Original Articles
4 June 2025

Dengue risk-mapping in an Amazonian locality in Colombia based on regression and multi-criteria analysis

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
449
Views
145
Downloads
1
HTML

Authors

The potential of dengue infection is of prime public health concern in tropical and subtropical countries. In Colombia, the management of this disease is based mainly on epidemiological monitoring and vector control. This study, covering the period 2015-2022, adds to this approach by investigating a tool that identifies dengue risk zones considering its environmental and sociodemographic determinants. For this purpose, an analytical, comparative, ecological study was carried out in three stages: i) selection of indicators associated with the occurrence of dengue through hierarchical analysis; ii) execution of a spatial-based Ordinary Least Squares (OLS) regression technique; and iii) multi-criteria analysis of the risk data obtained. Consequently, two optimal models, one for the rainy season (R2=0.5761; AIC=366.3929) and the other for the dry season (R2=0.8560; AIC=440.7557) were obtained for the Dengue Incidence Rate (DIR) during the study period mainly based on socio-demographic and environmental variables. A dengue risk map was generated, showing the impact on three neighbourhoods in the municipality of Piamonte in the Cauca Department covering both seasons. In conclusion, the dengue risk map made it possible to identify highrisk areas and also to identify the determinants of disease occurrence, which can contribute to improving disease management in tropical and subtropical regions.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ajim S, Ahmad A, 2018. Using analytic hierarchy process with GIS for Dengue risk mapping in Kolkata Municipal Corporation, West Bengal, India. Spat Inf Res 26:449–69. DOI: https://doi.org/10.1007/s41324-018-0187-x
Anselin L, Ibnu S, Youngihn K, 2006. GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5-22 DOI: https://doi.org/10.1111/j.0016-7363.2005.00671.x
Anselin L. 1988. Spatial Econometrics: Methods and Models. Kluwer DOI: https://doi.org/10.1007/978-94-015-7799-1
Ávila Montes GA, Martínez M, Sherman C, Fernández Cerna E, 2004. Evaluación de un módulo escolar sobre dengue y Aedes aegypti dirigido a escolares en Honduras. [Evaluation of a school module on dengue and Aedes aegypti for school children in Honduras.] Rev Panam Salud Publica 16:84–94. DOI: https://doi.org/10.1590/S1020-49892004000800003
Barrera R, 2016. Recommendations for the surveillance of Aedes aegypti. Biomédica 36:454–62. DOI: https://doi.org/10.7705/biomedica.v36i3.2892
Blanco K, Villamizar S, Ávila-Díaz A, Marceló-Díaz C, Santamaría E, Lesmes M, 2023. Daily dataset of precipitation and temperature in the Department of Cauca, Colombia. Data Brief 50:109542. DOI: https://doi.org/10.1016/j.dib.2023.109542
Blanco L, Pinzón C, Idrovo Á, 2015. Estudios ecológicos en salud ambiental: más allá de la epidemiología [Ecological studies in environmental health: beyond epidemiology.]. Biomédica 35:191–206. DOI: https://doi.org/10.7705/biomedica.v35i0.2819
Braga C, Luna C, Martelli C, Souza W, Cordeiro M, Alexander N, Albuquerque M, Júnior J, Marques E, 2010.Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Tropica 113:234–40. DOI: https://doi.org/10.1016/j.actatropica.2009.10.021
Chen Y, Hui J, Rajarethinam J, Yap G, Ching L, Cook A, 2018. Neighbourhood level real-time forecasting of dengue cases in tropical urban Singapore. BMC Medicine 16:129. DOI: https://doi.org/10.1186/s12916-018-1108-5
Collazos D, Macualo C, Orjuela D, Suarez A, 2017. Determinantes sociodemograficos y ambientales en la incidencia de dengue en anapoima y la mesa cundinamarca 2007-2015. Universidad de Ciencias Aplicadas y Ambientales U.D.C.A. Facultad de Ciencias de la Salud.
Costa M, Vilges S, Ouverney P, de Lacerda A, Albuquerque R, Takashi M, Mendonca C, Veruska M, Vieira R, Gurgel R, 2014. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multi-criteria decision analysis. Acta Tropica 105-110. DOI: https://doi.org/10.1016/j.actatropica.2014.05.007
Cunha M, Ju Y, Franco M, Dronova I, Pontes S, Pascoti F, Lopes L, Marques D, Lang O, Rodríguez D, Teixeira W, 2021. Disentangling associations between vegetation greenness and dengue in a Latin American city: Findings and challenges. Landsc Urban Plan 216:104255. DOI: https://doi.org/10.1016/j.landurbplan.2021.104255
Departamento Administrativo Nacional de Estadística, 2018. Manual de uso del Marco Geoestadístico Nacional en el proceso estadístico. [Manual for the use of the National Geostatistical Framework in the statistical process.] Available from: https://www.dane.gov.co/files/sen/lineamientos/manual-uso-marco-geoestadistico-nacional-en-proceso-estadistico.pdf
Dom N, Ahmad A, Latif Z, Ismail R, 2016. Application of geographical information system-based analytical hierarchy process as a tool for dengue risk assessment. Asian Pac J Trop Med 6:928–35. DOI: https://doi.org/10.1016/S2222-1808(16)61158-1
Estallo E, Sangermano F, Grech M, Ludueña F, Frías M, Ainete M, Almirón W, Livdahl T, 2018. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Med Vet Entomol 32:451–61. DOI: https://doi.org/10.1111/mve.12323
Golding M, Noble S, Khouri N, Layne-Yarde R, Ali I, Sandiford S, 2023. Natural vertical transmission of dengue virus in Latin America and the Caribbean: highlighting its detection limitations and potential significance. Parasites Vectors 16:442. DOI: https://doi.org/10.1186/s13071-023-06043-1
Gubler D, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–96. DOI: https://doi.org/10.1128/CMR.11.3.480
Guzmán M, Kourí G, García G. 2006. El dengue y el dengue hemorrágico: prioridades de investigación. Rev Panam Salud Publica19:204–215. DOI: https://doi.org/10.1590/S1020-49892006000300015
Handayani S, Fannya P, Roza S, Angelia I, 2017. Analisis spasial temporal hubungan kepadatan penduduk dan ketinggian tempat dengan kejadian DBD kota padang. J Kesehatan Med Saintika 8:25-34.
Instituto Nacional de Salud, 2022. Boletín Epidemiológico semana epidemiológica 52. Dirección de vigilancia y análisis del riesgo en salud pública, 35 pp.
Instituto Nacional de Salud, 2023. Boletín Epidemiológico semana epidemiológica52.Dirección de vigilancia y análisis del riesgo en salud pública, 35 pp.
Intergovernmental Panel of Climate Change, 2022. Climate change 2022: Mitigation of climate change. DOI: https://doi.org/10.1017/9781009157926
Istiqamah S, Arsin A, Salmah A, Mallongi A, 2020. Correlation Study Between Elevation, Population Density, and Dengue Hemorrhagic Fever in Kendari City in 2014–2018. Open Access Maced J Med Sci 8:63-66. DOI: https://doi.org/10.3889/oamjms.2020.5187
Jarque C, Bera A, 1980. Efficient tests for normality homoscedasticity and serial independence of regression residuals. Econometric Letters 6:255–9. DOI: https://doi.org/10.1016/0165-1765(80)90024-5
Juhl S. 2020. The Wald test of common factors in spatial modelspecification search strategies. Political Analysis 29:193-211. DOI: https://doi.org/10.1017/pan.2020.23
Koenker R, Bassett G, 1982. Robust tests for heteroscedasticity based on regression quantiles. Econometrica 50:43–61. DOI: https://doi.org/10.2307/1912528
Lippi C, Stewart-Ibarra A, Muñoz Á, Borbor-Cordova M, Mejía R, Rivero K, Castillo K, Cárdenas W, Ryan S, 2018. The social and spatial ecology of dengue presence and burden during an outbreak in Guayaquil, Ecuador, 2012. Int J Environ Res Public Health 15:827. DOI: https://doi.org/10.3390/ijerph15040827
Louis V, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, Tozan Y, Dambach P, 2014. Modeling tools for dengue risk mapping a systematic review. Int J Health Geographics 13:50. DOI: https://doi.org/10.1186/1476-072X-13-50
Marceló-Díaz C, Lesmes M, Santamaría E, Salamanca J, Fuya P, Cadena H, Muñoz P, Morales C, 2023. Spatial analysis of dengue clusters at department, municipality and local scales in the southwest of Colombia, 2014–2019. Trop Med Infect Dis 8:262. DOI: https://doi.org/10.3390/tropicalmed8050262
Ministerio de la Protección Social, Instituto Nacional de Salud, Organización Panamericana de la Salud. Gestión para la Vigilancia Entomológica y Control de la Transmisión del Dengue. 2011. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/gestion-vigilancia-entomologica-dengue.pdf
Padilla J, Lizarazo F, Murillo O, Mendigaña F, Pachón E, Vera M, 2017. Epidemiología de las principales enfermedades transmitidas por vectores en Colombia, 1990 - 2016. Biomédica 37:27-40. DOI: https://doi.org/10.7705/biomedica.v37i0.3769
Padilla J, Rojas D, Sáenz R, 2012. Dengue en Colombia: epidemiología de la reemergencia a la hiperendemia, 248 pp.
Palaniyandi M, 2012. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review. J Vector Borne Dis 197-204. DOI: https://doi.org/10.4103/0972-9062.213498
Phillips S, Dudík M, Schapire R, Anderson R. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from URL:http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2024-12-4.
Racloz V, Ramsey R, Tong S, Hu W, 2012. Surveillance of dengue fever virus: A review of epidemiological models and early warning systems. PLoS NeglTrop Dis 6:0001648. DOI: https://doi.org/10.1371/journal.pntd.0001648
Sahdev S, Kumar M, 2020. Identification and Mapping of Dengue Epidemics using GIS- Based Multi-Criteria Decision Making. The Case of Delhi, India. J Settl Spat Plan 6:61-9. DOI: https://doi.org/10.24193/JSSPSI.2020.6.07
Sánchez C, Santamaría E, Morales C, Lesmes M, Cadena H, Ávila-Díaz A, Fuya P, Marceló-Díaz C, 2023. Spatial patterns associated with the distribution of immature stages of Aedes aegypti in three dengue high-risk municipalities of Southwestern Colombia. Gigabyte. https://doi.org/10.46471/gigabyte.95 DOI: https://doi.org/10.46471/gigabyte.95
Schmidt W, Suzuki M, Thiem V, White R, Tsuzuki A, Yoshida L, Yanai H, Haque U, Tho L, Anh D, Ariyoshi K, 2011. Population density, water supply, and the risk of dengue fever in vietnam: Cohort study and spatial analysis. PLoS Medicine 8:e1001082. DOI: https://doi.org/10.1371/journal.pmed.1001082
Semenza J, 2015. Prototype early warning systems for vector-borne diseases in Europe. Int. J. Environ. Res. Public Health 12:6333–51. DOI: https://doi.org/10.3390/ijerph120606333
Silverman B. (1986). Density estimation for statistics and data analysis.Chapman and Hall, London.
Soneja S, Tsarouchi G, Lumbroso D, Tung DK. 2021. A review of dengue's historical and future health risk from a changing climate. Curr Environ Health Rep 2021;8:245-65. DOI: https://doi.org/10.1007/s40572-021-00322-8
Tsheten T, Clements A, Gray D, Wangdi K, 2021. Dengue risk assessment using multicriteria decision analysis: A case study of Bhutan. Int PLoS Neglected Tropical Diseases 15:2. DOI: https://doi.org/10.1371/journal.pntd.0009021
Tsuzuki A, Thiem D, Suzuki M, Yanai H, Matsubayashi T, Yoshida L, Tho L, Minh T, Anh D, Kilgore P, Takagi M, Ariyoshi K, 2010. Can daytime use of bed nets not treated with insecticide reduce the risk of dengue hemorrhagic fever among children in Vietnam? Am J Trop Med Hyg 82:1157-9. DOI: https://doi.org/10.4269/ajtmh.2010.09-0724
Vazquez G, 2009. A new, cost-effective, battery-powered aspirator for adult mosquito collections. J Med Entomol 46:1256-9. DOI: https://doi.org/10.1603/033.046.0602
Vieira R, Albertini M, Costa-da-Silva A, Suesdek L, Soares N, Marcal N, Katz G, Ailt V, Ciotek B, Lara M, Anacleto V. 2015. São Paulo urban heat islands have a higher incidence of dengue than other urban areas. Braz J Infect Dis 9:146-55. DOI: https://doi.org/10.1016/j.bjid.2014.10.004
World Health Organisation (WHO), 2015. Detección temprana, evaluación y respuesta ante eventos agudos de salud pública: Puesta en marcha de un mecanismo de alerta temprana y respuesta con énfasis en la vigilancia basada en eventos. [Early detection, assessment and response to acute public health events: Implementation of an early warning and response mechanism with emphasis on event-based surveillance.] 73 pp.

How to Cite



Dengue risk-mapping in an Amazonian locality in Colombia based on regression and multi-criteria analysis. (2025). Geospatial Health, 20(1). https://doi.org/10.4081/gh.2025.1292