Editorials
4 June 2025

The future of spatial epidemiology in the AI era: enhancing machine learning approaches with explicit spatial structure

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
115
Views
24
Downloads

Authors

Spatial epidemiology, defined as the study of spatial patterns in disease burdens or health outcomes, aims to estimate disease risk or incidence by identifying geographical risk factors and populations at risk (Morrison et al., 2024). Research in spatial epidemiology relies on both conventional approaches and Machine- Learning (ML) algorithms to explore geographic patterns of diseases and identify influential factors (Pfeiffer & Stevens, 2015). Traditional spatial techniques, including spatial autocorrelation using global Moran’s I, Geary’s C (Amgalan et al., 2022), and Ripley’s K Function (Kan et al., 2022), Local Indicators of Spatial Association (LISA) (Sansuk et al., 2023), hotspot analysis by Getis-Ord Gi* (Lun et al., 2022), spatial lag models (Rey & Franklin, 2022), and Geographically Weighted Regression (GWR) (Kiani et al., 2024) are designed to explicitly incorporate the spatial structure of data into spatial modelling, often referred to as spatially aware models (Reich et al., 2021). Beyond these models, several other spatially aware approaches that have been widely applied in epidemiological studies include but are not limited to Bayesian spatial models that account for spatial uncertainty in disease mapping, such as Bayesian Hierarchical models, Conditional Autoregressive (CAR), and Besage, York, and Mollie’ (BYM) models (Louzada et al., 2021). Bayesian methods are statistically rigorous techniques that assume neighboring regions share similar values. Kulldorff’s Spatial Scan Statistic is another traditional spatial technique that uses a moving circular window to extract significant disease clusters (Tango, 2021). Moreover, geostatistical models such as Kriging and Inverse Distance Weighting (IDW) allow for continuous spatial interpolation of health data (Nayak et al., 2021). [...]

Altmetrics

Downloads

Download data is not yet available.

Citations

Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ, 2020. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In MW Berry, A Mohamed, & BW Yap (Eds.), Supervised and Unsupervised Learning for Data Science (pp. 3–21). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-22475-2_1
Amgalan A, Mujica-Parodi L, Skiena SS, 2022. Fast spatial autocorrelation. Knowledge Inform Systems 64:919–41. DOI: https://doi.org/10.1007/s10115-021-01640-x
Andraud M, Bougeard S, Chesnoiu T, Rose N, 2021. Spatiotemporal clustering and Random Forest models to identify risk factors of African swine fever outbreak in Romania in 2018–2019. Sci Rep 11:2098. DOI: https://doi.org/10.1038/s41598-021-81329-x
Du P, Bai X, Tan K, Xue Z, Samat A, Xia J, Li E, Su H, Liu W, 2020. Advances of four machine learning methods for spatial data handling: a review. J Geovisual Spat Anal 4:13. DOI: https://doi.org/10.1007/s41651-020-00048-5
Gaudart J, Landier J, Huiart L, Legendre E, Lehot L, Bendiane MK, Chiche L, Petitjean A, Mosnier E, Kirakoya-Samadoulougou F, Demongeot J, Piarroux R, Rebaudet S, 2021. Factors associated with the spatial heterogeneity of the first wave of COVID-19 in France: A nationwide geo-epidemiological study. Lancet Public Health 6:e222–31. DOI: https://doi.org/10.1016/S2468-2667(21)00006-2
Hutagalung J, Ginantra NLWSR, Bhawika GW, Parwita WGS, Wanto A, Panjaitan PD, 2021. COVID-19 Cases and Deaths in Southeast Asia Clustering using K-Means Algorithm. J Physics Confer Series 1783:012027. DOI: https://doi.org/10.1088/1742-6596/1783/1/012027
Kan Z, Kwan M, Tang L, 2022. Ripley’s K‐function for Network‐Constrained Flow Data. Geograph Anal 54:769–88. DOI: https://doi.org/10.1111/gean.12300
Kianfar N, Mesgari MS, 2022. GIS-based spatio-temporal analysis and modeling of COVID-19 incidence rates in Europe. Spatial Spatio-Temporal Epidemiol 41:100498. DOI: https://doi.org/10.1016/j.sste.2022.100498
Kianfar N, Mesgari MS, Mollalo A, Kaveh M, 2022. Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms. Spat Spatio-Temp Epidemiol 40;100471. DOI: https://doi.org/10.1016/j.sste.2021.100471
Kiani B, Sartorius B, Lau CL, Bergquist R, 2024. Mastering geographically weighted regression: Key considerations for building a robust model. Geospat Health 19:1271 DOI: https://doi.org/10.4081/gh.2024.1271
Kwan M-P, 2021. The stationarity bias in research on the environmental determinants of health. Health & Place 70:102609. DOI: https://doi.org/10.1016/j.healthplace.2021.102609
Li L, 2023. Application of machine learning and data mining in medicine: opportunities and considerations. In M Antonio Aceves-Fernández ed., Artificial Intelligence (Vol. 21). IntechOpen. https://doi.org/10.5772/intechopen.113286 DOI: https://doi.org/10.5772/intechopen.113286
Louzada F, Nascimento DCD, Egbon OA, 2021. Spatial statistical models: an overview under the Bayesian approach. Axioms 10:307. DOI: https://doi.org/10.3390/axioms10040307
Lucas B, Vahedi B, Karimzadeh M, 2023. A spatiotemporal machine learning approach to forecasting COVID-19 incidence at the county level in the USA. Int J Data Sci Analytics 15:247–66. DOI: https://doi.org/10.1007/s41060-021-00295-9
Lun X, Wang Y, Zhao C, Wu H, Zhu C, Ma D, Xu M, Wang J, Liu Q, Xu L, Meng F, 2022. Epidemiological characteristics and temporal-spatial analysis of overseas imported dengue fever cases in outbreak provinces of China, 2005–2019. Infect Dis Poverty 11:12. DOI: https://doi.org/10.1186/s40249-022-00937-5
Lv S, Zhu Y, Cheng L, Zhang J, Shen W, Li X, 2024. Evaluation of the prediction effectiveness for geochemical mapping using machine learning methods: A case study from northern Guangdong Province in China. Sci Total Environ 927:172223. DOI: https://doi.org/10.1016/j.scitotenv.2024.172223
Mollalo A, Grekousis G, Benitez A, Florez H, Neelon B, Lenert LA, Alekseyenko A, 2024. Factors associated with Alzheimer’s Disease Dementia prevalence in the United States: A county-level spatial machine learning analysis. medRxiv https://doi.org/10.1101/2024.07.16.24310529 DOI: https://doi.org/10.1101/2024.07.16.24310529
Morrison CN, Mair CF, Bates L, Duncan DT, Branas CC, Bushover BR, Mehranbod CA, Gobaud AN, Uong S, Forrest S, Roberts L, Rundle AG, 2024. Defining spatial epidemiology: a systematic review and re-orientation. Epidemiology 35:542–55. DOI: https://doi.org/10.1097/EDE.0000000000001738
Muhammad LJ, Algehyne EA, Usman SS, Ahmad A, Chakraborty C, Mohammed IA, 2021. Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset. SN Computer Sci 2:11. DOI: https://doi.org/10.1007/s42979-020-00394-7
Nayak PP, Pai JB, Singla N, Somayaji KS, Kalra D, 2021. Geographic information systems in spatial epidemiology: unveiling new horizons in dental public health. J Int Soc Prev Commun Dent 11:125–31. DOI: https://doi.org/10.4103/jispcd.JISPCD_413_20
Nikparvar, B., & Thill, J.-C. (2021). Machine learning of spatial data. ISPRS Int J Geo-Information 10:600. DOI: https://doi.org/10.3390/ijgi10090600
Pfeiffer DU, Stevens KB, 2015. Spatial and temporal epidemiological analysis in the Big Data era. Prev Vet Med 122:213–20. DOI: https://doi.org/10.1016/j.prevetmed.2015.05.012
Reich BJ, Yang S, Guan Y, Giffin AB, Miller MJ, Rappold A, 2021. A review of spatial causal inference methods for environmental and epidemiological applications. Int Statist Rev 89:605–34. DOI: https://doi.org/10.1111/insr.12452
Rey SJ, Franklin R, eds., 2022. Spatial econometrics. In: Handbook of Spatial Analysis in the Social Sciences. Edward Elgar Publishing. pp. 101–22. DOI: https://doi.org/10.4337/9781789903942.00014
Rocha AD, Groen TA, Skidmore AK, Darvishzadeh R, Willemen L, 2018. Machine learning using hyperspectral data inaccurately predicts plant traits under spatial dependency. Remote Sensing 10:1263. DOI: https://doi.org/10.3390/rs10081263
Sansuk J, Laohasiriwong W, Sornlorm K, 2023. Spatial association between socio-economic health service factors and sepsis mortality in Thailand. Geospat Health 18:1215. DOI: https://doi.org/10.4081/gh.2023.1215
Song Y-Y, Lu Y, 2015. Decision tree methods: Applications for classification and prediction. Shanghai Arch Psych 27:130–5.
Talebi H, Peeters LJM, Otto A, Tolosana-Delgado R, 2022. A truly spatial random forests algorithm for geoscience data analysis and modelling. Math Geosci 54:1–22. DOI: https://doi.org/10.1007/s11004-021-09946-w
Tango T, 2021. Spatial scan statistics can be dangerous. Statist Methods Med Res 30:75–86. DOI: https://doi.org/10.1177/0962280220930562
Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Campabadal A, Marti MJ, Valldeoriola F, Compta Y, Tolosa E, Junque C, 2018. Cortical atrophy patterns in early Parkinson’s disease patients using hierarchical cluster analysis. Parkinsonism & Related Dis 50:3–9. DOI: https://doi.org/10.1016/j.parkreldis.2018.02.006
VoPham T, Hart JE, Laden F, Chiang Y-Y, 2018. Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environ Health 17:40. DOI: https://doi.org/10.1186/s12940-018-0386-x
Wiemken TL, Kelley RR, 2020. Machine learning in epidemiology and health outcomes research. Ann Rev Public Health 41:21–36. DOI: https://doi.org/10.1146/annurev-publhealth-040119-094437
Wu C, Zhou M, Liu P, Yang M, 2021. Analyzing COVID‐19 using multisource data: an integrated approach of visualization, spatial regression, and machine learning. GeoHealth 5:e2021GH000439. DOI: https://doi.org/10.1029/2021GH000439
Yin Z, Ding J, Liu Y, Wang R, Wang Y, Chen Y, Qi J, Wu S, Du Z, 2024. GNNWR: An open-source package of spatiotemporal intelligent regression methods for modeling spatial and temporal nonstationarity. Geosci Model Develop 17:8455–68. DOI: https://doi.org/10.5194/gmd-17-8455-2024

How to Cite



The future of spatial epidemiology in the AI era: enhancing machine learning approaches with explicit spatial structure. (2025). Geospatial Health, 20(1). https://doi.org/10.4081/gh.2025.1386