Original Articles
9 June 2025

Environmental and geographical factors influence malaria transmission in KwaZulu-Natal province, South Africa

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
81
Views
14
Downloads

Authors

The malaria burden remains largely concentrated in sub- Saharan Africa. South Africa, a country within this region, has made significant progress toward malaria elimination. However, malaria continues to be endemic in three of its nine provinces: Limpopo, Mpumalanga, and KwaZulu-Natal (KZN), which are located in the northern part of the country and share borders with Botswana, Zimbabwe, and Mozambique. This study focuses on KZN, where district municipalities report monthly malaria cases ranging from zero to 8,981. Fitting Bayesian zero-inflated models in the INLA R package, we assessed the effects of various climate and environmental variables on malaria prevalence and spatio-temporal transmission dynamics from 2005-2014. Specifically, we analyzed precipitation, day and night land surface temperature, the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and elevation data for KZN local municipalities. Our findings indicate that the best model was the Zero- Inflated Negative Binomial (ZINB) and that at 95% Bayesian Credible Interval (CI), NDVI (0.74; CI (0.95, 3.87) is significantly related to malaria transmission in KZN, with the north-eastern part of the province exhibiting the highest risk of malaria transmission. Additionally, our model captured the reduction of malaria from 2005 to 2010 and the following resurgence. The modelling approach employed in this study represents a valuable tool for understanding and monitoring the influence of climate and environmental variables on the spatial heterogeneity of malaria. Also, this study reveals the need to strengthen the already existing crossborder collaborations to fortify KZN’s malaria elimination goals.

Altmetrics

Downloads

Download data is not yet available.

Citations

Adu-Prah S, Tetteh EK, 2015. Spatiotemporal analysis of climate variability impacts on malaria prevalence in Ghana. Appl Geogr 60:266-273. DOI: https://doi.org/10.1016/j.apgeog.2014.10.010
Alegana V, Wright J, Nahzat S, Butt W, Sediqi AW, Habib N, 2014. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006–2009. PLoS ONE 9:e102304 DOI: https://doi.org/10.1371/journal.pone.0102304
Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P, Katokele S, SnowRW, Noor A M, 2013. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spat Spatiotemporal Epidemiol 7:25-36. DOI: https://doi.org/10.1016/j.sste.2013.09.001
Arab A, 2015. Spatial and spatio-temporal models for modeling epidemiological data with excess zeros. Int J Environ Res Public Health 12:10536-48. DOI: https://doi.org/10.3390/ijerph120910536
Arab A, Jackson MC, Kongoli C, 2014. Modelling the effects of weather and climate on malaria distributions in West Africa. Malar J 13:126. DOI: https://doi.org/10.1186/1475-2875-13-126
Arab A, Wildhaber ML, Wikle CK,Gentry CN, 2008. Zero-inflated modeling of fish catch per unit area resulting from multiple gears: application to channel catfish and shovelnose sturgeon in the Missouri River. N Am J Fish Manag 28:1044-1058. DOI: https://doi.org/10.1577/M06-250.1
Blangiardo M, Cameletti M, 2015. Spatial and spatio-temporal Bayesian models with R-INLA, John Wiley & Sons, 308 pp. DOI: https://doi.org/10.1002/9781118950203
Cairns M, Roca-Feltrer A, Garske T, Wilson AL, Diallo D, Milligan PJ, Ghani AC, Greenwood BM, 2012. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat Commun 3:881. DOI: https://doi.org/10.1038/ncomms1879
Caminade C, Kovats S, Rocklov J, lloyd S, 2014. Impact of climate change on global malaria distribution. PNAS 111:3286-3291. DOI: https://doi.org/10.1073/pnas.1302089111
Camp KGT, 1999. A Bio-Resource Classification for KwaZulu-Natal, South Africa. University of Natal, Pietermaritzburg, South Africa, 140 pp.
Chipeta MG, Ngwira BM, Simoonga C, Kazembe LN, 2014. Zero adjusted models with applications to analysing helminths count data. BMC Res Notes 7:856. DOI: https://doi.org/10.1186/1756-0500-7-856
Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson M L, 2010. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J 9:328. DOI: https://doi.org/10.1186/1475-2875-9-328
Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML, 2008. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J 7:40. DOI: https://doi.org/10.1186/1475-2875-7-40
Craig MH, Snow R, le Sueur D, 1999. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15:105-111. DOI: https://doi.org/10.1016/S0169-4758(99)01396-4
Dantur Juri MJ, Estallo E, Almirón W, Santana M, Sartor P, Lamfri M, Zaidenberg M, 2015. Satellite-derived NDVI, LST, and climatic factors driving the distribution and abundance of Anopheles mosquitoes in a former malarious area in northwest Argentina. J Vector Ecol 40:36-45. DOI: https://doi.org/10.1111/jvec.12130
Ebhuoma O, Gebreslasie M, 2016. Remote sensing-driven climatic/environmental variables for modelling malaria transmission in Sub-Saharan Africa. Int J Environ Res Public Health 13:584. DOI: https://doi.org/10.3390/ijerph13060584
Ebhuoma O, Gebreslasie M, Magubane L, 2017. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis. J Infec Public Health 10:334-8. DOI: https://doi.org/10.1016/j.jiph.2017.02.011
Ernst KC, Lindblade KA, Koech D, Sumba PO, Kuwuor DO, John CC, Wilson ML, 2009. Environmental, socio-demographic and behavioural determinants of malaria risk in the western Kenyan highlands: a case-control study. Trop Med Int Health 14:1258-65. DOI: https://doi.org/10.1111/j.1365-3156.2009.02370.x
Ferraguti M, Magallanes S, Mora-Rubio C, Bravo-Barriga D, de Lope F, Marzal A, 2024. Landscape and climatic factors shaping mosquito abundance and species composition in southern Spain: A machine learning approach to the study of vector ecology. Ecol Infor 84: 102860. DOI: https://doi.org/10.1016/j.ecoinf.2024.102860
Ferraguti M, Martinez-de la Puente J, Roiz D, Ruiz S, Soriguer R, Figuerola J, 2016. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep 6: 29002. DOI: https://doi.org/10.1038/srep29002
Gao HW, Wang LP, Liang S, Liu YX, Tong SL, Wang JJ, Li YP, Wang XF, Yang H, Ma JQ, Fang LQ, Cao WC, 2012. Change in Rainfall Drives Malaria Re-Emergence in Anhui Province, China. PLoS ONE 7:e43686. DOI: https://doi.org/10.1371/journal.pone.0043686
Garske T, Ferguson NM, Ghani AC, 2013. Estimating air temperature and its influence on malaria transmission across Africa. PLoS ONE 8:e56487. DOI: https://doi.org/10.1371/journal.pone.0056487
Gelman A, Hill J, 2006. Data analysis using regression and multilevel/hierarchical models, Cambridge University Press, 648 pp. DOI: https://doi.org/10.1017/CBO9780511790942
Giardina F, Gosoniu L, Konate L, Diouf MB, Perry R, Gaye O, Faye O, Vounatsou P, 2012. Estimating the burden of malaria in Senegal: Bayesian zero-inflated binomial geostatistical modeling of the MIS 2008 data. PLoS ONE 7:e32625. DOI: https://doi.org/10.1371/journal.pone.0032625
Githeko AK, 2009. Malaria And Climate Change. Commonwealth Health Minister’s, Commonwealth Secretariat, 42-45 pp.
Gosoniu L, Veta AM,Vounatsou P, 2010. Bayesian geostatistical modeling of Malaria Indicator Survey data in Angola. PLoS ONE 5:e9322. DOI: https://doi.org/10.1371/journal.pone.0009322
Gosoniu L, Vounatsou P, Sogoba N, Maire N, Smith T, 2009. Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model. Comp Stat Data Anal 53:3358-3371. DOI: https://doi.org/10.1016/j.csda.2009.02.022
Hay SI, Snow RW, Rogers DJ, 1998. Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans R Soc Trop Med Hyg 92:12-20. DOI: https://doi.org/10.1016/S0035-9203(98)90936-1
Held L, Schrödle B, Rue H, 2010. Posterior and cross-validatory predictive checks: a comparison of MCMC and INLA. In: Kneib T, Tutz G (eds) Statistical Modelling and Regression Structures. Physica-Verlag, 91-110 pp. DOI: https://doi.org/10.1007/978-3-7908-2413-1_6
Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195-213. DOI: https://doi.org/10.1016/S0034-4257(02)00096-2
IRI/LDEO Climate data library, 2016a. Climate Prediction Center - gridded precipitation estimates. Available from: https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/?Set-Language=en
IRI/LDEO Climate data library, 2016b. USGS – Africa Data Dissemination Service.Available from:https://iridl.ldeo.columbia.edu/SOURCES/.USGS/?Set-Language=en
IRI/LDEO Climate data library, 2017. NGDC – Gridded 1-km, quality controlled global Digital Elevation Model (DEM) data from the Global Land One-km Base Elevation (GLOBE) project. Available from:https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NGDC/?Set-Language=en
Johnson JM, Clarke KC, 2021. An area preserving method for improved categorical raster resampling. Cartogr Geogr Inf Sci 48:292-304. DOI: https://doi.org/10.1080/15230406.2021.1892531
Kasasa S, Asoala V, Gosoniu L, Anto F, Adjuik M, Tindana C, Smith T, Owusu-Agyei S, Vounatsou P, 2013. Spatio-temporal malaria transmission patterns in Navrongo demographic surveillance site, northern Ghana. Malar J 12:63. DOI: https://doi.org/10.1186/1475-2875-12-63
Kiani B, Thierry B, Apparicio P, Firth C, Fuller D, Winters M, Kestens Y, 2024. Associations between gentrification, census tract-level socioeconomic status, and cycling infrastructure expansions in Montreal, Canada. SSM Popul Health 25:101637. DOI: https://doi.org/10.1016/j.ssmph.2024.101637
Li T, Yang Z, Wang M, 2013. Temperature, relative humidity and sunshine may be the effective predictors for occurrence of malaria in Guangzhou, southern China, 2006–2012. Parasit Vectors 6:155. DOI: https://doi.org/10.1186/1756-3305-6-155
Maharaj R, Seocharan I, Qwabe B, Mkhabela M, Kissoon S, Lakan V, 2019. Decadal epidemiology of malaria in KwaZulu-Natal, a province in South Africa targeting elimination. Malar J 18:368. DOI: https://doi.org/10.1186/s12936-019-3001-x
Matsushita B, Yang W, Chen J, Onda Y, Qiu G, 2007. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 7:2636-51. DOI: https://doi.org/10.3390/s7112636
Midekisa A, Beyene B, Mihretie A, Bayabil E, Wimberly MC, 2015. Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia. Parasit Vectors 8:1-11. DOI: https://doi.org/10.1186/s13071-015-0954-7
Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC, 2012. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar J 11:165. DOI: https://doi.org/10.1186/1475-2875-11-165
Moonasar D, Maharaj R, Kunene S, Candrinho B, Saute F, Ntshalintshali N, Morris N, 2016. Towards malaria elimination in the MOSASWA (Mozambique, South Africa and Swaziland) region. Malar J 15:419. DOI: https://doi.org/10.1186/s12936-016-1470-8
Moonasar D, Nuthulaganti T, Kruger PS, Mabuza A, Rasiswi ES, Benson FG, Maharaj R, 2012. Malaria control in South Africa 2000–2010: beyond MDG6. Malar J 11:294. DOI: https://doi.org/10.1186/1475-2875-11-294
Morris N, Frean J, Baker L, Ukpe IS, Barnes KI, Kruger P, 2013. Re-defining the extent of malaria transmission in South Africa: implications for chemoprophylaxis. S Afr Med J 103:861-4. DOI: https://doi.org/10.7196/SAMJ.7533
Musenge E, Chirwa TF, Kahn K, Vounatsou P, 2013. Bayesian analysis of zero inflated spatiotemporal HIV/TB child mortality data through the INLA and SPDE approaches: applied to data observed between 1992 and 2010 in rural North East South Africa. Int J Appl Earth Obs Geoinf 22:86-98. DOI: https://doi.org/10.1016/j.jag.2012.04.001
Neelon BH, O’Malley AJ, Normand SLT, 2010. A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use. Stat Model 10:421-39. DOI: https://doi.org/10.1177/1471082X0901000404
Ntzoufras I, 2008. Bayesian Modeling Using WinBUGS, John Wiley & Sons, 520 pp. DOI: https://doi.org/10.1002/9780470434567
Nygren D, Stoyanov C, Lewold C, Mansson F, Miller J, Kamanga A, Shiff CJ, 2014. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study. Malar J 13:231. DOI: https://doi.org/10.1186/1475-2875-13-231
Raman J, Gast L, Balawanth R, Tessema S, Brooke B, Maharaj R, Munhenga G, Tshikae P, Lakan V, et al., 2020. High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination. Malar J 19:152. DOI: https://doi.org/10.1186/s12936-020-03227-3
Rue H, Martino S, Chopin N, 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71:319-92. DOI: https://doi.org/10.1111/j.1467-9868.2008.00700.x
Sikaala CH, Dlamini B, Lungu A, Fakudze P, et al., 2024. Malaria elimination and the need for intensive inter-country cooperation. A critical evaluation of regional technical co-operation in Southern Africa. Malar J 23:62. DOI: https://doi.org/10.1186/s12936-024-04891-5
Sinka ME, Pironon S, Massey NC, Willis KJ, 2020. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. PNAS 117:24900-24908. DOI: https://doi.org/10.1073/pnas.2003976117
Sogoba N, Vounatsou P, Bagayoko MM, Doumbia S, Dolo G, Gosoniu L, Traore SF, Toure YT, Smith T, 2007. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae) in Mali. Geospat Health 1:213-22. DOI: https://doi.org/10.4081/gh.2007.269
South Africa National Department of Health, 2012. Malaria elimination strategy for South Africa 2012-2018. Pretoria, South Africa National Department of Health.
Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A, 2002. Bayesian measures of model complexity and fit. J R Stat Soc B 64: 583-639. DOI: https://doi.org/10.1111/1467-9868.00353
Stefani A, Dusfour I, Corrêa APS, Cruz MC, Dessay N, Galardo AK, Galardo CD, Girod R, Gomes MS, Gurgel H, Lima ACF, Moreno ES, Musset L, Nacher M, Soares AC, CarmeB, Roux E, 2013. Land cover, land use and malaria in the Amazon: a systematic literature review of studies using remotely sensed data. Malar J 12:192. DOI: https://doi.org/10.1186/1475-2875-12-192
Tatem AJ, Gething PW, Smith DL, Hay SI, 2013. Urbanisation and the global malaria recession. Malar J 12:133. DOI: https://doi.org/10.1186/1475-2875-12-133
Tatem AJ, Guerra CA, Kabaria CW, Noor AM, Hay SI, 2008. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J 7:218. DOI: https://doi.org/10.1186/1475-2875-7-218
Tsoka-Gwegweni JM, 2022. Status of malaria and its implications for elimination in an endemic province of South Africa: retrospective analysis. Pan Afr Med J 41:275. DOI: https://doi.org/10.11604/pamj.2022.41.275.26774
Tusting LS, Willey B, Lucas H, Thompson J, Kafy HT, Smith R, Lindsay SW, 2013. Socioeconomic development as an intervention against malaria: a systematic review and meta-analysis. Lancet 382:963-72. DOI: https://doi.org/10.1016/S0140-6736(13)60851-X
Villena OC, Arab A, Lippi CA, Ryan SJ, Johnson LR, 2024b. Influence of environmental, geographic, socio-demographic, and epidemiological factors on presence of malaria at the community level in two continents. Sci Rep 14:16734. DOI: https://doi.org/10.1038/s41598-024-67452-5
Villena OC, McClure KM, Camp RJ, LaPointe DA, Atkinson CT, Sofaer HR, Fortini LB 2024a. Environmental and geographical factors influence the ocurrence and abundance of the southern house mosquito, Culex quinquefasciatus, in Hawai’i. Sci Rep 14:604. DOI: https://doi.org/10.1038/s41598-023-49793-9
Villena OC, Ryan SJ, Murdock CC, Johnson LR, 2022. Temperature impacts the environmental suitability for malaria transmission by Anopheles gambiae and Anopheles stephensi. Ecology 103:e3685. DOI: https://doi.org/10.1002/ecy.3685
Viña A, Henebry GM, Gitelson AA, 2004. Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index. Geophys Res Lett 31:L04503. DOI: https://doi.org/10.1029/2003GL019034
White MT, Griffin JT, Churcher TS, Ferguson NM, Basáñez MG, Ghani AC, 2011. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors 4:153. DOI: https://doi.org/10.1186/1756-3305-4-153
World Health Organization, 2023. World malaria report 2023. Geneva, Switzerland. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
World Health Organization, 2024. World malaria report 2024: addressing inequity in the global malaria response. Geneva, Switzerland. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024
Yé Y, Louis VR, Simboro S, Sauerborn R, 2007. Effect of meteorological factors on clinical malaria risk among children: an assessment using village-based meteorological stations and community-based parasitological survey. BMC Public Health 7:101. DOI: https://doi.org/10.1186/1471-2458-7-101
Zayeri F, Salehi M, Pirhosseini H, 2011. Geographical mapping and Bayesian spatial modeling of malaria incidence in Sistan and Baluchistan province, Iran. Asian Pac J Trop Med 4:985-992. DOI: https://doi.org/10.1016/S1995-7645(11)60231-9
Zianni MR, Nikbakhtzadeh MR, Jackson BT, Panescu J, Foster WA, 2013. Rapid discrimination between Anopheles gambiae s.s. and Anopheles arabiensis by high-resolution melt (HRM) analysis. J Biomol Tech 24:1-7. DOI: https://doi.org/10.7171/jbt.13-2401-001
Zinszer K, Kigozi R, Charland K, Dorsey G, Brewer TF, Brownstein JS, Kamya MR, Buckeridge DL, 2015. Forecasting malaria in a highly endemic country using environmental and clinical predictors. Malar J 14:245. DOI: https://doi.org/10.1186/s12936-015-0758-4
Zinszer K, Talisuna AO, 2022. Fighting insecticide resistance in malaria control. Lancet Infect Dis 23:138-9. DOI: https://doi.org/10.1016/S1473-3099(22)00518-7

How to Cite



Environmental and geographical factors influence malaria transmission in KwaZulu-Natal province, South Africa. (2025). Geospatial Health, 20(1). https://doi.org/10.4081/gh.2025.1370