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Abstract

Cardiovascular diseases (CVDs) are the primary cause of
death and disability in de world, and the detection of populations
at risk as well as localization of vulnerable areas is essential for
adequate epidemiological management. Techniques developed for
spatial analysis, among them geographical information systems
and spatial statistics, such as cluster detection and spatial correla-
tion, are useful for the study of the distribution of the CVDs.
These techniques, enabling recognition of events at different geo-
graphical levels of study (e.g., rural, deprived neighbourhoods,
etc.), make it possible to relate CVDs to factors present in the
immediate environment. The systemic literature presented here
shows that this group of diseases is clustered with regard to inci-
dence, mortality and hospitalization as well as obesity, smoking,
increased glycated haemoglobin levels, hypertension physical
activity and age. In addition, acquired variables such as income,
residency (rural or urban) and education, contribute to CVD clus-
tering. Both local cluster detection and spatial regression tech-
niques give statistical weight to the findings providing valuable
information that can influence response mechanisms in the health
services by indicating locations in need of intervention and assign-
ment of available resources.
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Introduction

In recent years, the application of spatial analysis has gained rel-
evance in epidemiological identification and management of factors
associated with disease (Graham et al., 2004; Rezaeian, 2009).
Most of these studies rely on spatial statistics to reveal related fac-
tors, which therefore play an important role in simplifying decision
making, application of interventions and distribution of resources.
Although these techniques are particularly useful for infections
requiring vectors (Anno et al., 2015; Bergquist, 2017) they have
been shown to also be helpful in the study of cardiovascular dis-
eases (CVDs) and other non-communicable disorders (Olveira et
al.,2015; Park et al., 2016; Martinez-Bascuiian and Rojas-Quezada,
2017). Geospatial studies use different techniques to establish cor-
relations, some of which can be complex and difficult to explain to
the non-specialist, while the outcome, e.g. a map, can visualize epi-
demiological situations that can be immediately grasped by the lay-
man. In this type of studies different concepts are used that are
worth recognizing. Indeed, different spatial techniques are useful at
different levels and they are complementary to each other.

Mapping is a useful approach to empirically identify events associ-
ated with health. These results must, however, be carefully interpreted
according the geographical units selected considering the many possi-
ble variables at hand. For example, deprivation indices are typically
designed for small geographic areas (e.g. neighbourhoods), while
approaches used when mapping larger administrative areas, such as dis-
trict or regions, are likely to mask pockets of deprived neighbourhoods
(Exeter et al., 2007, 2014). When attempting toconnect health data with
an area, it is important to consider geographical units corresponding to
the area level chosen for the analysis, e.g., subdividing a large territory
such as a city, into small, not overlapping representative units (Gomez-
Rubio et al., 2005). It is also important to choose an area of appropriate
size, as very large areas could hide information of interest, while small
areas are generally not only homogeneous but also more transparent
(Rezaeian et al., 2006; Tonne et al., 2009). Spatially analyses usually
use subdivisions which are also administrative units, such as census
tracts, census block groups or they use the mail delivery system, i.e. ZIP
codes (Osypuk and Galea, 2007; Arsenault et al., 2013). Naturally, the
study area can also be defined arbitrarily (Zhu ef al., 2012). For cluster
determinations, the required data are the occurring number of events of
interest, the expected number of events and the population at risk in
each spatial unit of a specific territory (Gomez-Rubio ef al., 2005). In
addition, it is possible to subdivide this information into various strata
(personal such as sex, age, income, efc.) or the general economic
strength of each region under study (Goémez-Rubio et al., 2005). Cluster
detection is an important epidemiological tool because it can help iden-
tifying factors associated with disease. It corresponds to a set of events
that are spatially closely related. Positive spatial autocorrelation (SA)
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implies that the rates for a given phenomenon tend to be similar for
neighbouring areas in comparison to those that are geographically dis-
tant (Griffith, 1987; Rezaeian et al., 2007). For example, health vari-
ables and underlying related factors trend to be spatially correlated
(Lorant et al., 2001; Sofianopoulou et al., 2006), which is due to the
high probability that closely situated areas have similar underlying fac-
tors related to various phenomena (Rezaeian ef al., 2007). It should, in
this connection be recognized that there is a difference between the
global and the local situation. While the focus when searching for global
clusters is on their existence, not location (Aamodt ez al., 2006; Jacquez,
2008), local cluster analysis aims at quantifying SA and clustering in
small geographical units within the study area (Jacquez, 2008). Moran’s
11is a commonly used spatial statistic for the detection of global cluster-
ing (Moran, 1948), with local indicators of spatial association (LISA)
being the statistic of choice for finding local clustering (Anselin, 1995,
Bailey and Gatrell, 1995) allowing decomposition of the indicators.
Other techniques used for the detection of local clusters are the Getis-
Ord Gi static (1992), the geographical analysis machine (Openshaw et
al., 1987) and spatial scan statistic (Kulldorff, 1997). Regression tech-
niques are used to determine possible correlations between variables of
interest and give information about direction and strength of the relation.
A more simple way to assay correlations between variables is to deter-
mine the dependent variable and adjust for other possible explanatory
factors suggesting evidence for causal association (Jerrett ez al., 2003).
Others techniques used for estimating spatial regression are ordinary
least squares (OLS) (Ford and Highfield, 2016), geographically weight-
ed regression (GWR) (Brunsdon et al., 1996), bivariate LISA (de
Andrade et al., 2013; Martinez et al., 2014), the generalized additive
model (Hastie and Tibshirani, 1986) and the spatial lag model (Levine
et al., 1995). The present research was undertaken to highlight the appli-
cation of geospatial analysis for the recognition of factors that deter-
mines the spatial distribution of CVD in addition to recognizing the util-
ity of these techniques for the allocation of resources and generation of
public policies for CVD.

Materials and Methods

A systematic literature search covering the latest decade of geospa-
tial studies involving CVD was undertaken to investigate the current

use spatial statistics and provide an up-to-date overview of this field.
PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) and ScienceDirect
(https://www.sciencedirect.com/), the two major databases providing
access to scientific and medical research, were searched using the fol-
lowing key words: CVD and infarct; CVD and spatial analysis; and
CVD and cluster. Inclusion criteria were the following: title or abstract
of papers recognizing the use of spatial techniques (including mapping,
cluster detection and spatial regression); focus on spatial, ecological
studies (since the search term CVD and spatial analysis also yielded
results on imaging techniques used for diagnosis that was outside our
interest); articles published in the last decade. Exclusion criteria: review
articles, work prior to 2007 and articles without abstracts.
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Results and Discussion

The territorial distribution of the CVDs is not homogeneous.
Publications based on the spatial occurrence of CVD show that this
group of diseases is clustered with regard to parameters, such as
incidence (Kjaerulff et al., 2016), mortality (de Andrade et al.,
2013; Gohari et al., 2015; Gomez-Barroso et al., 2015; van
Rheenen et al., 2015; Roberson et al., 2016) and hospitalization
(Soares and Nascimento, 2010; Roberson et al., 2016). Likewise,
factors directly related to CVD, obesity as measured by the body
mass index (BMI) (Mobley et al., 2004; Tamura et al., 2014),
smoking (Mobley et al., 2004), increased glycated haemoglobin
(HbA1lc) levels (Jiwa et al., 2015; Paquet et al., 2016), hyperten-
sion (Wang et al., 2014b) and physical activity (Tamura et al.,
2014; Cunningham-Myrie et al., 2015) also tend to cluster. These
factors and others, like age, income, residency (rural or urban) and
education, contribute to CVD clustering (Talbott et al., 2013;
Nunes et al., 2013; Ahmadi et al., 2015; Caswell, 2016). Spatial
analysis facilitates the study of the distribution on factors related to
CVD from a spatial, seasonal or temporal viewpoint (Wang et al.,
2014a; Roberson et al., 2016). These studies are not only useful,
but indeed necessary, since an adequate space-time interpretation
of factors involved with a disease allows suitable designation of
priorities, resource distribution and policy implementation. Tables
1 and 2 summarize recent studies for cluster detection and spatial
correlation with regard to the CVDs.

Table 1. Recent general cardiovascular disease (CVD) studies based on cluster detection and spatial correlation.

State of Parana,  City GCD?2 by Moran’s /
Brazil LCDP by LISA

Bivariate Moran’s /

IHDe clusters positively correlated with ~ de Andrade et al,
old age, illiteracy and urban development 2013

Madrid, Spain Census tract GCD? by Moran’s / Not done Clustered CVD leading to death Gomez-Barroso
LCDP by LISA (men and women) etal., 2015
Alberta, Canada  Provincial health  LCDP by Getis-Ord Gi Not done Regional disparities in spatial van Rheenen
care network and spatial scan statistics distribution of stroke; clusters etal,2015
of stroke and stroke risk were not
spatially associated
Florida, USA County GCD? by Moran’s / Not done Clusters of stroke resulting in Roberson et al,
LCDP by LISA hospitalization or death 2016
Vale do Paraiba, Municipality GCD? by Moran’s / Not done Clusters of AMI and hospitalization Soares and
Brazil LCDP by LISA Nascimento, 2010
Tehran, Iran County LCDP by Spatial Scan Not done Clusters of death due to acute heart Gohari et al,, 2015
statistics disease, cerebrovascular disease

and hypertension

“Global cluster detection; "Local cluster detection; “ischemic heart disease; %acute myocardial infarction.
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Table 2. Recent specific cardiovascular disease (CVD) studies based on cluster detection and spatial correlation.

Socio-economic status  Harris, USA Census tract GCD? by Moran’s / OLS¢ and GWRd Spatial cluster of Ford
high CVD mortality and Highfield,
associated with social 2016
deprivation according
to GWR (better fit than OLS)
South Africa  District GCD? by Moran’s / Not done Hotspots for multi-morbidity Weimann et al.,
LCD® by Getis-Ord Gi correlated with the socioeconomic 2016
deprivation
Lausanne, District, LCD® by Adjusted for Two temporal BMI®-related Joost et al,
Switzerland neighbour-hood  Getis-Ord neighbourhood-level  clusters. Adjusting for 2016
income neighbourhood-level
income attenuated cluster
presence
King County, Neighbour-hood ~ LCDP by LISA and Adjusted for age, Obesity clusters seen Huang et al,
USA spatial scan statistics ~ gender, race, to attenuate when 2015
education, income  adjusted for age,
and propertyvalue  gender, race, education
and income and to vanish
when adjusted for
neighbourhood residential
property value
King County, ZIP code Not done Bivariate analysis Property values were the strongest ~ Drewnowski
USA predictor for area-based obesity etal, 2007
prevalence. Association between
obesity prevalence and ZIP code
contextual characteristics
Residency Perii District GCD? by Moran’s I Not done Obesity clusters mostly Hernandez-
(rural or urban) LCDP by LISA seen in coastal Vasquez
urban districts etal,2016
Taiwan Township GCD? by Moran’s I Not done Clusters of low utilisation Cheng
LCDP by LISA of cardiovascular drugs etal, 2011
in rural locations
Climate and pollution ~ Cuiabd and Census tract LCD® by spatial scan  Focus on incidence  Clusters of mortality, Rodrigues
Varzea Grande, statistics low humidity, etal, 2015
Brazil high-temperatureperiods and
high concentrations of PM, '
Hong Kong Small planning GCD? by Moran’s [ Not done Spatial overlapping of Thach et al,
unit LCDP by LISA clusters of mortality considering 2015
increased and reduced PET® scores
Seoul, District LCDP by spatial GWRd High CVD mortality coinciding Lim et al,
South Korea scan statistics with high PMyh 2014
Yazd Province, ~ Fishnet Hotspot analysis Not done Overlapping between cluster Namayande
Iran (2x2 km cell size) by ArcGIS of CV event industrial area etal, 2016
Supportive health Denver, Census tract LCD® by Not done Overlapping clusters for high Sasson et al,
resources USA Getis-Ord and LISA OHCA! and low CPRI 2012
Nassel et al,
2014
Houston Census block LCDP by spatial scan  Adjusted using Clusters of high CPRI after Root et al,
and Travis, group statistics hierarchical logistic OHCA! disappear when 2013
USA regression models  adjusted by individual variables,
such asincome and race
Ludhiana, Ward GCD2 by Moran’s Not done Clusters of stroke withpoor Pandian
India ILCDY by Getis-Ord outcomes located in areas without et al, 2016
mayor medical facilities
Michigan, ZIP code LCDP by Getis-Ord ~ Not done Cluster of strict adherence to statin Erickson and
USA treatment Lin, 2014
Michigan, Census tract LCDP by Getis-Ord ~ Not done Cluster of strict adherence to drugs Hoang et al,
USA for CVD treatment, in particular 2011

found around a university hospital

aGlobal cluster detection; Local cluster detection; “Ordinary least squares; Geographically weighted regression; ®Body mass index; 'Particulate matter, size 2.5 pm; 8Physiological equivalent temperature; "Particulate
matter, size 10 pm; ‘Out-of-hospital cardiac arrest (OHCA);ICardiopulmonary resuscitation.
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Factors of importance for cardiovascular disease
spatial distribution patterns

Socioeconomic status

The nexus between socioeconomic status and CVD is well
documented (Backholer ez al., 2016). Spatial analysis has provided
valuable information for a better understanding of this relation. In
Australia, population with high risk for CVD trend to clustering in
more disadvantaged areas (Bagheri et al., 2015). In Harris, Texas,
geographically weighted regression showed a correlation between
high CVD mortality and social deprivation at the neighbourhood
level (Ford and Highfield, 2016). Results were similar in a study of
an area in Strasbourg, France, where high-risk clusters for myocar-
dial infarction (MI) was seen to accumulate in economically
deprived areas despite good access to health amenities (Kihal-
Talantikite et al., 2017). By mapping the level of income and risk
of acute myocardial infarction (AMI) hospitalization and mortality
during two time intervals (in 1999 and in 2013), a study covering
all of USA at the county-level showed that although cardiovascular
risk tends to decrease in all income strata, a low earnings level gen-
erates latency in this trend (Spatz et al., 2016). Socioeconomic
deprivation can promote CVD clustering with other health condi-
tions, like preterm birth for women, since the first condition is a
risk factor for the second (Kramer and Williamson, 2013).

Risk analysis show a spatial correlation between deprivation
and premature mortality due to diseases of the circulatory system
(Juhasz et al., 2010; Boruzs et al., 2016). The risk factors tend to
cluster together in socioeconomic disadvantage areas (Weimann et
al., 2016), e.g., the BMI clusters found in disadvantaged areas
where there is also increased CVDs (Mobley e al., 2004; Joost et
al., 2016). Property values refers to probable price of a given prop-
erty at a given time and is thus related to the regional economy
(Coffee et al., 2013; Leonard et al., 2016). High and low obesity
clusters were attenuated after adjusting for age, gender, race, edu-
cation and income; however they disappeared once neighbourhood
residential property values and residential density were included
(Drewnowski et al., 2007; Huang et al., 2015).

Socioeconomic status can determinate the opportunity of access
to health services. Clusters of people dying from heart disease at
home before any attempt at transport were observed in areas with
lower socioeconomic and household resources (Pathak et al., 2011).
Using disease mapping at the district level and risk analysis with
rapid inquiry facility (RIF) techniques, one study showed that people
living in highly deprived areas showed a low relative frequency of
prescriptions of statin treatments (Boruzs ef al., 2016).

Education level

Pedigo and colleagues found that neighbourhoods from eastern
Tennessee, USA belonging to a high-risk clusters of stroke and MI
mortality tended to have high populations with low education level
(Pedigo et al., 2011). A study carried out in Brazil consistent with
this finding reports a spatial cluster for ischemic heart disease
(IHD) mortality correlating with illiteracy in the study population
in question (de Andrade et al., 2013).

Alcohol intake

The connection between heart disease and high alcohol intake
is not uncommon, which fact is in agreement with a study from
Chile, where one study region, identified as being ay a high risk for
CVD-related deaths associated with alcohol consumption
(Castillo-Carniglia et al., 2015). These results are supported by the
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finding of two clusters in the areas of Valparaiso and Biobio char-
acterized by high alcohol intake; indeed, the alcohol consumption
in the latter has been one of the highest in the country for over 45
years (Castillo-Carniglia et al., 2015).

CPress

Rural vs urban residency

Both rural and urban areas have characteristic particularities
that may influence the development of CVD. A recent study in
Peru highlighted the presence of clusters for obesity in urban chil-
dren, while in the rural areas the prevalence of obesity was low
(Hernandez-Vasquez et al., 2016). A study conducted in Tennessee
using the Besag, York and Molli¢ (BYM) model found rural resi-
dency a determinant of for MI and stroke (Odoi and Busingye,
2014). There are geographical clusters among the rural population
in Taiwan characterized by underutilization of cardiovascular
drugs, which is related to a low presence of specialists in cardiol-
ogy in some areas (Cheng et al., 2011). Rural living could thus
select for inadequate access to health services, hindering the timely
management of diseases. In this respect, spatial regression analysis
carried out in Taiwan have revealed that mortality related to cold
or heat waves is more pronounced in the rural areas due to less
access to medical facilities and resources than are available
metropolitan areas (Wu ef al., 2011).

Environmental influence

Temperature

Intermediate-term temperature changes, such as heat and cold
waves, can lead to rises immortality by inducing physiologic stress
resulting in increased platelet counts, hypercholesterolemia and an
enhanced tendency for blood coagulation (Keatinge ef al., 1984;
Keatinge et al., 1986; Neild et al., 1994). An Australian study
based on global and local Moran’s / showed increased spatial clus-
tering of CVD during the warmer months, and a weak correlation
between AMI and age during the warmer months was detected by
Loughnan et al. (2008). A cluster of high general mortality in
elderly people, a susceptible group for CVD, was detected after a
heat wave in Sydney, Australia (Vaneckova et al., 2010), while
Chen et al. (2015) tell us that a heat wave contributed to increased
stroke mortality in Nanjing, China. A retrospective study carried
out in Cuiaba and Varzea Grande, Brazil, reported a period with
higher temperature variations and low humidity coinciding with
the appearance of a cluster of high CVD (Rodrigues ef al., 2015).
However, although there thus seems to be a strong relation
between high temperatures and impaired health in CVD patients,
the opposite has also been seen, i.e. Roberson et al. (2016) report
hospitalization for stroke coupled with a high risk for mortality in
winter. The individual energy balance model, discussed by Hoppe
(1999) and Matzarakis et al. (1999) in the context of a physiolog-
ical equivalent temperature (PET), may have a bearing on this out-
come. PET is defined as the air temperature (in an ambient indoor
setting) at which the heat budget of the human body is balanced.
This approach enables a comparison of the integral effects of com-
plex thermal conditions outside (not only decided by air tempera-
ture, but also by humidity, wind speed, cloud cover, etc.) with the
indoor experience. On hot summer days, for example, the PET
value may be much higher than the air temperature, while on a
windy day in winter considerably lower. Indeed, an ecological
study identified a cluster of high mortality correlated with a
changed PET score both in cold and warm seasons (Thach et al.,

2015).
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Air pollution and noise

Fine particulate matter in the air, a common problem in mod-
ern cities, predisposes the development of respiratory and cardio-
vascular diseases in urban populace. The correlation between air
pollution and CVD is well known (Brunekreef et al., 2009; Dehbi
et al., 2016,). PM, s and PM,, are particles of different sizes sus-
pended in the air, which are derived from industrial activity, com-
bustion, and diesel emission (Ogundele et al., 2016). Spatial anal-
ysis can improve the understanding and detection of pollution
emission. Using satellite-derived data for optical PM> s detection, it
is possible to find spatial CVD clusters in area where there are high
levels of pollution confirming that CVD is spatially related to the
concentration of particles (Aina et al., 2014; Chen et al., 2016;
Weber et al., 2016). High concentrations of both PM,s and PM,,
have been shown to be spatially correlated to mortality due to
CVDs (Tonne et al., 2009; Lim et al., 2014; Rodrigues et al.,
2015), and clusters of AMI events close to industry installations,
specifically steel industry, have been reported (Namayande et al.,
2016).

A study carried out in Barcelona, Spain suggests that areas
with high traffic noise can be just as dangerous as pollution for MI
mortality. In addition, increased OLS indicate a connection
between noise and conditions, such as Type II diabetes mellitus in
men and mortality due to hypertension in women (Barcelo et al.,
2016). In France, an ecological study showed a spatial correlation
between mortality due to IHD, MI, and stroke mentioning 161
communes exposed to high noise levels related to the three main
airports in the country (Evrard ef al., 2015).

Water

Ecological studies are useful to detect neighbourhood determi-
nants with impact on health. For example, the quality of drinking
water has been shown to influence the progress of CVD. The num-
ber of cardiovascular, coronary and cerebrovascular disease
increased in municipalities with high arsenic concentrations in the
drinking water (Medrano et al., 2010), and an association between
arsenic water content and stroke admissions in a analysis based on
zip codes and binomial regression models (Lisabeth ef al., 2010).

Support from health-related resources

Bystander cardiopulmonary resuscitation

Cardiopulmonary resuscitation (CPR) performed by a
bystander (B-CPR) is defined as CPR performed by any person
who isnot part of the organized emergency-response system in a
community (Bradley and Rea, 2011). The prevalence of this
knowledge in a population speaks of its level of development
(Bradley and Rea, 2011). Spatial analysis has been useful to iden-
tify and improve the management of this technique in the popula-
tion (Nassel et al., 2014). Taking in account clusters of out-of-hos-
pital cardiac arrest (OHCA) and the prevalence of B-CPR in a
community, populations at high risk for OHCA can be estimated
(Lerner et al., 2005; Sasson et al., 2010; Sasson et al., 2012; Nassel
et al., 2014). Nassel and colleagues (2014) have proposed a stan-
dardized approach to improve the detection of such populations
using three different spatial analytic methods. When two out of
three of these methods identify a location with high OHCA inci-
dence and low B-CPR, this location is definitely at high risk.
Income is an important determinant of the prevalence of B-CPR as
OHCA victims in census tracts characterized by high income are
more likely to receive B-CPR than others (Sasson et al., 2011;
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Root et al., 2013). This disproportion is increased among African
American neighbourhoods, which are therefore promising targets
for community-based interventions at the neighbourhood level.

Access to health resources

Swift and easy access to health establishments can determinate
outcome and adherence to treatment with regard to the CVDs.
Ecological analyses based on spatial approaches support prioritiz-
ing target areas that require improved health service coverage.
Using descriptive mapping it is possible characterize travel time
and population coverage for cardiac interventional services,
enabling direct, visual detection of areas (or populations) with low-
level access (Graves, 2011; Clark et al., 2012). Mapping has also
has been used to identify areas with poor ambulance response
times (Earnest et al., 2012). Principal component analysis (PCA)
allows condensing variables related to a given phenomenon and
sorting them into a hierarchal diagram. Using this technique to
combine variables associated with disease burdens and access to
health services, Hames et al. (2016) detected areas of high medical
vulnerability by GIS mapping and z scoring at the census tract
level. In addition to mapping, the study of interaction with social
vulnerability by bivariate analysis proved useful for the detection
of vulnerable areas for an old-people group among the general
population (Hames ef al., 2016). However, the situation can some-
times be more complex as revealed by a study conducted in
Denmark where the existence of a strong correlation between indi-
viduals with a low AMI mortality rate and personal initiative was
revealed (Ersboll et al., 2016).While a fatal AMI was seen among
only 12.0% of individuals having asked for a medical check-up the
year before the AMI, the outcome was fatal in as much as 78% in
those who had not. In this study, a high population ratio to practic-
ing doctors (GP) or a long distance to a GP could not explain the
increased odds of a fatal outcome of AMI in individuals without
such contact. In the Indian city of Ludhiana, on the other hand,
clusters of poor outcome after stroke have been found to occur in
locations far from major medical facilities (Pandian ef al., 2016).

Geographical and socio-economic factors can determine
access to health services. Both the personal health state, car own-
ership and distance to service are determinates for predicting
access to health services. GWR was useful to weigh the effects of
these variables on health access indicating locations where the pre-
dictive strength of the independent variables was higher or lower
than the global trend (Comber ef al., 2011). Spatial analysis has
also been a valuable tool in the study of health resource distribu-
tion, for example when identifying population at risk by the multi-
criterion two-step floating catchment area (MC2SFCA) method,
which enables measuring healthcare accessibility, thus facilitating
the allocation of automated external defibrillators (Lin et al.,
2016). Indeed, GIS plays a an important role in the development of
algorithms for this purpose as well as for improving cardiac diag-
nostic resources (Kaffash-Charandabi ez al., 2015; Ferguson et al.,
2016). In England, ecological studies based on mapping and detec-
tion of clusters for the proportion of observed medical diagnoses
have been useful for the determination of areas where CVDs are
under-diagnosed (Soljak et al., 2011). The use of GWR to assess
whether a linear regression relationship between observed and
expected prevalence of CVD exist allowed the detection of areas
where more general practitioners would be needed.

Adherence to prescribed medical treatment

Spatial analyses of people on medicines for CVD has showed
clustering for drug adherence (Cheng et al., 2011; Erickson and
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Lin, 2014). By application of GIS technology, Hoang et al. (2011)
found a cluster of strong adherence for acute coronary syndrome
treatment round a university hospital, and White er al. (2016)
described a cluster of low prevalence for hypertension, which was
related to the presence of a physician known to provide adequate
primary health care.

Conclusions

Studies that use spatial analysis in health have been useful to
understand the implication of environmental factors in the devel-
opment of CVD. To obtain reliable results, it is important to use
adequate statistical and geospatial analysis tools, as well as an ade-
quate definition of the geographical units used. In the spatial dis-
tribution of CVD, the socioeconomic level, the level of urbanity
and education of the population have an important influence.
These variables determine the level of access and link to health ser-
vices. Environmental variables, such as temperature, humidity and
contamination also determine the distribution of CVD. In this way,
the application of spatial study helps to recognize particularly vul-
nerable areas where intervention can take place facilitating the
allocation of health resources and/or applying prevention policies
for these diseases.
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