-2015).
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Figure 7. Mean humidity plotted on the study area map and
overlaid with cutaneous leishmaniasis incidence (2011-2015).
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Figure 8. Mean temperature plotted on the study area map
and overlaid with cutaneous leishmaniasis incidence (2011-
2015).
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Figure 9. Mean precipitation plotted on the study area map
and overlaid with cutaneous leishmaniasis incidence (2011-
2015).
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Figure 10. Mean of maximum wind speed plotted on the
study area map and overlaid with cutaneous leishmaniasis
incidence (2011-2015).
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Conclusions
CL is a public health problem in Isfahan. Several hotspot areas

were identified using spatial analysis performed by GIS and RS.
Overlay analysis revealed a relationship between several climatic
factors and incidence of CL in these hotspot-prone areas, the
majority of which were located in semi-arid regions with low veg-
etation coverage. We also found fewer hotspots in lower-altitude
regions with higher temperatures and less rain. In addition, a posi-
tive correlation between wind speed and hotspot areas was found.
The results of the present study indicate that GIS is a feasible
approach for identifying spatial disease patterns and detecting
hotspots of particular infectious diseases. 
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