Reviews
18 September 2025

Factors associated with the spatial distribution of leprosy: a systematic review of the published literature

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

This systematic review aimed to identify factors related to the spatial distribution of leprosy through studies utilising geographic information systems (GIS) techniques. PRISMA 2020 guidelines were adopted and the Population, Concept, Context (PCC) strategy employed to formulate the research question and define its scope: what factors associated with the spatial context of leprosy have been identified in studies utilising GIS techniques, and what are the key contributions of GIS in understanding the disease? The bibliographic databases consulted included PubMed, LILACS, EMBASE and Scopus. Only full original research articles in English, Spanish or Portuguese were included. Of the identified articles, 35 (23.8%) met the inclusion criteria, with the majority addressing socioeconomic factors (60.0%), followed by health indicators (17.1%). A smaller proportion of studies focused on logistics/distance (8.6%) or environmental aspects (2.9%). Although numerous studies utilise GIS techniques for understanding leprosy, few adopt robust methodologies to investigate the factors influencing its spatial features. There is a scarcity of studies employing GIS to examine environmental and logistical aspects related to the spatial distribution of leprosy. Addressing these gaps requires broader dissemination of the potential advantages of GIS in leprosy; the provision of reliable public data; and the capacity building of professionals committed to combating and controlling leprosy in endemic areas.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ali MS, Ichihara MY, Lopes LC, Barbosa GCG, Pita R, Carreiro RP, Dos Santos DB, Ramos D, Bispo N, Raynal F, Canuto V, Almeida BA, Fiaccone RL, Barreto ME, Smeeth L, Barreto NL, 2019. Administrative data linkage in Brazil: potentials for health technology assessment. Front Pharmacol 10:984. DOI: https://doi.org/10.3389/fphar.2019.00984
Amaral EP, Lana FCF, 2008. Análise espacial da Hanseníase na microrregião de Almenara, MG, Brasil Rev Bras Enferm 61:701-7. DOI: https://doi.org/10.1590/S0034-71672008000700008
Amaral VF, Linhares MSC, Ximenes Neto FRG, Flor SMC, Dias LJLF, Cavalcante ASP, Almeida RLF, Kerr LRFS, 2020. Aspectos epidemiológicos e espaciais de escolares avaliados na Campanha Nacional de Hanseníase em Sobral - Ceará, Brasil. Enferm Foco 11:152-60. DOI: https://doi.org/10.21675/2357-707X.2020.v11.n3.3478
Argaw TA, Shannon EJ, Assefa A, Mikru FS, Mariam BK, Malone JB, 2006. A geospatial risk assessment model for leprosy in Ethiopia based on environmental thermal-hydrological regime analysis. Geospat Health 1:105-13. DOI: https://doi.org/10.4081/gh.2006.285
Assis IS, Arcoverde MAM, Ramos ACV, Alves LS, Berra TZ, Arroyo LH, de Queiroz AAR, dos Santos DT, Belchior AS, Alves JD, Pieri FM, Silva-Sobrinho RA, Pinto IC, Tavares CM, Yamamura M, Frade MAC, Palha PF, Chiaravalloti-Neto F, Arcêncio RA, 2018. Social determinants, their relationship with leprosy risk and temporal trends in a tri-border region in Latin America. PLoS Negl Trop Dis 12:e0006407. DOI: https://doi.org/10.1371/journal.pntd.0006407
Bakker MI, Scheelbeek, PFD, Van Beers SM, 2009. The use of GIS in leprosy control. Lepr Rev 80:327-31. DOI: https://doi.org/10.47276/lr.80.3.327
Barbosa CC, Do Bonfim CV, Brito CMG, Souza WV, Melo MFO, Medeiros ZM, 2020. Spatial analysis of epidemiological and quality indicators of health services for leprosy in hyperendemic areas in northeastern Brazil. Rev Inst Med Trop São Paulo 62:1-12. DOI: https://doi.org/10.1590/s1678-9946202062093
Biblioteca Virtual em Saúde, 2024. Descritores em Ciência da Saúde. Accessed: 3 April 2025. Available from: https://decs.bvsalud.org/
Borba JR, Penso-Campos JM, Dalzochio MS, Sommer JA, Périco E, Vieira AG, da Silveira EF, 2021. Análise espacial e perfil epidemiológico da hanseníase como subsídio para identificação de riscos e vulnerabilidades socioambientais em Rondônia, BR. Rev Brasileira de Geografia Fisica 14:1513-29. DOI: https://doi.org/10.26848/rbgf.v14.3.p1513-1529
Brooker SJ, Smith J, 2013. Mapping neglected tropical diseases: a global view. Community Eye Health 26:32.
Butala CB, Cave RNR, Fyfe J, Coleman PG, Yang GJ, Weleburn SC, 2024. Impact of COVID-19 on the neglected tropical diseases: a scoping review. Infect Dis Poverty 13:55. DOI: https://doi.org/10.1186/s40249-024-01223-2
Carvalho AG, Dias CLH, Blok DJ, Ignotti E, Luz JGG, 2023. Intra-urban differences underlying leprosy spatial distribution in central Brazil: geospatial techniques as potential tools for surveillance. Geospat Health 18:1227 DOI: https://doi.org/10.4081/gh.2023.1227
Chagas LBM, Oliveira NG, Baptista IMFD, Souza VNB, 2021. Sociodemographic, clinical and geospatial profile of new leprosy cases diagnosed at Institute Lauro de Souza Lima, Bauru, São Paulo, between 2015 and 2019. Hansen Int 46:1-22. DOI: https://doi.org/10.47878/hi.2021.v46.37428
Chang K, 2019a. Geographic Information System. In International Encyclopedia of Geography (eds. D. Richardson, N. Castree, M.F. Goodchild, A. Kobayashi, W. Liu, R.A. Marston). Wiley 1-10 pp. https://doi.org/10.1002/9781118786352.wbieg0152.pub2 DOI: https://doi.org/10.1002/9781118786352.wbieg0152.pub2
Chang K, 2019b. Introduction to Geographic Information Systems. McGraw Hill, 464 pp.
Chaves EC, Costa SV, Flores RLDR, Neves EOS, 2017. Social deprivation index and leprosy in Pará State, Brazil, in 2013: spatial analysis. Epidemiol Serv Saúde 26:807-16. DOI: https://doi.org/10.5123/S1679-49742017000400012
Chimfwembe K, Simoonga C, Halwindi H, Simoonga R, 2024. Use of spatial epidemiology in neglected tropical diseases control, elimination and eradication. In Neglected Tropical Diseases - Unsolved Debts for the One Health Approach. Abelardo Falcón-Lezama J, Tapia-Conyer R, eds. IntechOpen. DOI: https://doi.org/10.5772/intechopen.1003682
Corporation for Digital Scholarship, 2025. Zotero. Accessed: 3 April 2025. Available from: https://www.zotero.org/
Cury MRCO, Paschoal VD, Nardi SMT, Chierotti AP, Rodrigues Júnior AL, Chiaravalloti-Neto F, 2012. Spatial analysis of leprosy incidence and associated socioeconomic factors. Ver Saúde Pública 46:110-8. DOI: https://doi.org/10.1590/S0034-89102011005000086
Dias MCFS, Dias GH, Nobre ML, 2007. The use of Geographical Information System (GIS) to improve active leprosy case finding campaigns in the municipality of Mossoró, Rio Grande do Norte State, Brazil. Lepr Rev 78:261-9. DOI: https://doi.org/10.47276/lr.78.3.261
Duarte-Cunha M, Almeida AS, Cunha GM, Souza-Santos R, 2016. Geographic weighted regression: applicability to epidemiological studies of leprosy. Rev Soc Bras Med Trop 49:74-82. DOI: https://doi.org/10.1590/0037-8682-0307-2015
Ekmen O, Kocaman S, 2023. From Pixels to Sustainability: Trends and Collaborations in Remote Sensing for Advancing Sustainable Cities and Communities (SDG 11). Sustainability 15:16094. DOI: https://doi.org/10.3390/su152216094
Fellows I, 2022. Title Word Clouds. Accessed: 3 April 2025. Available from: https://blog.fellstat.com/?cat=11
Ferreira AF, Sousa EA, García GSM, Reis AS, Corona F, Lima MS, Andrade ESN, Ribeiro Filha C, Sena Neto AS, Donato IM, Ramos Júnior NA, 2019b. Leprosy in the North and Northeast regions of Brazil: an integrated spatiotemporal approach. Trop Med Int Health 25:193-208. DOI: https://doi.org/10.1111/tmi.13343
Ferreira AF, Souza EA, Lima MDS, García GSM, Corona F, Andrade ESN, Sena-Neto AS, Ribeiro Filha C, dos Reis ADS, Teixeira LG, Ramos Júnior NA, 2019a. Mortality from leprosy in highly endemic contexts: Integrated temporal-spatial analysis in Brazil. Rev Panam Salud Publica 6;43:e87.
Fox J, Weisberg S, 2023. An R Companion to Applied Regression.car: Companion to Applied Regression. Accessed: 3 April 2025. Available from: https://cran.r-project.org/web/packages/car/index.html
Fradelos EC, Papathanasiou IV, Mitsi D, Tsaras K, Kleisiaris CF, Kourkouta L, 2014. Health Based Geographic Information Systems (GIS) and their applications. Acta Inform Med 22:402-5. DOI: https://doi.org/10.5455/aim.2014.22.402-405
Franca J, Aires C, Nobre M, Sakamoto S, Dias GH, 2023. Spatial analysis reveals failures in leprosy control activities in a hyperendemic city in Brazil. Lepr Rev 94:276-85. DOI: https://doi.org/10.47276/lr.94.4.276
Grantz KH, Chabaari W, Samuel RK, Gershom B, Blum L, Worden L, Ackley S, Liu F, Lietman TM, Galvani AP, Prajina L, Porco PC, 2018. Spatial distribution of leprosy in India: an ecological study. Infect Dis Poverty 7:20. DOI: https://doi.org/10.1186/s40249-018-0402-y
Han XY, Seo YH, Sizer KC, Schoberle T, May GS, Spencer JS, Li W, Nair RG, 2008. A New Mycobacterium Species Causing Diffuse Lepromatous Leprosy. Am J Clin Pathol 130:856-64. DOI: https://doi.org/10.1309/AJCPP72FJZZRRVMM
Imbiriba ENB, Silva Neto AL, Souza WV, Pedrosa V, Cunha MG, Garnelo L, 2009. Social inequality, urban growth and leprosy in Manaus: a spatial approach. Rev Saúde Pública 43:656-65. DOI: https://doi.org/10.1590/S0034-89102009005000046
Joshua V, Gupte MD, Bhagavandas M, 2008. A Bayesian approach to study the space time variation of leprosy in an endemic area of Tamil Nadu, South India. Int J Health Geogr 7:40. DOI: https://doi.org/10.1186/1476-072X-7-40
Klepac P, Hsieh JL, Ducker CL, Assoum M, Booth M, et al. 2024. Climate change, malaria and neglected tropical diseases: a scoping review. Transact Royal Soc Tropical Med Hygiene 118:561-79. DOI: https://doi.org/10.1093/trstmh/trae026
Lapa T, Ximenes R, Silva NN, Souza W, Albuquerque MFM, Campozana G, 2001. Vigilância da hanseníase em Olinda no Brasil, utilizando técnicas de análise espacial. Cad Saúde Pública 17:1153-62. DOI: https://doi.org/10.1590/S0102-311X2001000500016
Lucas K, Mattioli G, Verlinghieri E, Guzman A, 2016. Transport poverty and its adverse social consequences. Transport 169:353-65. DOI: https://doi.org/10.1680/jtran.15.00073
Machado LMG, Dos Santos ES, Cavaliero A, Steinmann P, Ignotti E, 2022. 1-Spatio-temporal analysis of leprosy risks in a municipality in the state of Mato Grosso-Brazilian Amazon: results from the leprosy post-exposure prophylaxis program in Brazil. Infect Dis Poverty 11:21. DOI: https://doi.org/10.1186/s40249-022-00943-7
Malakar KD, Roy S, 2024. Mapping Geospatial Citizenship. SpringerLink. Accessed: 3 April 2025. Available from: https://link.springer.com/book/10.1007/978-3-031-63107-8 DOI: https://doi.org/10.1007/978-3-031-63107-8_1
Marciano LHSC, Belone AFF, Rosa PS, Coelho NMB, Ghidella CC, Nardi SMT, Miranda WC, Barrozo LV, Lastória JC, 2018. Epidemiological and geographical characterization of leprosy in a Brazilian hyperendemic municipality. Cad Saúde Pública 34:197216 DOI: https://doi.org/10.1590/0102-311x00197216
Mencaroni DA, Pinto Neto JM, Villa TCS, Oliveira MHP, 2004. Análise espacial da endemia hansênica na área urbana do município de Fernandópolis/SP. Hansen Int 29:12-20. DOI: https://doi.org/10.47878/hi.2004.v29.35243
Moura MLN, Dupnik KM, Sampaio GAA, Nóbrega PFC, Jeronimo AK, Nascimento-Filho JM, Dantas RLM, Queiroz JW, Barbosa JD, Dias G, Jeronimo SMB, Souza MCF, Nobre ML, 2013. Active Surveillance of Hansen’s Disease (Leprosy): Importance for Case Finding among Extra-domiciliary Contacts. PLoS Negl Trop Dis 7:e2093. DOI: https://doi.org/10.1371/journal.pntd.0002093
MS - Brazilian Ministry of Health, 2020. Caracterização das Incapacidades Físicas. Accessed: 3 April 2025. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/hanseniase_brasil_caracterizacao_incapacidades_fisicas.pdf
National Library of Medicine, 2024. Medical Subject Headings. Accessed: 3 April 2025. Available from: https://www.nlm.nih.gov/mesh/meshhome.html
Ortuño-Gutiérrez N, Mzembaba A, Ramboarina S, Andriamira R, Baco A, Braet S, Younoussa A, Cauchoix B, Salim Z, Amidy M, Grillone S, Rasamoelina T, Cambau E, Geluk A, de Jong BC, Richardus JH, Hasker E, 2021. Exploring clustering of leprosy in the Comoros and Madagascar: A geospatial analysis. Int J Infect Dis 108:96-101. DOI: https://doi.org/10.1016/j.ijid.2021.05.014
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D, 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 134:178-89. DOI: https://doi.org/10.1016/j.jclinepi.2021.03.001
Paz WS, Souza MDR, Tavares DS, Jesus AR, Santos AD, Carmo RF, Souza CDF, Bezerra-Santos M, 2022. Impact of the COVID-19 pandemic on the diagnosis of leprosy in Brazil: An ecological and population-based study. Lancet Reg Health Am 9:100181. DOI: https://doi.org/10.1016/j.lana.2021.100181
Pereira RHM, Braga CKV, Serra B, Nadalin VG, 2020. Desigualdades socioespaciais de acesso a oportunidades nas cidades brasileiras. 2019. Accessed: 3 April 2025. Available from: https://repositorio.ipea.gov.br/bitstream/11058/9586/1/td_2535.pdf
Peters MDJ, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil, H. Chapter 11: Scoping Reviews (2020 version). In: Aromataris E, Munn Z (Editors). JBI Reviewer's Manual, JBI, 2020. Accessed: 3 April 2025. Available from https://reviewersmanual.joannabriggs.org/. https://doi.org/10.46658/JBIRM-20-01 DOI: https://doi.org/10.46658/JBIRM-20-01
Preston J, Rajé F, 2007. Accessibility, mobility and transport-related social exclusion. J Transport Geogr 15:151-60. DOI: https://doi.org/10.1016/j.jtrangeo.2006.05.002
Queiroz JW, Dias GH, Nobre ML, Dias MCS, Araújo SF, Barbosa JD, Da Trindade-Neto PB, Blackwell JM, Jeronimo SMB, 2010. Geographic information systems and applied spatial statistics are efficient tools to study Hansen’s disease (leprosy) and to determine areas of greater risk of disease. Am J Trop Med Hyg 82:306-14. DOI: https://doi.org/10.4269/ajtmh.2010.08-0675
R Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Accessed: 3 April 2025. Available from: https://www.R-project.org
R Core Team. NetworkD3: D3 JavaScript Network Graphs from R, 2024. Accessed: 3 April 2025. Available from: https://christophergandrud.github.io/networkD3/
Ramaano AI, 2024. The potential significance of geographic information systems (GISs) and remote sensing (RS) in sustainable tourism and decent community involvement in African-rural neighbourhoods. J Electronic Business Digital Econ 3:341-62. DOI: https://doi.org/10.1108/JEBDE-03-2024-0006
Ribeiro GC, Barreto JG, Bueno IC, Vasconcelos BF, Lana FCF, 2019. Prevalência e distribuição espacial da infecção pelo Mycobacterium leprae em município de média endemicidade. Rev Rene 20; https://doi.org/10.15253/2175-6783.20192039497 DOI: https://doi.org/10.15253/2175-6783.20192039497
Rodrigues RN, Niitsuma ENA, Bueno IC, Baquero OS, Jardim CCG, Lana FCF, 2017. Leprosy and health vulnerability in Belo Horizonte, Minas Gerais. Rev Min Enferm 21:1-6. DOI: https://doi.org/10.5935/1415-2762.20170007
Rodrigues-Júnior AL, do Ó VT, Motti VG, 2008. Spatial and temporal study of leprosy in the state of São Paulo (Southeastern Brazil), 2004-2006. Rev Saúde Pública 42:1012-20. DOI: https://doi.org/10.1590/S0034-89102008000600006
Sampaio PB, Bertolde AI, Maciel ELN, Zandonade E, 2013. Correlation between the spatial distribution of leprosy and socioeconomic indicators in the city of Vitória, State of ES, Brazil. Lepr Rev 84:256-65. DOI: https://doi.org/10.47276/lr.84.4.256
Santos MB, dos Santos AD, Barreto AS, Souza MDR, Goes MAO, Alves JAB, Barreto IDC, Silva JRS, Oliveira DT, Araújo KCGM, Duthie MS, de Jesus AR, 2019. Clinical and epidemiological indicators and spatial analysis of leprosy cases in patients under 15 years old in an endemic area of Northeast Brazil: An ecological and time series study. BMJ Open 9:e023420. DOI: https://doi.org/10.1136/bmjopen-2018-023420
Silva CLM, Fonseca SC, Kawa H, Palmer DDOQ, 2017. Spatial distribution of leprosy in Brazil: a literature review. Rev Soc Bras Med Trop 50:439-49. DOI: https://doi.org/10.1590/0037-8682-0170-2016
Sousa DB, Souza-Santos R, da Cunha MD, Sobral A, 2020. Hot spots of leprosy in the endemic area of São Luís, Maranhão State, Northeastern Brazil. J Infect Public Health 13:228-34. DOI: https://doi.org/10.1016/j.jiph.2019.08.006
Souza CDF, Luna CF, Magalhães MAFM, 2019. Spatial modeling of leprosy in the state of Bahia and its social determinants: a study of health inequities. An Bras Dermatol 94:182-91. DOI: https://doi.org/10.1590/abd1806-4841.20197554
Souza CDF, Magalhães MAFM, Luna CF, 2020b. Leprosy and social deprivation: Definition of priority areas in an endemic state Northeastern Brazil. Rev Bras Epidemiol 23:e200007. DOI: https://doi.org/10.1590/1980-549720200007
Souza CDF, Medronho RA, Santos FGB, Magalhães MAFM, Luna CF, 2020a. Spatial modeling of leprosy in the state of Bahia, Brazil, (2001-2015) and social determinants of health. Cienc Saúde Coletiva 25:2915-26. DOI: https://doi.org/10.1590/1413-81232020258.21522018
Souza WV, Barcellos CC, Brito AM, Carvalho MS, Cruz OG, Albuquerque MFM, Alves KR, Lapa TM, 2001. Aplicação de modelo bayesiano empírico na análise espacial da ocorrência de hanseníase. Rev Saúde Pública 35:474-80. DOI: https://doi.org/10.1590/S0034-89102001000500011
Tomasiello DBT, Bazzo J, Parga J, Servo LM, Pereira RHM, 2023. Desigualdades raciais e desigualdades raciais e de renda no acesso à saúde de renda no acesso à saúde nas cidades brasileiras. Accessed: 3 April 2025. Available from: https://repositorio.ipea.gov.br/bitstream/11058/11454/4/TD_2832_Web.pdf DOI: https://doi.org/10.38116/td2832
Urban C, Blom AA, Pfrengle S, Walker-Meikle K, Stone AC, Inskip SA, Schuenemann VJ, 2021. One Health Approaches to Trace Mycobacterium leprae’s Zoonotic Potential Through Time. Front Microbio 12:762263. DOI: https://doi.org/10.3389/fmicb.2021.762263
Valois EMS, Oliveira NG, Lázari PR, Silva DJF, Rotelli RC, Batista LCF, Sobral MH, Bortolomai BE, Finardi AJ, Levi T, Peres CA, Bronzoni RVM, Baptista IMFD, 2024. Molecular and spatial evaluation of small rodents and Didelphimorphis infected with Mycobacterium leprae in the southern Amazon, Brazil. Zoonoses Public Health 00:1-8. zph.13160.
Vilela RB, Ribeiro A, Batista NA, 2020. Word cloud as a tool for content analysis: an application to the challenges of the professional master´s degree courses in health education. Millenium 2:29–36.
WHO - World Health Organization, 2023. Future surveillance for epidemic and pandemic diseases: a 2023 perspective. Accessed: 3 April 2025. Available from: https://www.who.int/publications/i/item/9789240080959.
WHO - World Health Organization, 2024. Global leprosy (Hansen disease) update, 2023: Elimination of leprosy disease is possible – Time to act!. Accessed: 3 April 2025. Available from: https://iris.who.int/bitstream/handle/10665/378895/WER9937-501-521.pdf?sequence=1
WHO - World Health Organization, 2025. Role of Geographic Information Systems (GIS) for leprosy elimination programme. Accessed: 3 April 2025. Available from: https://www.who.int/docs/default-source/ntds/leprosy/role-of-gis-for-lep.pdf
Wickham H, 2016. ggplot2: Elegant graphics for data analysis. ggplot2: create elegant data visualisations using the grammar of graphics. Accessed: 3 April 2025. Available from: https://cran.r-project.org/web/packages/ggplot2/index.html
Wickham H, 2025. dplyr: A grammar of data manipulation. Accessed: 3 April 2025. Available from: https://cran.r-project.org/web/packages/dplyr/index.html

How to Cite



Factors associated with the spatial distribution of leprosy: a systematic review of the published literature. (2025). Geospatial Health, 20(2). https://doi.org/10.4081/gh.2025.1394