
Abstract
Infectious diseases transmitted by vectors/intermediate hosts

constitute a major part of the economic burden related to public
health in the endemic countries of the tropics, which challenges local
welfare and hinders development. The World Health Organization,
in partnership with pharmaceutical companies, major donors,
endemic countries and non-governmental organizations, aims to
eliminate the majority of these infections in the near future. To suc-
ceed, the ecological requirements and real-time distributions of the
causative agents (bacteria, parasites and viruses) and their vectors
must not only be known to a high degree of accuracy, but the data
must also be updated more rapidly than has so far been the case.
Current approaches include data collection through terrestrial cap-
ture on site and satellite-generated information. This article provides
an update of currently available sources of remotely-sensed data,
including specific information on satellite-borne sensors, and how
such data can be handled by Geographical Information Systems
(GIS). Computers, when equipped with GIS software based on com-
mon spatial denominators, can connect remotely-sensed environ-
mental records with terrestrial-captured data and apply spatial statis-
tics in ways uniquely suited to manage control activities in areas
where vector-borne infections dominate.

Introduction
The Romans may or may not have given us the word malaria,

but the 18th century Italians knew the significance of locations
characterized by what they called bad air, i.e. malaria. The notion
of location was also of interest for the English doctor, Edward
Jenner, who noted that smallpox seemed to spare farms with cat-
tle. Through more detailed study, he found that people who had
regular contact with cows, e.g., milking them, generally developed
a type of skin rash called cowpox. More importantly, those who
had had cowpox did not get the dreaded disease smallpox, an
observation that seemed to hold for the rest of their lives (Jenner,
1798; Jenson et al., 2016). As the notion of infectious agents had
not yet entered medical knowledge, Jenner’s approach was pre-
dominantly spatial. Indeed, the importance of location became
absolutely clear about 50 years later, when the London physician
John Snow focused on the spatial variation of cholera cases in a
short medical communication (Snow, 1849). However, he was not
alone in his thinking as shown by a contemporary colleague who
tried to localize the culprit in the Exeter 1932 cholera epidemic by
mapping the distribution of cases in the city (Shapter, 1849).
Again, both Snow and Shapter lived before the link between infec-
tious diseases and microorganisms had been unravelled and the
spread of cholera in England at the time was believed to be due to
bad air. Snow was eventually credited for solving the quandary by
realizing that the problem was not air but rather water. This
thought came to him when he noted that most of the homes of peo-
ple struck with cholera in London in 1854 were concentrated
around a specific water pump in Soho (Figure 1). He developed
his train of thoughts about the epidemic in a more substantial
report (Snow, 1855) with the same title as that of his brief treatise
of 1849. Foreshadowing epidemiology as a discipline and, in actu-
al fact also what we now call Geographical Information Systems
(GIS), Snow was vindicated when the epidemic promptly disap-
peared after he managed to convince the authorities to close the
Broad Street water pump situated at the geographical centre of the
epidemic. The amazing technical progress linked to GIS emerges
when we fast-forward to the present time. The convergence of
Earth sciences, satellite development, computer technology and
spatial statistics has not only produced Earth-observing satellites
and an ever-increasing stream of remotely-sensed information but
has also provided tools needed to manage all these new data.
Thanks to GIS, we can now deal rapidly with the proliferation of
diseases, in particular the major pandemics spread by mosquitoes,
flies, ticks and snails. The GIS approach has contributed to
detailed risk maps and Early Warning Systems (EWS) for a large
number of vector-borne infections, including reference to birds
carrying influenza viruses over large distances. Today, GIS,
remote-sensing and Global Positioning Systems (GPS) are seen as
part of the epidemiologist’s tool box, and few scientists working
in the field of public health can manage without them.
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The evolving geographical information systems
platform

As already stated, the roots of GIS go back to Snow, though in
fact they actually go a little further still. Although the Atlas of
Diseases, published in 1837 by Heinrich Berghaus in Germany
(Berghaus, 1837) emphasizes isothermal lines, winds, climatic
zones, etc. with only an incidental discussion of endemic and epi-
demic diseases, the book is a landmark in the history of medical
cartography as it synthesizes medical mapping of earlier periods
and provides an impetus to specific epidemiological mapmaking.
That winds and climate information are included is interesting as
this builds on Greek thinking in the Antiquity and predates today’s
environmental focus. The final decade of the 19th century presents
firmer ground for the discussion of epidemics, as the role of para-
sites, bacteria and even viruses had by then become understood.
For example, following Snow’s idea, Stiles (1903) noted that
hookworm infection in the southern parts of the United States
(U.S.) was restricted to sandy districts and could not be found
where clay is more common. This kind of epidemiological
approach, novel then, served to prepare the medical profession for
the compelling cause of disease mapping as a way of controlling
epidemics. Administrative and cartographic infrastructures made it
possible to map the spread of infectious diseases, but map produc-
tion was still not as straightforward as printing text, which explains
why the tabular format was generally used for recording number of
cases and areas at risk. Although tables and text can contain the
same information as a map, they are less easily exploited for ana-
lysis since the reading and interpretation of tables are both labori-
ous and time-consuming. As map-making improved, sets of dis-
ease maps enabled rapid visualization of changes in distribution
frequency and clusters of infections, but they did not become as
useful in practise as they are today when they can instantaneously
be called up on the computer screen.

Working on a land inventory project in Canada in the 1960s,
Roger Tomlinson coined the term GIS, first seen in print in the pub-
lished version of his 1968 lecture entitled A geographic information

system for regional planning given at a symposium organized by the
Commonwealth Scientific and Industrial Research Organization. The
idea became better known after he had developed it further in his doc-
toral thesis presented at the University of London in 1974
(Tomlinson, 1974). Meanwhile, the Environmental Systems
Research Institute (ESRI) in Redlands, California
(https://www.esri.com/) was using topographic maps produced by the
U.S. Geological Survey (USGS) in the form of transparent overlays
of gridded sheets with separate datasets, such as geology, soil type,
topography, etc. The computerized version of this approach took off
in the mid-1970s when San Diego County in California selected
ESRI to develop a system for a land inventory reminiscent of
Tomlinson’ work in Canada. In a major departure from the previous
grid-based overlay approach, ESRI now pioneered the use of vector
graphics together with raster-format geographical maps as the basic
framework, which led to the 1982 release of ARC/INFO, the first
commercial GIS application. Spurred on by the implementation of
several successful projects leading to validation of new features, such
as GPS access, faster computers, network processing and electronic
data publishing, ESRI underwent a period of rapid growth producing
a modular, scalable platform. The new desktop product, called
ArcGIS, had a major impact on the industry when it was released in
1999 contributing to a wider use of GIS. Moving into the new mil-
lennium, many competitors, including open-source GIS, appeared in
the shape of Quantum GIS and other applications compatible with
Linux, Unix, Mac OS X and Windows resulting in the supply of a
mix of commercial and free GIS software. Data collected in the field
can be bundled together with environmental information in a GIS
visualizing the situation in the form of different overlays against a
background canvas, commonly a geographical map. GIS is a highly
versatile system that captures, integrates, stores, manages, analyzes
and displays data so that models can be constructed and tested under
various scenarios. Buffers and different spatial parameters supporting
analysis of single overlays, neighbourhoods or larger geographical
areas are routinely included in a GIS and data can either be presented
as vectors or rasters, where the former are composed of paths (lines)
and polygons, and the latter of pixels (Figure 2). The vector format is

                   Review

Figure 1. Snow’s approach: finding the circle with the highest
ratio of cases in relation to its diameter. The figure shows Broad
Street pump in London’s Soho area at the corner of Broad Street
and Lexington Street in the map’s centre.

Figure 2. The Geographical Information Systems approach. 
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based on tables, stored separately in the computer, containing the
coordinates of points together with instructions, e.g., how to find
points separating those belonging to common sets from those that are
independent (Yang et al., 2005; Rinaldi et al., 2006). Geographical
base maps as well as continuous phenomena, such as land cover, dig-
ital elevation models and climatological information are generally in
the raster format but can also be produced by carpets of adjacent
polygon cells providing a virtual cover of a given part of a territory.
Spatial and temporal points of interest relate to one another in a 3-
dimensional arena with time added as a fourth dimension. That
means that locations in space may be recorded by coordinates repre-
senting longitude, latitude and elevation, while change of location
invokes spatio-temporal interpretations. Using location as the key
index, data may be visualized in ways that potentially can reveal hid-
den relationships and patterns, a concept that can open new avenues
of scientific inquiry (Rinaldi et al., 2006, 2011). Although GIS can
refer to a number of different environments and processes, the
overview presented here focuses only on health applications. The rea-
son for the particular strength of GIS with respect to work involving
vector-borne diseases is that the environmental requirements of the
vectors limit these infections to highly specific ecological niches
(Malone et al., 2016). Additionally, the distribution of vector-borne
diseases is restricted, not only by the vectors’ requirements but also
by the ambient temperature inside them as temperature governs the
speed of maturation of the parasite stages inside (Yang et al., 2007;
Zhou et al., 2008).

Virtual globes, available from Google and other companies,
are superior to conventional maps as they allow importation and
annotation of datasets of specific interest, e.g. environmental
parameters, demographic information, etc. Although the basic ana-
lytical capabilities of virtual globe applications are limited, Google

Earth and its web-based pendant Google Maps are conducive to
the combination of results from literature and findings from the
field and have therefore a strong potential for data sharing and dis-
semination of scientific research results as shown by many authors
(Stensgaard et al., 2009; Yang et al., 2012; Twardzik et al., 2018).

The concept of time geography, advanced by the Swedish
geographer Hägerstrand (1970) and chronicled by Ellegård and
Svedin (2012), culminated in the creation of the space-time cube
(STC), where the base represents a 2-D geographical map with
height, normally used for expressing altitude, is instead treated as
the time axis. This produces a volume representing merged space-
time in which internal objects, e.g., study subjects, move along
world lines and events are shown as points representing both space
and time. This amazing spacetime concept where the time compo-
nent emerges as a series of spacetime slices, first introduced by
Einstein in his relativity theory, is indeed the way Hägertrand’s
STC operates. As proposed by Gatalsky et al. (2004), the fusion of
space and time and the use of appropriate spatial analytical visual-
ization techniques, such as GIS, facilitate understanding. Despite
its obvious advantages, this great idea was sidelined due to the
immense graphic preparations required at the time when
Hägerstrand was developing the technique. However, this draw-
back disappeared when computers arrived and graphic presenta-
tions could easily be created by rapid switches between data pack-
ages and geographical perspectives. The revived interest in
Hägerstrand’s innovative idea (Hedley et al., 1999) eventually led
to an ESRI application building on the STC approach ((http://desk-
top.arcgis.com/en/arcmap/10.3/tools/space-time-pattern-mining-
toolbox/visualizing-cube-data.htm), which is strongly recom-
mended.
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Figure 3. Schematic view of annual satellite launches 1957-2018.

gh-2019_1.qxp_Hrev_master  17/05/19  13:26  Pagina 5

Non
-co

mmerc
ial

 us
e o

nly



[page 6]                                                                [Geospatial Health 2019; 14:779]                                          

The view from above
The launch of Sputnik on 4 October 1957 initiated a race in the

sky where the U.S. the following year launched an ambitious pro-
gramme that included satellite missions jointly managed by the new
National Aeronautics and Space Administration (NASA) and the
USGS, while the National Oceanic and Atmospheric
Administration (NOAA) engaged in weather studies sparking off
the longest-lived series of Earth-observing satellites started by the
launch of the Television Infrared Observation Satellite (TIROS) on
1 April 1960. The easily counted satellites of the first space decade
have sixty years later mushroomed into a cloud of approximately
5,000. The online satellite index kept by the United Nations Office
for Outer Space Affairs (UNOOSA) (http://www.unoosa.org/oosa/
osoindex/index.jspx?lf_id=) provides the exact number at any
given date. The GPS network and the new communication network,
currently being planned and launched by several international com-
panies, constitute essential infrastructure building blocks but are not
further discussed here; also the military satellites fall outside the
scope of this article. What is of interest, however, is the recent
growth of privately launched satellites that is expected to double the
current number of airborne satellites by 2027 (Figure 3).

Optical Earth-observation matured with Landsat, a joint
NASA/USGS programme with a mission to establish and execute
a strategy of repetitive observations of Earth’s total land mass,

including islands, coastal boundaries and coral reefs. The current
Landsat satellites have a near-polar, sun-synchronized orbit at an
altitude of 705 km, which allows them to scan all areas of the globe
with a spatial resolution of 1.1 km. The unbroken Landsat record
since 1972 makes this programme the world’s longest running sys-
tem of moderate-resolution, remotely-sensed imagery satellites
(https://landsat.gsfc.nasa.gov/). Landsat 1-3 were equipped with
the Multi Spectral Scanner, replaced with the Thematic Mapper
onboard Landsat 4-5. Landsat-6 (lost at launch) and Landsat 7
were equipped with the Extended Thematic Mapper (ETM) and the
ETM+ together with a thermal single-channel sensor. These instru-
ments were finally replaced with the Operational Land Imager
(OLI) and the dual Thermal Infrared Sensor (TIRS) onboard
Landsat-8, while a still more sophisticated Landsat 9 is planned for
launch in 2020. 

NOAA records weather changes and has at least two Polar-
Orbiting Environmental Satellites (POES) in orbit at all times
thereby achieving twice-daily global coverage ensuring that no
region has data older than six hours. They orbit Earth at an altitude
of around 850 km carrying onboard the 6-channel Advanced Very
High Resolution Radiometer (AVHRR/3), a much used data col-
lection system with applications in meteorology, climatology,
oceanography and land cover with emphasis on regional and glob-
al environmental issues (https://poes.gsfc.nasa.gov/avhrr3.html).
MetOp, a group of three polar-orbiting meteorological satellites
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Table 1. High-resolution imagery satellites.

Satellite          Launch date     Panchrom. - multispec.    Owner/collaborator                             Comment
                                                  resolutions                         as of December 2018                        

Dove*                     2016-2018                 3-m multispectral                           Planet Labs, USA                                                    Low-flying (400-km altitude)
                                                                                                                                                                                                                   mini-satellites consisting of 87 satellites
IKONOS                 24 Sept. 1999           0.82 m-3.28 m.                                  Maxar Technologies, Canada                              Fifteen-year lifetime (1999-2015).
                                                                                                                                                                                                                   Imagery records remain available
Quickbird               18 Oct. 2001             0.61 m-2.4 m                                     Maxar Technologies, Canada                               Five-year lifetime (2001-2014). Retired
                                                                                                                                                                                                                   on Jan. 27 2015. Imagery records remain available
GeoEye                   6 Sept. 2008             0.41 m-1.65 m                                   Maxar Technologies, Canada                               In 2013 the orbit altitude was raised to 770 km
                                                                    0.46 m-1.84 m                                                                                                                      reducing the resolution slightly
RapidEye                29Aug. 2008              6.5 m (panchromatic)                    Planet Labs, Inc, USA                                            Rapid daily revisit suits vegetation and disaster
                                                                                                                                                                                                                   applications due to high sensitivity for chlorophyll
SPOT-5                   4 May 2002               2.5-5 m-10 m                                    Created by CNES                                                   Explores Earth’s resources, climate, oceanography 
                                                                                                                                Operated by SPOT Image, France                      and monitors natural phenomena
SPOT-6                   9 Sept. 2012             1.5 m-6 m                                          Created by CNES                                                   Spot-6 and 7 are phased into the same orbit as 
                                                                                                                                Operated by SPOT Image, France                      the two Pléiades satellites to improve revisit time
SPOT-7                   30 June 2014            1.5 m-6 m                                          Space Agency of Azerbaijan                                 Sold to Azerbaijan's Space Agency in December
                                                                                                                                                                                                                   2014 and renamed AzerSky. Main use in agriculture
Pléiades HR 1A     17 Dec. 2011            0.46 m-1.84 m                                   CNES SPOT Image distribution of data            SPOT/Pléiades constellation images
Pléiades HR 1B     2 Dec. 2012                                                                                                                                                              can be requested less than six hours beforehand
WorldView-1          18 Sept. 2007           Panchromatic: 0.46 m                     Maxar Technologies, Canada                               Strong geo-location capabilities with targeting and
                                                                                                                                                                                                                   efficient in-track stereo collection
WorldView-2          8 Oct. 2009               0.46 m-1.84 m                                   Maxar Technologies, Canada                               Capability to collect optical data through 
                                                                                                                                                                                                                   clouds and smoke
WorldView-3          13 Aug. 2014             0.31 m-1.24 m                                   Maxar Technologies, Canada                               First satellite delivering close to 30-cm 
                                                                                                                                                                                                                   resolution imagery
WorldView-4          11 Nov. 2016             0.31 m-1.24 m                                   Maxar Technologies, Canada                               Previously named GeoEye-2. Malfunction due to the
                                                                                                                                                                                                         gyro system in Jan. 2019 stops imagery production
SPOT, Satellite Pour l’Observation de la Terre; CNES, Centre National d'Etudes Spatiales, France. *The Dove satellites are part of satellite network.
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developed by the European Space Agency (ESA) and operated by
the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT), forms a component of the overall
EUMETSAT Polar System (https://www.eumetsat.int/
website/home/Satellites/CurrentSatellites/Metop/index.html). The
MetOP satellites constitute the European contribution to the
EUMETSAT/NOAA Initial Joint Polar System (IJPS) with a pay-
load comprising 11 scientific instruments plus two Search and
Rescue services. The NOAA Suomi NPP satellite
(https://www.nasa.gov/mission_pages/NPP/main/index.html),
launched in October 2011 as a stop-gap between the POES and the
new IJPS successor has a sun-synchronized orbit at an altitude of
824 km equipped with the Visible Infrared Imaging Radiometer
Suite providing measurements related to the climate that was initi-
ated by the Earth-Observing System (EOS) operated by NASA. 

NOAA also operates high-altitude weather satellites which
originate from NASA’s Synchronous Meteorological Satellite pro-
gramme that launched two satellites providing imagery through a
Visible and Infrared Spin Scan Radiometer in 1974/1975. They
were replaced by NOAA’s own Geostationary Operational
Environmental Satellites (GOES), the first of which was launched
in October 1975. To stay fixed relative to Earth, the GOES must
match Earth’s rotation which demands the specific altitude of
35,786 km, high enough to cover half the planet. Two satellites,
GOES East and GOES West, are placed at the equatorial plane
allowing global coverage (https://www.goes.noaa.gov/). Although
the imagery cannot be detailed at that level, a major advantage is
that the revisit problem of the near-polar orbits disappears thanks
to the continuous view of the same area. The two GOES cover a
large section of the electromagnetic spectrum through the
Advanced Baseline Sounder, which is a multi-channel radiometer
focused on atmospheric cloud temperature- and moisture-profiles
and ozone distribution, together with the main optical sensor ABI,
the Advanced Baseline Imager. 

High-resolution imagery
The first satellites produced only optical views of the land they

flew over whereas the next generation also had sensors for other
parts of the electromagnetic spectrum. Quite a few satellites, how-
ever, are specialized in delivering high-quality imagery (Table 1)
with full global coverage due to the rotation of the Earth under
their near polar orbits. When launched in 1999, IKONOS was the
first publicly available, high-resolution satellite. It was designed at
Lockheed Martin Corporation but developed and launched in part-
nership with Space Imaging, a firm that took the name GeoEye
after merging with another company, Orbital Imaging. When
GeoEye-1 was launched in 2008, it had the world’s highest spatial
resolution, while an even sharper-eyed satellite, GeoEye-2 was
already on the drawing board at Lockheed Martin. However, five
years later, GeoEye was acquired by DigitalGlobe, an aspiring
U.S. satellite company which launched Quickbird in 2001, fol-
lowed by WorldView-1 in 2007 and WorldView-2 in 2009.
Following this merger, GeoEye-2 was renamed WorldView-4,
while GeoEye-1 became referred to as just GeoEye. When
WorldView-3 had been put into orbit in 2014 followed by
WorldView-4 at the end of 2016, the scene was set for the final
merger in the high-resolution satellite business. MacDonald
Dettwiler and Associates (MDA), a Canadian global communica-
tions & information company, purchased DigitalGlobe forming the

combined company Maxar Technologies, which is now the domi-
nant force in the commercial market for this kind of satellite.

The latest trend is to use smaller satellites, typically weighing
less than five kg, and launching a large number of them together.
Planet Lab’s 150 mini-satellites provide spatial resolutions that
vary between 3, 5 and 0.72 m (https://www.planet.com/products/
planet-imagery/) and even if their best resolution cannot rival those
from Geoeye and WorldView, revisits can quickly be achieved
because of the plurality of satellites in space and their higher
speed. Importantly, Planet Lab is pioneering machine-learning for
analysis of its imagery feeds that improves the speed at which vital
information can be extracted.

As seen in Table 1, there is an astonishing intermission of more
than six years between the early American high-resolution satel-
lites and the follow-up by GeoEye and the series of WorldView
satellites. However, the gap is filled by the Satellite Pour
l’Observation de la Terre (SPOT) programme initiated by the
French space agency Centre National d’Etudes Spatiales (CNES).
The system includes ground control resources for satellite control
and programming, image production and distribution by SPOT
Image in Toulouse, France. The SPOT programme not only filled
the gap between 2001 and 2007 but also predated the first U.S.
high-resolution satellites. Between 1986 and 1998, four SPOT
satellites with 10-m panchromatic and 20-m multispectral spatial
resolutions were launched. While the first three were identical, the
Vegetation Monitoring Instrument with a 1-km resolution for agri-
cultural monitoring was added to SPOT-4. The next in this series,
SPOT 5, was equipped with two high-resolution geometrical
instruments offering 2.5 to 5 m resolution in panchromatic mode
and 10 m in multispectral mode plus a sensor for stereo-pair
images. The latest satellites, SPOT-6 and Spot-7, are phased into
the same orbit (at 694-km altitude) as Pléiades 1A and Pléiades 1B
(see below) making revisits possible on a twice-daily basis.
However, the continued role of SPOT-7 in this constellation is
unclear since it has recently been sold to Azerbaijan to monitor
crop maturation in that country.

The Pléiades satellites (https://directory.eoportal.org/web/ eopor-
tal/satellite-missions/p/pleiades) operate as a pair offset at 180° to
offer a daily revisit capability over any point on the globe. They share
the same orbital plane as the two latest SPOT satellites, forming a
constellation of four, 90° apart from one another. Equipped with
fibre-optic and control-moment gyros, Pléiades-HR 1A and 1B offer
exceptional capabilities enabling the system to maximize the number
of acquisitions above a given area. This agility, coupled with dynamic
image acquisition programming, makes the Pléiades system time-
wise extraordinarily responsive to user requirements.

RapidEye (https://earth.esa.int/web/guest/missions/3rd-party-
missions/current-missions/rapideye) consists of a constellation of
five identical, calibrated mini-satellites originally contracted to
MDA and put into orbit in 2008. Each of the five satellites travel
at the same orbital plane at 630-km altitude, collecting 5-m spatial
resolution imagery. The RapidEye concept originated in Germany
but eventually ended up in the hands of Planet Labs, which cur-
rently operates the largest fleet of Earth-observing satellites.
RapidEye includes the first commercial sensor with the Red-Edge
band, which has a particular sensitivity to changes in chlorophyll
content and thus improves vegetation monitoring (Deleu et al.,
2015).

In the period 2014-2018, the ESA entered the fray, launching
six satellites in a constellation of three pairs under the Copernicus
programme (https://www.esa.int/Our_Activities/Observing_the_
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Table 2. Essential sensors for environmental studies.

Sensor/        Satellite(s) Resolution                               Responsible              Comment
Mission                                              Spatial                      Temporal           agency/country            

ABI                  GOES-16 (East)              500 m and 1-2 km               Scene updated                     NOAA                          GOES are primarily weather satellites,
                       GOES-17 (West)        depending on channel            every 5- 5 min                                                           which show the eastern hemisphere from GOES
                                                                                                                                                                                                          East (since Dec. 2017) and the western 
                                                                                                                                                                                                          hemisphere (since Feb. 2019) while GOES West
ASTER                      Terra                                15-90 m                               16-days                  Japanese sensor                A 14-band multispectral instrument
                                                                          depending                                                              onboard NASA                 including NIR and SWIR delivering
                                                                         on channel                                                                     satellite                        data on land cover, soils, vegetation
                                                                                                                                                                                                          and ecosystems, hydrology, climatology with DEM
                                                                                                                                                                                                          measurements creating detailed stereo imagery
AVHRR                NOAA 18-19                            1.1 km                              Twice daily                      NOAA (in                       AVHRR/3 is a 6-channel American instrument 
                             MetOp A-C                                                                                                    collaboration with ESA          providing day and night imaging of land,
                                                                                                                                                               since 2006)                     water and clouds. It also measures sea surface
                                                                                                                                                                                                          temperature, ice, snow and vegetation 
C-SAR              Sentinel-1 A+B                           5 m                                   12-dayst           ESA through EUMETSAT         Day and night radar imaging mission for land 
                                                                                                                                                                                                          coastal water with respect to natural disasters,
                                                                                                                                                                                                          environment and climate. 
                                                                                                                                                                                                          Sentinel-1 works in conjunction with SMAP 
                                                                                                                                                                                                          (see below) to achieve accurate measures of soil
                                                                                                                                                                                                          moisture estimates. The Sentinel satellites are
                                                                                                                                                                                                          part of ESA’s Copernicus programme
DPR                   Both sensors                      125-245 km                           Every 2-3       Initiated by JAXA and NASA      Consists of a core satellite and a constellation
                           onboard the                                                                         hours                 operating with wide             of eight other satellites with the aim of
GMI              Core GPM satellite                     885 km                                                       international collaboration       measuring rainfall, storms and water/energy cycle.
                                                                                                                                                                                                          GPM succeeds the TRMM
HyspIRI-     Installed externally                  38×57 m                              3-4 days                            NASA                           Although results are publicly available,
TIR                       on the ISS                                                                                                                                                         this investigation, entitled ECOSTRESS,
                                                                                                                                                                                                          is a specific mission on vegetation and its
                                                                                                                                                                                                          response to stress, such as lack of water.
                                                                                                                                                                                                          ECOSTRESS does not deliver data for general use
MODIS                Terra/Aqua                            250-500                               1-2 days                            NASA                           A sensor with 36 discrete spectral bands
                                                                         or 1, 000 m                                                                                                           for the study of global dynamics occurring on land, 
                                                                          depending                                                                                                            in the oceans and in the lower atmosphere.
                                                                         on channel                                                                                                            MODIS contributes to accurate environmental 
                                                                                                                                                                                                          predictions regarding global change. Its relatively
                                                                                                                                                                                                          low spatial resolution is compensated by a high
                                                                                                                                                                                                          temporal resolution
MSI                       Sentinel-2                           10, 20 or                                     -                 ESA through EUMETSAT         Multispectral land imagery based on
                                  A+B                         60 m depending                                                                                                      13 spectral channels that include NIR
                                                                         on channel                                                                                                          and SWIR for the study of vegetation,
                                                                                                                                                                                                              soil and water, inland waterways and coastal areas
RMI                  SMAP satellite                         1-3 km                               2-3 hours                           NASA                           Measures plant evapotranspiration and the water
                                                                                                                                                                                                          content in the top 5 cm of the soil producing soil
                                                                                                                                                                                                          moisture estimates in collaboration with Sentinel
                                                                                                                                                                                                          1 A+B
OLI                    Both sensors                        15-30 m                                16 days                       USGS/NASA                     Seven of the 9-channel imager's band are
                      onboard Landsat-8                                                                                                                                                 the same as earlier Landsat imagers
                                                                                                                                                                                                          to assure compatibility with historical data, 
                                                                                                                                                                                                          an additional deep blue and a shortwave-infrared
                                                                                                                                                                                                          bands allow measuring water quality and improve
                                                                                                                                                                                                          thin cloud detection
TIRS                                                                      100 m                                                                                                                 Data for two long wavelength infrared bands will
                                                                                                                                                                                                          be collected with TIRS. This provides data 
                                                                                                                                                                                                          continuity with Landsat 7’s single thermal IR 
                                                                                                                                                                                                          band and adds a second one
ABI, Advanced Baseline Imager; ASTER, Advanced Space-borne Thermal Emission & Reflection Radiometer; AVHRR, Advanced Very High Resolution Radiometer; C-SAR, C-band synthetic-aperture radar; DPR, Dual-
Frequency Precipitation Radar; GMI, Global Precipitation Measurement Microwave Imager; HyspIRI-TIR, HyspIRI Thermal Infrared Radiometer; MODIS, Moderate Resolution Imaging Spectroradiometer; MSI,
Multispectral Instrument; RMI, Radar Microwave Imager; OLI, Operational Land Imager; TIRS, Thermal Infrared Sensor; GOES, Geostationary Operational Environmental Satellites; NOAA, National Oceanic and
Atmospheric Administration; NASA, National Aeronautics and Space Administration; NIR, near infrared; SWIR, shortwave infrared; DEM, digital elevation model; ESA, European Space Agency; EUMETSAT, European
Organization for the Exploitation of Meteorological Satellites; SMAP, Soil Moisture Active Passive; GPM, Global Precipitation Measurement; JAXA, Japan Aerospace Exploration Agency USGS, United States Geological
Survey; TRMM, Tropical Rainfall Measuring Mission; ISS, International Space Station; ECOSTRESS, Ecosystem Space-borne Thermal Radiometer Experiment on Space Station; IR, infrared.

gh-2019_1.qxp_Hrev_master  17/05/19  13:26  Pagina 8

Non
-co

mmerc
ial

 us
e o

nly



Earth/Copernicus). These multi-sensor satellites, named Sentinel
(https://sentinel.esa.int/web/sentinel/home), are focused on vegeta-
tion, soil and water and are thus concerned with temperature and
colour of land, inland waterways, coastal water and the oceans.
Only Sentinel 2 and 3 include optical scanners. The spatial resolu-
tions of these satellites (10-60 m for Sentinel 2 and 300-1,000 m
for Sentinel 3), depending on the wavelength chosen, are moder-
ate; however, their unique combination of broad spectral coverage
and wide field of view represents a major step forward in the study
of environment, weather and climate, providing seasonal forecast-
ing as well as surveillance of natural disasters.

Great expectations
The first large-scale photographs of Earth’s surface were taken

by cameras onboard piloted flights, with satellite-generated
imagery becoming the norm after the launch of Landsat-1 in 1972
(https://landsat.gsfc.nasa.gov/about/history/). Although Cline
(1970) realized the opportunities even earlier, papers in the field of
public health appeared only sporadically and not until the last two
decades of the last century, e.g., Cross et al. (1984), Hugh-Jones
(1989, 1991), Pope et al. (1994), Roberts and Rodriguez (1994),
Washino and Wood (1994), Kitron (1998), Hay and Lennon
(1999), Kristensen et al., 2001; Huh and Malone (2001). Although
satellite-generated imagery immediately impress both laymen and
scientists, environmental datasets offer additional more useful
information to the epidemiologist as pointed out in reviews by Hay
(2000) and Goetz et al. (2000). Importantly, the openness of most
governments in allowing free access to all sorts of environmental
data and imagery proved crucial. Cartographers and meteorolo-
gists were the first to take advantage of the new tools, while epi-
demiologists were slower to react.

Following a brief mention below of the better known satellites
and their sensors that were developed for measurements outside
the visual electromagnetic range, Table 2 summarizes all informa-
tion given and adds also some core data.

The Terra/Aqua duo and constellations
The Moderate Resolution Imaging Spectroradiometer

(MODIS) is the key instrument onboard both the Terra and Aqua
satellites (Tatem et al., 2004), whose orbits are chosen so that Terra
passes from north to south across the equator in the morning with
Aqua moving in the opposite direction in the afternoon. In this
way, a higher temporal resolution is obtained without loss of image
quality. Terra was the first in NASA’s EOS programme which rep-
resents a coordinated series of polar-orbiting satellites observing
oceans, land cover, biosphere and atmosphere. It was launched in
2000 and began collecting what has become an 18-year, global,
wide-range set of environmental data. In order to produce better
information than would be possible from the sum of independent
observations, some satellites are placed in close proximity to each
other in carefully planned constellations with only seconds or min-
utes between them. One such group is the A-train, also called the
Afternoon Constellation (of satellites), that all cross the equator in
the early afternoon travelling north. Aqua, launched in 2002, was
the first satellite in this constellation while a smaller group con-
taining Landsat-7, Terra and a few other satellites moving south
constitute the Morning train as they cross the equator in the morn-
ing. A full account of the sensors onboard Terra and Aqua is given

by Bergquist (2011).
The optical information from Sentinel 2 and 3 mentioned

above is joined by other data, particularly from Sentinel 1 which
lacks an optical sensor. The Sentinel satellites’ main contribution
consists of multi-instrument measurements of sea-surface topogra-
phy as well as sea- and land-surface temperatures. 

The Global Precipitation Measurement mission 
Measuring Earth’s water/energy cycle, the Global Precipitation

Measurement (GPM) project continues the Tropical Rainfall
Measuring Mission (TRMM) collaboration between NASA and
the Japan Aerospace Exploration Agency (JAXA). GPM is based
on an international group consisting of a core GPM satellite
equipped with the Dual-Frequency Precipitation Radar (DPR) and
the GPM Microwave Imager (GMI), plus eight other satellites to
provide global coverage.

The DPR provides three-dimensional maps of storms and sur-
face precipitation and the GMI observes the microwave energy
emitted by Earth and its atmosphere, while the Integrated Multi-
satellitE Retrievals for GPM merges and calibrates all satellite
microwave precipitation estimates (https://www.nasa.gov/mis-
sion_pages/GPM/main/index.html). The DPR has two radar fre-
quencies: the Ku-band radar, which is similar to the PR band of the
TRMM, and the Ka-band, the differential attenuation of which
enables distinction between rain and snow.

GPM is part of NASA’s Earth Systematic Missions program,
managed by the Goddard Space Flight Center in Maryland, USA
and represents an unprecedented international collaboration to
improve precipitation estimates from space for research and appli-
cation. The original JAXA and NASA collaboration has been
joined by CNES, ESA and other national space agencies unifying
global precipitation observations. 

The Soil Moisture Active Passive satellite
The Soil Moisture Active Passive (SMAP) mission (https://

smap.jpl.nasa.gov/) is an international network of satellites that
provides the next-generation global observations of rain and snow,
aiming to advance understanding of the processes that link the ter-
restrial water, energy and carbon cycles. It features a near-global
revisit coverage in 2-3 days improving forecasting of extreme cli-
mate events and providing accurate and timely information on land
surface soil moisture and freeze-thaw status. The SMAP surface
measurements are coupled with hydrologic models to infer soil
moisture conditions in the root zone rather than on the surface.
These measurements also provide estimates of global water and
energy fluxes over land and quantify the net carbon flux in boreal
landscapes. It further produces improved flood predictions and
drought monitoring capability. All data are publicly available
through the NASA archive centres. 

The Ecosystem Space-borne Thermal Radiometer
Experiment on Space Station mission

The Ecosystem Space-borne Thermal Radiometer Experiment
on Space Station (ECOSTRESS) is a radiometer mounted on the
International Space Station measuring the temperature of plants
growing in specific locations on Earth over the course of a year
(Hook and the HyspIRI and ECOSTRESS Teams, 2015). Rather
than being a general-purpose sensor, ECOSTRESS represents a
specific investigation based on a 5-channel prototype, the HyspIRI
Thermal Infrared Radiometer. ECOSTRESS collects data on the
temperature of the surface itself rather than the surface air temper-
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ature testing how the terrestrial biosphere responds to changes in
water availability; how changes in daily water access impact veg-
etation and the global carbon cycle; and whether agricultural vul-
nerability can be reduced through improved drought estimation.
These measurements provide an insight into the effects on crops of
events, such as heat-waves and droughts on crops. The data col-
lected are publicly available (https://ecostress.jpl.nasa.gov/early-
adopters).

From BioClim to PaleoClim
Efforts to predict climate suitability for agriculture began in

the 18th century. The relationship between plant development and
the ambient temperature was first mentioned by Réaumur in
France, who discovered what he called the degree-day unit
(described by Bonhomme, 2000). This unit, a measure of crop mat-
uration defined as the amount of heat an organism needs to accu-
mulate to reach full development, is now referred to as the growing
degree-day (GDD) unit and is no longer used only in agriculture
but also for predicting the development of parasites (Bernal, 1993;
Malone, 2005; Yang et al., 2007). The GDD approach constitutes
a major step forward with respect to the parasite/vector relation-
ship and is still applicable (Genchi et al., 2011; Valencia-López et
al., 2012). 

Although the GDD concept has no direct link to the Bioclim
datasets, it has encouraged thinking on the environment as a set of
contiguous niches with diverse ecology as first outlined by
Pavlovskii (1945) and later developed further by Hutchinson
(1957). Bioclim grew out of the type of niche modelling developed
in Australia by Nix (1986) and comprises a package of environ-
mental records for specific sites where a species had been seen that
can be used to map out other suitable locations where this species
should be able to exist. In this way, habitat suitability modelling
would indicate niches suitable for species under past, present or
future conditions. Bioclim is used extensively for species surveys,
assessments of the risk for invasive plants and animals, studies of
historical distributions and climate change evaluations, but the lack
of reliable estimates for climatic conditions at sites remote from
meteorological stations remains a major limitation (Booth et al.,
2014). Bioclim can also be used to predict how existing, estab-
lished species can cope with climate change (Booth and Williams,
2012). The Anusplin package an interpolation programme, made it
possible to develop applications in widely different biotopes (Zuo
et al., 1996; Hong et al., 2005). Significantly, it led to the
WorldClim database, a set of 1 km2 monthly gridded global climate
layers aggregated across a temporal range from 1960 to1990
developed by Hijmans et al. (2005). These data can be used for
mapping and spatial modelling for all land areas of the globe
except Antarctica and have recently been followed up by the pub-
lication of WorldClim 2,0 covering 1970-2000 (Fick and Hijmans,
2017). The 19 bioclimatic variables presented in WorldClim are
derived from temperatures and rainfall values to generate biologi-
cally meaningful variables to be used for species distribution and
ecological modelling. Data from weather stations were interpolat-
ed using thin-plate splines with elevations and satellite-derived
covariates, such as maximum and minimum land surface tempera-
ture as well as cloud cover and other parameters. 

The biotope concept has also received archaeological interest.
Paleoparasitology, defined as the study of parasites in ancient
material and their interactions with hosts and vectors, has led to the

creation of PaleoClim, a paleoclimate database (Brown et al.,
2018), that should be of interest for evolutionary and ecological
studies. PaleoClim is a free database of down-scaled paleoclimate
outputs at a resolution of about 5 km2 (at the equator) that include
surface temperature and precipitation estimates from snapshot-
style climate model simulations based on HadCM3, a version of
the UK Met Office Hadley Centre General Circulation Model that
can be utilized for modelling past and future climates. This
database contains climatic data for three key time periods spanning
from 3.300 to 0.787 million years ago (Ma): the Marine Isotope
Stage 19 (MIS19) in the Pleistocene (~0.787 Ma), the mid-
Pliocene Warm Period (~3.264-3.025 Ma), and MIS M2 in the late
Pliocene (~3.3 Ma). The availability of climatic simulations repre-
senting conditions of the late Pleistocene and Holocene epochs has
revolutionized the study of species responses to the late
Quaternary climate change. A recent excavation of ancient areas in
the Middle East has revealed the incidence of human and animal
parasitic infections dating back to 8100 BC (Khodkar et al., 2018),
while Banks (2017) used eco-cultural niche modelling as a way to
better understand the dynamics of European culture changes as far
back as 40,000 years ago.

Points to ponder
In response to calls for action by the 2002 World Summit on

Sustainable Development and the G8 leading industrialized coun-
tries, the Third Earth Observation Summit in Brussels, Belgium
established the Group on Earth Observations (GEO) in 2005. As of
2018, GEO’s membership includes 105 governments and 127
organizations with a mandate in Earth observation. GEO’s main
activity is to set up a Global Earth Observation System of Systems
(GEOSS) to connect producers of environmental data with the end
users of these data (https://www.earthobservations.org/geoss.php)
on the basis of a 10-Year Strategic Plan (2016-2025). The plan
defines eight areas, which includes public health, biodiversity and
ecosystem sustainability. NASA’s Earth Science area is moving
towards the study of climate and environmental change and the
potential impact on public health issues (Luvall, 2013). NASA also
promotes linkages with GEO to support collaboration and the use
of a standardized, open-source global resource data portal where
the Group on Earth observations health network (GEOHealth)
within the GEOSS framework would play an important role
(Malone et al., 2014). The GEOHealth mandate is outlined in a
recent paper by Malone et al. (2019).

Earth-observing satellites play a vital role in data collection as
they monitor the entire globe within rapidly repeated time periods.
More than 30 years of archived data used in epidemiological stud-
ies of infectious diseases are currently available. GEO uses satel-
lite-generated observations, including public-health surveillance,
to provide alerts regarding air and weather extremes, vector-borne
diseases, etc. (Igarashi et al., 2014; Gebreslasie et al., 2015;
Takane et al., 2016). In order to offer reliable and user-friendly
datasets, agencies have validated them by comparison with corre-
sponding ones from other sensors (Martin et al., 2019) as well as
with ground-based measurements (Colston et al., 2018). Users
should select their products carefully as time series of observations
usually are affected by the density of measurement and non-homo-
geneity caused by non-climatic factors such as relocation of weath-
er stations, changes of instruments, etc. One way to avoid this is by
reanalysis based on assimilation of combined observations from
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many different sources (terrestrial measurements and various satel-
lite-generated datasets) in order to provide a better representation
of past and current weather conditions (Toreti et al., 2019). 

Environmental data provide useful insights into the different
factors related to transmission levels and disease distributions,
while mapping and modelling facilitates interpretation, synthesis,
and recognition of outbreak frequencies (Rinaldi et al., 2015).
Although small-scale maps based on raw data can be difficult to
interpret because of differences in disease occurrence between
areas due to summation of true, structural differences, remotely
sensed information has now reached a level of sophistication
allowing almost complete niche specification, and optical scenes
that can be zoomed to give information at the household level
(Malone et al., 2019). 

AVHRR, carried by NOAA’s polar-orbiting satellites, and the
optical instruments onboard the various Landsat satellites have
been in use for close to 40 and 50 years, respectively, while
MODIS has been delivering environmental data since the start of
the new millennium The continuing instrumentation upgrade has
been highly beneficial to a wide range of scientific inquiry and dur-
ing the last few years a plethora of exceptional, new sensors have
emerged. They include the OLI optical sensor onboard Landsat-8,
the GPM for rainfall and the SMAP for soil moisture, while scien-
tists interested in agriculture and vegetation can enjoy access to a
daily stream of new data from ECOSTRESS. However, when
choosing satellites and sensors for research, it is necessary to con-
sider the four different modes of resolution available (spatial, tem-
poral, spectral and radiometric). As an example, Table 3 shows this
choice with respect to the four most common satellites and the six
most useful instruments. Acquiring data in 36 spectral groups of
wavelengths (bands) from the entire surface of the Earth, MODIS
has probably been, and will continue to be, the most useful sensor
for biological research. 

Spatial statistics
There is growing need to leverage existing and emerging

sources of remotely sensed data and to investigate their viability
for improving human health. Satellite imagery and environmental
data have significant potential to provide opportune statistical out-
puts at a more disaggregated level for informed human health deci-
sion-making. It is becoming evident that the human health sector is
directly affected by climate change (e.g. seasonal droughts, intense
rainfall, riverine floods and flash floods). Climatic factors are
linked to infant malnutrition and chronic ailments associated with
malaria, cholera and diarrhoea as a result of droughts and floods.
In a report by the World Health Organization (WHO, 2006), it was
estimated that 24% of the global burden of disease and 23% of all
deaths can be attributed to environmental factors and the United
Nations (2011) surmised that health is becoming a key goal of cli-
mate policies and a priority in climate mitigation and adaptation
actions. At the core, there is the aim to not only identify and
describe observed associations but also to appreciate the processes
resulting in the pattern(s) observed. Thus, statistical methodologies
are essential to describe the geographic distribution of disease, to
understand the intensity of transmission and risk, to characterize
populations at risk and to inform about potential interventions and
responses. 

Spatial statistics are specific methods that use distance, space,
and spatial relationships to describe and analyse patterns in the
geographical distribution of human health. This analysis often
involves a description of spatial occurrences (usually represented
by data on a map); exploratory analysis (to search for patterns and
possible explanations); statistical analysis and hypothesis testing
of expected phenomena under an assumed statistical model; and
modelling and prediction that involve construction of regression
models to predict health outcomes at certain locations. Spatial
statistics consequently constitute an area much too large to be dis-
cussed here in any detail, but some commonly used approaches are
expanded on below to emphasize that statistics cannot simply be
added onto a dataset to make sense of the information collected.
On the contrary, statistical thinking must be involved already from
the moment a project is being drafted. Indeed, it will help in advis-
ing just which data and how much information on each aspect
would be needed.
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Table 3. Channel characteristics of some commonly used sensors.

Resolution            NOAA/MetOP           Terra/Aqua                              Landsat                                   Global Precipitation Measurement
                                 AVHRR/3                   MODIS                             OLI and TIRS                           DPR                                      GMI

Spatial                            All six bands:              Bands 1-2: 250 m                             Bands 1-7: 30 m                            Both bands:                        Bands 1-2: 19.4×32.2 km
                                              1.1 km                    Bands 3-7: 500 m                                Band 8: 15 m                                      5 km                               Bands 3-4: 11.2×18.3 km
                                                                              Bands 8-36: 1 km                                Band 9: 30 m                                                                                 Band 5: 9.2×15.0 km
                                                                                                                                           Band 10: 100 m                                                                            Bands 6-7: 8.6×14.4 km
                                                                                                                                           Band 11: 100 m                                                                            Bands 8-13: 4.4×7.3 km
Temporal                         Twice daily                          2 days                                               16 days                                         2 days                                              2 days
Spectral                        Band 1: visible             10 bands: visible                      Bands 1-4: multispectral                 The KuPR band:                        Bands 1-2: 10.65 GHz
                                         Band 2: NIR                    9 bands: IR                                      Band 5: NIR                                  12-18 GHz                             Bands 3-4: 18.70 GHz
                                       Band 3A: SWIR                17 bands: TIR                                Bands 6-7: SWIR                        The KaPR band:                           Band 5: 23.80 GHz
                                       Band 3B: SWIR                                                                    Band 8: pancromatic                          26-40 GHz                             Bands 6-7: 36.64 GHz
                                          Band 4: TIR                                                                       Band 9: 1370 ± 10 nm                                                                        Bands 8-9: 89.00 GHz
                                          Band 5: TIR                                                                           Bands 10-11: TIR                                                                          Bands 10-11: 165.50 GHz
                                                                                                                                                                                                                                                  Bands 12-13: 183.31 GHz
Radiometric                        10 bits                             12 bits                                               12 bits                                        Variable                                           Variable
NOAA, National Oceanic and Atmospheric Administration; AVHRR, Advanced very high resolution radiometer; MODIS, Moderate resolution imaging spectroradiometer; OLI, Operational land imager; TIRS, Thermal
infrared sensor; DPR, Dual-frequency precipitation radar; GMI, Global Precipitation Measurement Microwave Imager; NIR, Near infrared; IR, Infrared; SWIR, Shortwave infrared; TIR, Thermal infrared.
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Choropleth maps vis-à-vis heat maps
One of the most common methods for describing spatial data

is the use of choropleth maps, which are thematic maps where dif-
ferent areas are shaded in proportion to exposure and outcomes
(e.g., with respect to health) dealing with parameters such as pop-
ulation density, amount of humidity and proportion of cases, per-
capita income, etc. They are based on data aggregated over previ-
ously defined regions and provide an easy way to measure and
visualize how occurrences vary across a geographic area.
However, when using choropleth maps, a number of issues need to
be considered, e.g., the modifiable areal unit problem (MAUP)
where results may depend on the specific geographic unit used
(Fotheringham and Wong, 1991), or the choice of a province,
county or city which can lead to different results and thus con-
tribute to major misinterpretations. Misuse of these maps can also
lead to the so-called ecological fallacy where the results obtained
from aggregated data are assumed to apply to individual people.
While the use of smaller and more specific regions can decrease
the risk of the ecological fallacy and MAUP, it can also make more
complicated maps. Raw-count data are often used when construct-
ing choropleth maps as if the population or geographic area are the
same size for all geographic units and this, too, can be problematic.
When using choropleth maps, the plotted data must always be nor-
malized by total population or geographic area. 

There is a slight, but important difference between choropleth
maps and heat maps: although similar, the former show changes
across a landscape with geographic boundaries, e.g., units such as
countries, states, census blocks, etc., while the latter, normally gen-
erated from point data representing a type of density, show changes
across a rasterized dataset, usually conforming to a small grid size.
i.e. a landscape where boundaries play no role. In this way, these
diverse presentations reflect the difference between vectors and
rasters as discussed above in relation to GIS presentations. Heat
maps are usually used when tracking natural phenomena, such as
environmental niches or weather, where established borders and
boundaries do not play a role. 

Cluster analysis
Perhaps one of the most important concepts in geography and

GIS is Tobler’s (1970) first law of geography, namely All places
are related but nearby places are more related than distant places.
In spatial statistics this law is confirmed by spatial autocorrelation
measures accounting for distance between spatial units. There are
several measures of spatial correlation: global measures use a sin-
gle value which applies to the entire data set, which is then seen as
an average for the entire area, while local measures produce a
value for each subunit of area, which may imply that different pat-
terns or processes occur in different parts of the region or country
under study. Well-known works on spatial autocorrelation are
Moran (1950), Geary’s C (Geary, 1954) and Getis and Ord (1992).

Correlation and regression models
Remotely-sensed environmental data are often useful when

considering the interplay between parameters such as poverty lev-
els, socio-economic variables and health. Standard correlation and
ordinary (linear) regression can be utilized to reveal relationships
between such datasets using a statistical analytical procedure with-
in a GIS that links health outcomes and spatial relationships,

including geographic features. However, in the presence of
(expected) spatial correlations, estimated coefficients and coeffi-
cients of determination would appear larger, and standard errors
smaller than they really are; this could lead to potentially incorrect
conclusions regarding the statistical significance of a relationship.
Spatial regression models, including spatial autoregressive lag
model error models and geographically weighted regressions, can
be used to estimate separate regression values for each area and its
neighbours. 

Bayesian spatial statistics
In Bayesian statistics probability is expressed as a degree of

belief in the occurrence of an event, which can change as new
information is gathered, rather than a fixed value based on frequen-
cy (Bayes, 1763). Bayesian methods generally require an unrealis-
tic amount of computation, so it was not much used before the
advent of powerful computers. Even though the Bayesian method-
ology for statistical inferences has long been used in the various
branches of statistics, its application to spatial statistics was initial-
ly hindered by analytical intractability in addition to the computa-
tional burden. Consequently, spatial modelling, including spatial
autoregressive models and conditional autoregressive models,
were rarely applied before advancements in computation and sim-
ulation methods appeared (Congdon, 2006). In particular, Markov
chain Monte Carlo methods, including the Metropolis-Hastings
algorithm (Hastings, 1970) and the Gibbs sampler (Gelfand and
Smith, 1990), eased the computational burden of Bayesian spatial
inference and are now incorporated into several packages, such as
WinBUGS (Lunn et al., 2000) and BayeX (Belitz et al., 2003) con-
tributing to the current exponential growth in epidemiological
applications of Bayesian spatial modelling (Congdon, 2006).
Bayesian spatial modelling considers both the distributions of the
data and the unknown coefficient estimates which are assigned pri-
ors based on subjective beliefs about their distributions. In this
context, Bayesian spatial modelling, Bayesian estimation and
inference of parameter estimates, model specifications and com-
parisons as well as predictions are the main issues. In most appli-
cations in health and epidemiology, Bayesian spatial modelling has
become more popular than conventional classical spatial mod-
elling (Banerjee et al., 2004). In recent decades, most applications
of Bayesian spatial methods have been based either on the lattice
geographical units model of Besag, York and Mollie (BYM)
(Besag et al., 1991) or the so-called convolution model, alterna-
tively the distance-based geostatistics model advanced by Diggle
and Ribeiro (2007). Measuring the statistical associations between
remotely-sensed data and human health depends on the data distri-
butions used to model human health outcomes. In most cases,
binomial and Poisson Bayesian spatial models are applied, in
which the effect sizes the Odds Ratios and Risk Ration models,
respectively. Such models have been widely used to link environ-
mental data and outcome, e.g., to assess the vegetation’s suitability
for the tsetse fly (Albert et al., 2015; Lord et al., 2018); the climat-
ic changes and induced vulnerability to malaria and cholera
(Reyburn et al., 2011; Zhao et al., 2014); the spatial drivers of land
use and land cover change (Kamwi et al., 2018); and the environ-
mental effects on allergies and cardiovascular disease (Brook et
al., 2004; Takano and Inoue, 2017). Importantly, today’s common
generation of large amounts of data leads to problems such as
uncertainty and inaccuracies in the generated datasets. This may
require complex geospatial modelling, to avoid measurement
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errors and uncertainties. The rapid generation of these types of
datasets and the need for geospatial modelling are now crucial in
facilitating the addition of a geographical component to epidemio-
logical research. We therefore need a consensus on the complexity
of spatial models used for estimating and predicting spatial sur-
faces  in order to provide robust and reliable spatial mapping at rel-
evant levels for local planning.

Discussion and Conclusions
With regard to cholera and smallpox, neither Shapter and

Snow nor Jenner understood how the places they realized were
risky, actually produced the disease and could thus only know the
where not the why. However, that was sufficient in practice.
Although the hypothesis, based on Hippocrates’ treatise Airs,
waters and places (Hippocrates, around 400 BC), that places could
exert a kind of influence through air or water first led Snow to
think that the water must be the culprit, he later realized that this
could not be the case since other pumps in London were safe (at
least in 1854). Instead it seemed to become bad when fetched – in
this he was tantalizing near the hidden truth that something was
transmitted from the water at the pump to the person who later fell
sick (in fact it also had to be transmitted to the water first at the
site). The way we understand the situation today is not only that
bacterial transfer takes place but also that certain areas can become
conducive for bacterial survival and exchange and thus create an
ecological niche. The same argument can be made for malaria,
which was already a problem in Roman times and not eliminated
from central Italy until the 1930s when efforts to drain the Pontine
marches south of Rome finally succeeded, robbing the Anopheles
mosquito of its ecologic niche. 

Although ecology is generally seen as a new science, it has in
one way or another existed since time immemorial (McIntosh,
1985). It was already an accepted concept in ancient Greece and
during the Roman era, with water sources and special locations
believed to play a role for health and disease. Hippocrates’ contem-
porary Theophrastus, although not primarily interested in health,
philosophizes about the association between animals and their
environment (Ramalay, 1940). However, ecology did not emerge
as a distinct discipline until the mid-19th century when defined by
Haeckel (1866), a German naturalist active in a range of academic
disciplines, who not only discovered, described and named thou-
sands of new species and mapped a genealogical tree relating all
life forms, but also coined many biological terms. Haeckel
admired his compatriot Alexander von Humboldt who, already in
the 18th century, had established an ecological perspective not far
from Darwin’s ideas, though Haeckel noted that Humboldt’s ecol-
ogy lacked the competition concept that was at the heart of On the
origin of species (Darwin, 1859).

The niche-related thinking based on the study of the very spe-
cific requirements different species that resulted in Bioclim (Nix,
1986) is a useful approach that works well even though it does not
lend itself to extrapolation taking into account the reasons why cer-
tain other environments lack particular species. Here, methods
requiring data on absence as well as presence are needed, e.g.,
Genetic Algorithm for Rule Set Production, a computer program
describing environmental conditions (possible to store in a GIS)
under which a species should be able to maintain its population
(Stockwell and Peters, 1999). Other modelling methods, such as
Maxent (Phillips et al., 2006). Use presence data in conjunction

with background data based on the maximum entropy principle
that generates the probability distribution best supported by avail-
able data. Extrapolation can be done allowing application of
Maxent also for combinations of environments unavailable during
model training which is an advantage, though overfitting is a risk
that should be taken into consideration.

BioClim is useful in its own right and the interpolations lead-
ing to the WorldClim database (Hijmans et al., 2005), which is
based on 19 global bioclimatic variables aggregated across the
1960-1990 period, can be used for mapping and spatial modelling
for all land areas. The follow-up WorldClim 2,0 (Fick and
Hijmans, 2017) covering the years 1970-2000 increases accuracy
for current data. However, if the Earth’s average temperature con-
tinues to rise as predicted by the Intergovernmental Panel on
Climate Change (IPCC), we might soon need a WorldClim 3.0.
Paleoparasitology, created along the same lines to trace and recov-
er the natural development of parasites as well as the origin of
infectious diseases, is an interesting continuation along the
BioClim trail. While today’s access to broad-range remotely-
sensed data has made epidemiology more dependent on such data,
this discipline has undergone a paradigmatic change thanks to GIS
that facilitates data management and processing. The visualization
of epidemiological datasets in a geographical context supports risk
profiling and the development of EWS, while the growth of the
Internet has made it possible to connect with other platforms, such
as web map servers, libraries, spatial database management sys-
tems, and software development frameworks. The field has thus
become multi-participatory, allowing the advantage of cloud-com-
puting opportunities that makes GIS accessible for anyone, any-
where. However, while the development of near real-time surveil-
lance systems, based on GIS, GPS and remote-sensing, facilitates
the establishment of accurate, up-to-date EWS, it is important to
understand that GIS neither makes the actual field collection of
parasites and their vectors easier (an essential task), nor does it by
itself assure the quality of the information gained.

Niche characterization can now be achieved by applying the
full force of remote-sensing to a small area. Facilitated by new
satellite systems, big data, climatology advances, and the novel
sensors, we are close to succeeding in the development of dynam-
ical multi-dimensional models of the major endemic diseases.
Importantly, the highly specific measurements of environmental
variables together with the sub-meter resolutions achieved by the
latest satellite imagery can provide risk assessments for as limited
an area as a community or even a household. Although falling out-
side the scope of this article, the potential of high-altitude aircraft
equipped with particular sensors, now promoted by NASA
(https://aviris.jpl.nasa.gov/), as well as the use of low-flying
drones should be seriously contemplated with respect to high-res-
olution health-related data collection within a user-set agenda.
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