Original Articles
15 September 2025

Socioeconomic determinants of pandemics: a spatial methodological approach with evidence from COVID-19 in Nice, France

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
171
Views
61
Downloads

Authors

During the period 4 January 4 – 14 February 2021 the spread of the COVID-19 epidemic peaked in the city of Nice, France with a worrying number of infected cases. This article focuses on analyzing the explicit, spatial pattern of virus spread and assessing the geographical factors influencing this distribution. Spatial modelling was carried out to examine geographical disparities in terms of distribution, incidence and prevalence of the virus, while taking socio-economic factors into account. A multiple linear regression model was used to identify the key socio-economic variables. Global and local spatial autocorrelation were measured using Moran and LISA indices, followed by spatial autocorrelation analysis of the residuals. Similarly, we used the Geographically Weighted Regression (GWR) model and the Multiscale Geographically Weighted Regression (MGWR) model to assess the influence of socio-economic factors that vary on a global and local scale. Our results reveal a marked geographical polarization, with affluent areas in the Southeast of the city contrasting sharply with disadvantaged neighbourhoods in the Northwest. Neighbourhoods with low Localized Human Development Index (LHDI), low levels of education, social housing and immigrant populations all pointed to worrying values. On the other hand, people who use public transport were significantly more likely to be contaminated by the virus. These results underline the importance of geographically predicting COVID-19 distribution patterns to guide targeted interventions and health policies. Understanding these spatial patterns using models such as MGWR can help guide public health interventions and inform future health policies, particularly in the context of pandemics.

Altmetrics

Downloads

Download data is not yet available.

Citations

Anselin L, 1995. Local Indicators of Spatial Association—LISA. Geogr Anal 27:93–115. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin L, Florax RJGM, 1995. Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results. In New Directions in Spatial Econometrics. Anselin L, Florax, RJGM (Eds.), Springer, Berlin, Heidelberg, pp. 21–74. DOI: https://doi.org/10.1007/978-3-642-79877-1_2
Anselin L, Rey S, 1991. Properties of Tests for Spatial Dependence in Linear Regression Models. GeogrAnal 23:112–31. DOI: https://doi.org/10.1111/j.1538-4632.1991.tb00228.x
Apparicio P, Séguin AM, Leloup X, 2007. Modélisation spatiale de la pauvreté à Montréal : apport méthodologique de la régression géographiquement pondérée. Can Geogr 51:412–27. DOI: https://doi.org/10.1111/j.1541-0064.2007.00189.x
Bambra C, Riordan R, Ford J, Matthews F, 2020. The COVID-19 pandemic and health inequalities. J Epidemiol Community Health 74:964–8. DOI: https://doi.org/10.1136/jech-2020-214401
Benita F, Rebollar-Ruelas L, Gaytán-Alfaro ED, 2022. What have we learned about socioeconomic inequalities in the spread of COVID-19? A systematic review. Sustain Cities Soc 86:104158. DOI: https://doi.org/10.1016/j.scs.2022.104158
Brun S, Simon P, 2020. L’invisibilité des minorités dans les chiffres du Coronavirus : le détour par la Seine-Saint-Denis. De Facto – Institut Convergences Migrations, Dossier : Inégalités ethno-raciales et pandémie de coronavirus 68–78.
Brunsdon C, Fotheringham S, Charlton M, 1998. Geographically weighted regression – Modelling spatial non-stationarity. J Royal Statist Soc Series D 47:431–43. DOI: https://doi.org/10.1111/1467-9884.00145
Chossegros P, 2020. L’épidémie de COVID-19: une autre histoire pourrait être racontée. La Presse Médicale Formation 1:447–50. DOI: https://doi.org/10.1016/j.lpmfor.2020.09.012
Cliff A, Ord K, 1972. Testing for spatial autocorrelation among regression residuals. Geographical Analysis 4:267–84. DOI: https://doi.org/10.1111/j.1538-4632.1972.tb00475.x
Cordes J, Castro MC, 2020. Spatial analysis of COVID-19 clusters and contextual factors in New York City. Spatial and Spatio-temporal Epidemiology 34:100355. DOI: https://doi.org/10.1016/j.sste.2020.100355
Dowrick A, Rai T, Hinton L, Eacott B, Baker S, Askew M, Ziebland S, Locock L, 2022. Health inequalities, ethnic minorities and COVID-19: interactive theatre workshop drawing on a qualitative interview study. Lancet 400 Suppl1:S9. DOI: https://doi.org/10.1016/S0140-6736(22)02219-X
Dziauddin MF, Idris Z, 2017. Use of Geographically Weighted Regression (GWR) Method to estimate the effects of location attributes on the residential property values. Indonesian J Geogr 49:97–110. DOI: https://doi.org/10.22146/ijg.27036
Etowa J, Hyman I, 2021. Unpacking the health and social consequences of COVID-19 through a race, migration and gender lens. Can J Public Health 112:8–11. DOI: https://doi.org/10.17269/s41997-020-00456-6
Etowa J, Hyman I, Dabone C, Mbagwu I, Ghose B, Sano Y, Osman M, Mohamoud H, 2021. Strengthening the collection and use of disaggregated data to understand and monitor the risk and burden of COVID-19 among racialized populations. Can Stud Popul 48:201–16. DOI: https://doi.org/10.1007/s42650-021-00050-2
Fontán-Vela M, Gullón P, Bilal U, Franco M, 2023. Social and ideological determinants of COVID-19 vaccination status in Spain. Public Health 219:139–45. DOI: https://doi.org/10.1016/j.puhe.2023.04.007
Fotheringham A, Brunsdon C, Charlton M, 2002. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley& Sons.
Fotheringham AS, Brunsdon C, Charlton M, 2003. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. John Wiley & Sons.
Fotheringham AS, Yang W, Kang W, 2017. Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers 107:1247–65. DOI: https://doi.org/10.1080/24694452.2017.1352480
Frohlich N, Mustard C, 1996. A regional comparison of socioeconomic and health indices in a Canadian province. Soc Sci Med 42:1273–81. DOI: https://doi.org/10.1016/0277-9536(95)00220-0
Gaspard G, Kim D, Chun Y, 2019. Residual spatial autocorrelation in macroecological and biogeographical modeling: a review. Journal of Ecology and Environment 43:19. DOI: https://doi.org/10.1186/s41610-019-0118-3
Godefroy R, Lewis J, 2022. What explains the socioeconomic status-health gradient? Evidence from workplace COVID-19 infections. SSM Popul Health 18:101124. DOI: https://doi.org/10.1016/j.ssmph.2022.101124
Guillain R, Le Gallo J, 2008. Identifier la localisation des activités économiques : une approche par les outils de l’analyse exploratoire des données spatiales. Économie appliquée 61:5–34. DOI: https://doi.org/10.3406/ecoap.2008.1883
Han Y, Yang L, Jia K, Li J, Feng S, Chen W, Zhao W, Pereira P, 2021. Spatial distribution characteristics of the COVID-19 pandemic in Beijing and its relationship with environmental factors. Science of The Total Environment 761:144257. DOI: https://doi.org/10.1016/j.scitotenv.2020.144257
Hu Y, Goldman N, 1990. Mortality differentials by marital status: an international comparison. Demography 27:233–50. DOI: https://doi.org/10.2307/2061451
Kim S, Castro MC, 2020. Spatiotemporal pattern of COVID-19 and government response in South Korea (as of May 31, 2020). Int J Infect Dis 98:328–33. DOI: https://doi.org/10.1016/j.ijid.2020.07.004
Kirksey L, Tucker DL, Taylor E, White Solaru KT, Modlin CS, 2021. Pandemic superimposed on epidemic: COVID-19 disparities in black Americans. J Natl Med Assoc 113:39–42. DOI: https://doi.org/10.1016/j.jnma.2020.07.003
Le Gallo J, 2002. Économétrie spatiale : l’autocorrélation spatiale dans les modèles de régression linéaire. Économie & Prévision 155:139–57. DOI: https://doi.org/10.3406/ecop.2002.6875
Lotfata A, 2022. Using geographically weighted models to explore obesity prevalence association with air temperature, socioeconomic factors, and unhealthy behavior in the USA. J Geovis Spat Anal 6:14. DOI: https://doi.org/10.1007/s41651-022-00108-y
Lu B, Brunsdon C, Charlton M, Harris P, 2017. Geographically weighted regression with parameter-specific distance metrics. Int J Geogr Inf Sci 31:982–98. DOI: https://doi.org/10.1080/13658816.2016.1263731
Luo Y, Yan J, McClure S, 2021. Distribution of the environmental and socioeconomic risk factors on COVID-19 death rate across continental USA: a spatial nonlinear analysis. Environ SciPollutRes Int 28:6587–99. DOI: https://doi.org/10.1007/s11356-020-10962-2
Ma J, Zhu H, Li P, Liu C, Li F, Luo Z, Zhang M, Li L, 2022. Spatial patterns of the spread of COVID-19 in Singapore and the influencing factors. ISPRS Int J Geo-Inf11:152. DOI: https://doi.org/10.3390/ijgi11030152
Maiti A, Zhang Q, Sannigrahi S, Pramanik S, Chakraborti S, Pilla F, 2021. Spatiotemporal effects of the causal factors on COVID-19 incidences in the contiguous United States. Sustain Cities Soc 68:102784. DOI: https://doi.org/10.1016/j.scs.2021.102784
Ministère du Travail, de la Santé et des Solidarités, 2024. Professionnels de santé [WWW Document]. Ministère du Travail, de la Santé et des Solidarités.https://sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/coronavirus/professionnels-de-sante/ Accessed 3.18.24.
Nazia N, Law J, Butt ZA, 2022. Spatiotemporal clusters and the socioeconomic determinants of COVID-19 in Toronto neighbourhoods, Canada. Spatial Spatio-temporal Epidemiol 43:100534. DOI: https://doi.org/10.1016/j.sste.2022.100534
Oliveau S, 2010. Autocorrélation spatiale: leçons du changement d’échelle. L’Espace géographique 39:51–64. DOI: https://doi.org/10.3917/eg.391.0051
Oshan TM, Li Z, Kang W, Wolf LJ, Stewart Fotheringham A, 2019. MGWR: A python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS Int J Geo-Inf 8:060269. DOI: https://doi.org/10.3390/ijgi8060269
Patel JA, Nielsen FBH, Badiani AA, Assi S, Unadkat VA, Patel B, Ravindrane R, Wardle H, 2020. Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health 183:110–11. DOI: https://doi.org/10.1016/j.puhe.2020.05.006
Patterson K, Chalifoux M, Gad R, Leblanc S, Paulsen P, Boudreau L, Mazerolle T, Pâquet M, 2022. Tendances démographiques de l’exposition à une éclosion de COVID-19 et de la transmission de cas dans une communauté rurale canadienne, 2020. RMTC 48:512–19. DOI: https://doi.org/10.14745/ccdr.v48i10a06f
Pinter-Wollman N, Jelić A, Wells NM, 2018. The impact of the built environment on health behaviours and disease transmission in social systems. Philos Trans R Soc Lond B Biol Sci 373:20170245. DOI: https://doi.org/10.1098/rstb.2017.0245
Revollo-Fernández D, Rodríguez-Tapia L, Medina-Rivas C, Morales-Novelo JA, 2022. Socio-economic determinants of COVID-19 in Mexico. Public Health 207:28–30. DOI: https://doi.org/10.1016/j.puhe.2022.03.011
Rohleder S, Costa DD, Bozorgmehr PK, 2022. Area-level socioeconomic deprivation, non-national residency, and COVID-19 incidence: a longitudinal spatiotemporal analysis in Germany. eClinicalMedicine 49:101485. DOI: https://doi.org/10.1016/j.eclinm.2022.101485
Rule AM, Apau O, Ahrenholz SH, Brueck SE, Lindsley WG, de Perio MA, Noti JD, Shaffer RE, Rothman R, Grigorovitch A, Noorbakhsh B, Beezhold DH, Yorio PL, Perl TM, Fisher EM, 2018. Healthcare personnel exposure in an emergency department during influenza season. PLoS One 13:e0203223. DOI: https://doi.org/10.1371/journal.pone.0203223
Ruthberg J, Quereshy H, Jella T, Kocharyan A, D’Anza B, Maronian N, Otteson T, 2020. Geospatial analysis of COVID-19 and otolaryngologists above age 60. Am J Otolaryngol 41:102514. DOI: https://doi.org/10.1016/j.amjoto.2020.102514
Scarpone C, Brinkmann ST, Große T, Sonnenwald D, Fuchs M, Walker BB, 2020. A multimethod approach for county-scale geospatial analysis of emerging infectious diseases: a cross-sectional case study of COVID-19 incidence in Germany. Int J Health Geogr 19:32. DOI: https://doi.org/10.1186/s12942-020-00225-1
Schellekens P, Sourrouille D, 2020. COVID-19 Mortality in rich and poor countries: a tale of two pandemics? World Bank, Washington, DC. https://doi.org/10.1596/1813-9450-9260 DOI: https://doi.org/10.1596/1813-9450-9260
Scott A, Coote W, 2007. Incentives and the Quality of Primary Care in Australia: Do Regional Primary Care Organisations Make a Difference? . iHEA 2007 6th World Congress: Explorations in Health Economics Paper, Available at SSRN: https://ssrn.com/abstract=995067
Shabrina Z, Buyuklieva B, Ng MKM, 2021. Short-term rental platform in the urban tourism context: a geographically weighted regression (GWR) and a multiscale GWR (MGWR) approaches. Geogr Anal 53:686–707. DOI: https://doi.org/10.1111/gean.12259
Shahbazi F, Khazaei S, 2020. Socio-economic inequality in global incidence and mortality rates from coronavirus disease 2019: an ecological study. New Microbes New Infect 38:100762. DOI: https://doi.org/10.1016/j.nmni.2020.100762
Siljander M, Uusitalo R, Pellikka P, Isosomppi S, Vapalahti O, 2022. Spatiotemporal clustering patterns and sociodemographic determinants of COVID-19 (SARS-CoV-2) infections in Helsinki, Finland. Spatial Spatio-temporal Epidemiol 41:100493. DOI: https://doi.org/10.1016/j.sste.2022.100493
Talavera A, Perez EM, 2009. Is cholera disease associated with poverty? J Infect Dev Ctries 3:408–11. DOI: https://doi.org/10.3855/jidc.410
Vang ZM, Ng E, 2023. The impacts of COVID-19 on immigrants and the healthy immigrant effect: Reflections from Canada. Prev Med 171:107501. DOI: https://doi.org/10.1016/j.ypmed.2023.107501
Vie publique. Covid-19: confinement du littoral des Alpes-Maritimes, vie-publique.fr, 2021. https://www.vie-publique.fr/en-bref/278682-covid-19-confinement-du-littoral-des-alpes-maritimes Accessed 5.18.25.
Vilinová K, Petrikovičová L, 2023. Spatial autocorrelation of COVID-19 in Slovakia. Trop Med Infect Dis 8:298. DOI: https://doi.org/10.3390/tropicalmed8060298
Wheeler D, 2009. Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso. Environ Plan A 41:722–742. DOI: https://doi.org/10.1068/a40256
Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, Li SB, Wang HY, Zhang S, Gao HN, Sheng JF, Cai HL, Qiu YQ, Li LJ, 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 368:m606. DOI: https://doi.org/10.1136/bmj.m606
Yu H, Fotheringham AS, Li Z, Oshan T, Wolf LJ, 2020. On the measurement of bias in geographically weighted regression models. Spat Stat 38:100453. DOI: https://doi.org/10.1016/j.spasta.2020.100453

How to Cite



Socioeconomic determinants of pandemics: a spatial methodological approach with evidence from COVID-19 in Nice, France. (2025). Geospatial Health, 20(2). https://doi.org/10.4081/gh.2025.1383