Original Articles
15 May 2025

Typhoid fever in Jakarta, Indonesia 2017-2023: spatial clustering and seasonality of hospitalization data to inform better intervention

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
401
Views
96
Downloads
21
HTML

Authors

Typhoid fever is one of the common enteric fevers in developing countries, especially in emerging metropolitan areas in Indonesia. Yet, studies on spatial and temporal distribution of tyhoid fever are lacking. This study was conducted to analyze retrospective hospital-based data at the village level over the period 2017-2023 to understand the spatial and temporal variation of typhoid fever in Jakarta. Spatial analyses were performed by Moran’s I and Local Indicators of Spatial Association (LISA) to examine spatial clustering of typhoid incidence and to identify high-risk villages for typhoid fever, respectively. Seasonal decomposition analysis was performed to investigate the seasonality of this infection. A total of 57,468 typhoid cases, resulting in a cumulative incidence of 533.99 per 100,000 people, were reported during the study period. The incidence was significantly clustered (I=0.548; p=0.001) at the village level across Jakarta. Statistically significant high-risk clusters were detected in the South and East of Jakarta that were heterogeneous over time. We identified seven persistent high-risk clusters in the eastern part of the city and two in the southern part. Moreover, the typhoid incidence showed a strong seasonality trend, significantly associated with monthly total rainfall (p=0.018). The study revealed a significant spatial variation with strong seasonality in typhoid incidence across the city suggesting a variation in transmission intensity and needs for effective public health interventions, especially in the high-risk areas. Improvement in water and sanitation facilities, hygiene awareness and surveillance are essential to help reduce typhoid transmission in Jakarta.

Altmetrics

Downloads

Download data is not yet available.

Citations

Acosta CJ, Galindo CM, Ochiai RL, Danovaro-Holliday MC, Page AL, Thiem VD, Park JK, Park E, Koo H, Wang XY, Abu-Elyazeed R, Ali M, Albert MJ, Ivanoff B, Pang T, Xu ZY, Clemens JD, 2004. The role of epidemiology in the introduction of vi polysaccharide typhoid fever vaccines in Asia J Health Popul Nutr 22(3):240-245.
Ahmmed F, Khanam F, Islam MT, Kim DR, Kang S, Firoj MG, Aziz AB, Hoque M, Liu X, Jeon HJ, Kanungo S, Chowdhury F, Khan AI, Zaman K, Marks F, Kim JH, Qadri F, Clemens JD, Tadesse BT, Im J, 2024. Spatial and temporal clustering of typhoid fever in an urban slum of Dhaka City: Implications for targeted typhoid vaccination. PLOS Neglected Tropical Diseases 18:e0012273. DOI: https://doi.org/10.1371/journal.pntd.0012273
Akullian A, Ng'eno E, Matheson AI, Cosmas L, Macharia D, Fields B, Bigogo G, Mugoh M, John-Stewart G, Walson JL, Wakefield J, Montgomery JM, 2015. Environmental Transmission of Typhoid Fever in an Urban Slum. PLoS Negl Trop Dis 9:e0004212. DOI: https://doi.org/10.1371/journal.pntd.0004212
Alba S, Bakker MI, Hatta M, Scheelbeek PF, Dwiyanti R, Usman R, Sultan AR, Sabir M, Tandirogang N, Amir M, Yasir Y, Pastoor R, van Beers S, Smits HL, 2016. Risk Factors of Typhoid Infection in the Indonesian Archipelago. PLoS One 11:e0155286. DOI: https://doi.org/10.1371/journal.pone.0155286
Ali E, Bergh RVD, D'hondt R, Kuma-Kuma D, Weggheleire A, Baudot Y, Lambert V, Hunter P, Zachariah R, Maes P, 2017. Localised transmission hotspots of a typhoid fever outbreak in the Democratic Republic of Congo. Pan Afr Med J 28:179. DOI: https://doi.org/10.11604/pamj.2017.28.179.10208
Anselin L, 1995. Local Indicators of Spatial Association—LISA. Geogr Anal 27:93-115. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin L, 2020. Global Spatial Autocorrelation. (accessed 5 June 2024) Avalable from https://geodacenter.github.io/workbook/5a_global_auto/lab5a.html
Anselin L, Syabri I, Kho Y, 2006. GeoDa, an introduction to spatial data analysis. Geogr Anal 38:5-22. DOI: https://doi.org/10.1111/j.0016-7363.2005.00671.x
Baker S, Holt KE, Clements AC, Karkey A, Arjyal A, Boni MF, Dongol S, Hammond N, Koirala S, Duy PT, Nga TV, Campbell JI, Dolecek C, Basnyat B, Dougan G, Farrar JJ, 2011. Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban typhoid fever transmission. Open Biol 1:110008. DOI: https://doi.org/10.1098/rsob.110008
Brockett S, Wolfe MK, Hamot A, Appiah GD, Mintz ED, Lantagne D, 2020. Associations among water, sanitation, and hygiene, and food exposures and typhoid fever in case-control studies: a systematic review and meta-analysis. Am J Trop Med Hyg 103:1020-31. DOI: https://doi.org/10.4269/ajtmh.19-0479
Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill FX, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE; Global Typhoid Genomics Consortium Group Authorship, 2023. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. Elife 12:e85867. DOI: https://doi.org/10.7554/eLife.85867
Central Bureau of Statistics. Sistem Informasi Layanan Statistik (Silastik) (Statistics Service Information System). (Accessed on 10 November 2024) Available from: https://silastik.bps.go.id
Chandrasekaran B, Balakrishnan S, 2011. Screening, phylogenetic analysis and antibiotic sensitivity pattern of Salmonella enterica serovar Typhi isolates from typhoid asymptomatic carriers. Asian Pac J Trop Med 4:769-72. DOI: https://doi.org/10.1016/S1995-7645(11)60191-0
Ching C, Zaman MH, Parveen A, Sultan F, Nizamuddin S, 2024. Trends in typhoid fever during the COVID-19 pandemic in Pakistan. J Infect Dev Ctries 18:550-5. DOI: https://doi.org/10.3855/jidc.18374
Chiou CS, Lauderdale TL, Phung DC, Watanabe H, Kuo JC, Wang PJ, Liu YY, Liang SY, Chen PC, 2014. Antimicrobial resistance in Salmonella enterica Serovar Typhi isolates from Bangladesh, Indonesia, Taiwan, and Vietnam. Antimicrob Agents Chemother 58:6501-7. DOI: https://doi.org/10.1128/AAC.03608-14
Cleveland R, Cleveland W, McRae J, Terpenning I, 1990. STL: a seasonal-trend decomposition. J Off Stat 6:3–73.
Crump JA, Mintz ED, 2010. Global trends in Typhoid and Paratyphoid Fever Clinical infectious diseases 50:241-6. DOI: https://doi.org/10.1086/649541
Dewan AM, Corner R, Hashizume M, Ongee ET, 2013. Typhoid fever and its association with environmental factors in the Dhaka Metropolitan Area of Bangladesh: a spatial and time-series approach. PLoS Negl Trop Dis 7:e1998. DOI: https://doi.org/10.1371/journal.pntd.0001998
Fletcher-Lartey SM, Caprarelli G, 2016. Application of GIS technology in public health: successes and challenges. Parasitology 143:401-15. DOI: https://doi.org/10.1017/S0031182015001869
Gasem MH, Dolmans WM, Keuter MM, Djokomoeljanto RR, 2001. Poor food hygiene and housing as risk factors for typhoid fever in Semarang, Indonesia. Trop Med Int Health 6:484-490. DOI: https://doi.org/10.1046/j.1365-3156.2001.00734.x
GBD 2017 Typhoid and Paratyphoid Collaborators, 2019. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis 19:369-81.
Hancuh M, Walldorf J, Minta AA, Tevi-Benissan C, Christian KA, Nedelec Y, Heitzinger K, Mikoleit M, Tiffany A, Bentsi-Enchill AD, Breakwell L, 2023. Typhoid fever surveillance, incidence estimates, and progress toward typhoid conjugate vaccine introduction - Worldwide, 2018-2022. MMWR Morb. Mortal. Wkly Rep 72:171–6. DOI: https://doi.org/10.15585/mmwr.mm7207a2
Jakarta Provincial Bureau of Statistics, 2023. DKI Jakarta Province in Figures (2017-2023). Available from: https://jakarta.bps.go.id/id [Accessed on 13 November 2024]
Karkey A, Arjyal A, Anders KL, Boni MF, Dongol S, Koirala S, My PV, Nga TV, Clements AC, Holt KE, Duy PT, Day JN, Campbell JI, Dougan G, Dolecek C, Farrar J, Basnyat B, Baker S, 2010. The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu. PLoS One 5:e13988. DOI: https://doi.org/10.1371/journal.pone.0013988
Masinaei M, Eshrati B, Yaseri M, 2020. Spatial and spatiotemporal patterns of typhoid fever and investigation of their relationship with potential risk factors in Iran, 2012–2017. Int J Hygiene Environ Health 224:113432. DOI: https://doi.org/10.1016/j.ijheh.2019.113432
Meteorological, Climatological and Geophysical Agency, Indonesia. Data Online BMKG. (Accessed on 10 March 2025) Available at https://dataonline.bmkg.go.id/home
Mohan VR, Srinivasan M, Sinha B, Shrivastava A, Kanungo S, Natarajan Sindhu K, Ramanujam K, Ganesan SK, Karthikeyan AS, Kumar Jaganathan S, Gunasekaran A, Arya A, Bavdekar A, Rongsen-Chandola T, Dutta S, John J, Kang G, 2021. Geographically weighted regression modeling of spatial clustering and determinants of focal typhoid fever incidence. J Infect Dis 224:S601-11. DOI: https://doi.org/10.1093/infdis/jiab379
Moran PAP, 1950. Notes on Continuous Stochastic Phenomena. Biometrika 37:17-23. DOI: https://doi.org/10.1093/biomet/37.1-2.17
Muleta A, Meseret N, 2025. Seroprevalence of typhoid fever and its associated risk factors among clinically diagnosed febrile patients visiting the outpatient department at debark hospital and drug susceptibility patterns of isolates. Biomed Res Int 2025:717780. DOI: https://doi.org/10.1155/bmri/1717780
Nelwan EJ, Paramita LPL, Sinto R, Subekti D, Hosea FN, Nugroho P, Pohan HT, 2023. Validation of the Nelwan Score as a screening tool for the diagnosis of typhoid fever in adults in Indonesia. PLoS One 18:e0256508. DOI: https://doi.org/10.1371/journal.pone.0256508
Ochiai RL, Acosta CJ, Danovaro-Holliday MC, Baiqing D, Bhattacharya SK, Agtini MD, Bhutta ZA, Canh DG, Ali M, Shin S, Wain J, Page AL, Albert MJ, Farrar J, Abu-Elyazeed R, Pang T, Galindo CM, von Seidlein L, Clemens JD; Domi Typhoid Study Group, 2008. A study of typhoid fever in five Asian countries: disease burden and implications for controls. Bull World Health Organ 86:260-8. DOI: https://doi.org/10.2471/BLT.06.039818
Oliveira Roster K, Martinelli T, Connaughton C, Santillana M, Rodrigues FA, 2024. Impact of the COVID-19 pandemic on dengue in Brazil: Interrupted time series analysis of changes in surveillance and transmission. PLoS Negl Trop Dis 18:e0012726. DOI: https://doi.org/10.1371/journal.pntd.0012726
Provincial Health Agency of Jakarta, 2024. Dashboard Seksi Surveilans Epidemiologi dan Imunisasi (Epidemiological Surveillance and Immunization Dashboard). Available at https://surveilans-dinkes.jakarta.go.id/sarsbaru/index.php [Accessed on 13 November 2024]
Ren X, Zhang S, Luo P, Zhao J, Kuang W, Ni H, Zhou N, Dai H, Hong X, Yang X, Zha W, Lv Y, 2023. Spatial heterogeneity of socio-economic determinants of typhoid/paratyphoid fever in one province in central China from 2015 to 2019. BMC Public Health 23:927. DOI: https://doi.org/10.1186/s12889-023-15738-0
Velema JP, van Wijnen G, Bult P, van Naerssen T, Jota S, 1997. Typhoid fever in Ujung Pandang, Indonesia--high-risk groups and high-risk behaviours. Trop Med Int Health 2:1088-94. DOI: https://doi.org/10.1046/j.1365-3156.1997.d01-179.x
Vollaard AM, Ali S, van Asten HA, Widjaja S, Visser LG, Surjadi C, van Dissel JT, 2004. Risk Factors for Typhoid and Paratyphoid Fever in Jakarta, Indonesia. JAMA 291:2607-15. DOI: https://doi.org/10.1001/jama.291.21.2607
Widawati M, Dhewantara PW, Anasi R, Wahono T, Marina R, Pertiwi IP, Wibowo AA, Ruliansyah A, Riandi MU, Widiastuti D, Astuti E., 2023. An investigation of geographical clusters of leptospirosis during the outbreak in Pangandaran, West Java, Indonesia. Geospat Health 18:1221. DOI: https://doi.org/10.4081/gh.2023.1221
World Health Organization, 2003. Background document: the diagnosis, treatment and prevention of typhoid fever. (accessed 5 June 2024) Available from: https://iris.who.int/handle/10665/370492
World Health Organization, 2019. Typhoid vaccines: WHO position paper, March 2018 – Recommendations. Vaccine 37:214-6. DOI: https://doi.org/10.1016/j.vaccine.2018.04.022
World Health Organization, 2024. Typhoid. (accessed 5 June 2024) Available from https://www.who.int/news-room/fact-sheets/detail/typhoid

How to Cite



Typhoid fever in Jakarta, Indonesia 2017-2023: spatial clustering and seasonality of hospitalization data to inform better intervention. (2025). Geospatial Health, 20(1). https://doi.org/10.4081/gh.2025.1372