Original Articles
2 September 2025

Use of geocoding techniques for epidemiological surveillance in the Federal District, Brazil: a case study using dengue

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
0
Views
0
Downloads

Authors

This study aimed to compare different address geocoding services and their applicability to epidemiological surveillance using dengue as an example. We applied a cross-sectional, descriptive study based on case notifications in the Notifiable Diseases Information System (SINAN) for the Brazilian capital in 2014 that includes complete postal code (CEP) information identified in the National Address Database for Statistical Purposes (CNEFE), which is considered the ‘gold standard’ for accuracy analysis. For records without CEP, georeferencing was performed through linkage of the original database with four geocoding tools: Google Maps, CNEFE, OpenStreetMap (OSM) and ArcGIS. Variables used for georeferencing were ‘street name’, ‘code for municipality/ city of residency’ and ‘State’ using accuracy rate estimate and mean spatial error (MSE) of case locations. The two most accurate models were used for kernel density (KD) analysis which is valuable for identifying priority areas for intervention. There were 18,206 dengue cases, 109 (0.6%) of which had correct CEP information and geocoded using CNEFE bases. The linkage results showed that Google Maps application programming interface (API) had an accuracy of 17.6% (MSE: 178.89km), CNEFE 9.0% (MSE: 17.24km), OSM 7.1% (MSE: 564.19km), and ArcGIS 3.7% (MSE: 2001.33km). Although overall accuracy values were modest, the best two models proven to be effective for KD analysis revealed similar patterns between Google Maps and CNEFE results but choosing the preferable geocoding technique should also financial resources. This study recommends the use of Google Maps API for georeferencing, followed by CNEFE.

Altmetrics

Downloads

Download data is not yet available.

Citations

Barcellos C, Ramalho WM, Gracie R, Magalhães MAFM, Fontes MP, Skaba D, 2008. Georreferenciamento de dados de saúde na escala submunicipal: algumas experiências no Brasil. Epidemiol Serv Saúde. Avaliable from: http://dx.doi.org/10.5123/S1679-49742008000100006 DOI: https://doi.org/10.5123/S1679-49742008000100006
Battesini M, Andrade CLT de, Seta MHD, 2017. Financiamento federal da Vigilância Sanitária no Brasil de 2005 a 2012: análise da distribuição dos recursos. Ciência coletiva 15:e009. DOI: https://doi.org/10.1590/1413-812320172210.10852017
Cambon J, Hernangómez D, Belanger C, Possenriede D. 2021. Tidygeocoder: an R package for geocoding. J Open Source Softw. Avaliable from: https://jessecambon.github.io/tidygeocoder/. DOI: https://doi.org/10.21105/joss.03544
CODEPLAN. 2020. Atlas do Distrito Federal – Capítulo 5: Meio Socioeconômico. Companhia de Planejamento do Distrito Federal. Marina Artes Gráficas e Editora: 74:93.
Fantin M, Vizioli SHT, 2021. Caminhos da região central paulista: articulação entre universidade e sociedade para a construção da cidadania e do desenvolvimento sustentável. Volume 1 – Tecnologia, cultura e empreendedorismo. São Carlos: Universidade de São Paulo, Instituto de Arquitetura e Urbanismo. Available from: https://doi.org/10.11606/9786586810233. DOI: https://doi.org/10.11606/9786586810233
Garcia KKS, Miranda CB, Sousa FNEF, 2022. Procedures for health data linkage: applications in health surveillance. Procedimentos para vinculação de dados da saúde: aplicações na vigilância em saúde. Epidemiol Serv Saude 31:e20211272. DOI: https://doi.org/10.1590/s2237-96222022000300004
Garcia KKS, Xavier DB, Soremekun S, Abrahão AA, Drakeley C, Ramalho WM, Siqueira AM, 2023. Record linkage for malaria deaths data recovery and surveillance in Brazil. Trop Med Infect Dis 8:519. DOI: https://doi.org/10.3390/tropicalmed8120519
Google, 2025. Geocoding API: Overview. Available from: https://developers.google.com/maps/documentation/geocoding/overview?hl=pt-br.
Jaro MA, 1989. Advances in record-linkage methodology as applied to matching the 1985 Census of Tampa, Florida. J Am Stat Assoc, 7 pp. DOI: https://doi.org/10.2307/2289924
Katapally TR, Ibrahim ST, 2023. Digital health dashboards for decision-making to enable rapid responses during public health crises: replicable and scalable methodology. JMIR Res Protoc 12:e46810. DOI: https://doi.org/10.2196/46810
Klaus CA, Henry KA, Il'yasova D, 2023. Capturing emergency dispatch address points as geocoding candidates to quantify delimited confidence in residential geolocation. Int J Health Geogr 22:25. DOI: https://doi.org/10.1186/s12942-023-00347-2
Lustosa JLS, 2017. Geocoding dengue cases for spatial analisys. Conference Paper. Available from: https://www.researchgate.net/publication/320372257_Geocoding_Dengue_Cases_for_Spatial_Analysis
Magalhães M de AFM, Matos VP de, Medronho R de A, 2014. Avaliação do dado sobre endereço no Sistema de Informação de Agravos de Notificação utilizando georreferenciamento em nível local de casos de tuberculose por dois métodos no município do Rio de Janeiro. Cad saúde colet. Available from: https://doi.org/10.1590/1414-462X201400020013. DOI: https://doi.org/10.1590/1414-462X201400020013
McDonald YJ, Schwind M, Goldberg DW, Lampley A, Wheeler CM, 2017. An analysis of the process and results of manual geocode correction. Geospat Health 12:526. DOI: https://doi.org/10.4081/gh.2017.526
Miranda ML, Ferranti J, Strauss B, Neelon B, Califf RM, 2013. Geographic health information systems: a platform to support the 'triple aim'. Health Aff (Millwood) 32:1608-15. DOI: https://doi.org/10.1377/hlthaff.2012.1199
MoH, 2024. Ministério da Saúde Brasil. Secretaria de Vigilância em Saúde e Ambiente. Departamento de Ações Estratégicas de Epidemiologia e Vigilância em Saúde e Ambiente. Guia de vigilância em saúde: volume 1. 6th ed. rev. Brasília: Ministério da Saúde. 3 v. 465 pp.
MoH, 2025a. Ministério da Saúde Brasil. Painel de Monitoramento de Arboviroses. Brasília: Ministério da Saúde. Available from: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/a/aedes-aegypti/monitoramento-das-arboviroses.
MoH, 2025b. Ministério da Saúde Brasil,. Secretaria de Vigilância em Saúde e Ambiente. Departamento de Doenças Transmissíveis. Plano de contingência nacional para dengue, chikungunya e Zika. Brasília: Ministério da Saúde. 102 pp.
Oliveira EA, Martelli Júnior H, Silva ACSE, Martelli DRB, Oliveira MCL, 2020. Science funding crisis in Brazil and COVID-19: deleterious impact on scientific output. An Acad Bras Ciênc. Available from: https://doi.org/10.1590/0001-3765202020200700. DOI: https://doi.org/10.1590/0001-3765202020200700
Quintans-Júnior LJ, Gomes FG, 2024. The abyss of research funding in Brazil. EXCLI J 23:1491-1492. DOI: https://doi.org/10.2139/ssrn.4970881
Seixas JBA, Luz KG, Pinto Junior VL, 2024. Atualização clínica sobre diagnóstico, tratamento e prevenção da dengue. Acta Med Port. Available from: https://doi.org/10.20344/amp.20569. DOI: https://doi.org/10.20344/amp.20569
SES-DF. 2024. Secretaria de Saúde do Distrito Federal. Monitoramento dos casos de dengue, febre de chikungunya, doença aguda pelo vírus zika e febre amarela até a Semana Epidemiológica 52 de 2024, no Distrito Federal. Brasília, 1-16.
Silveira IH, Oliveira BFA, Junger WL, 2017. Utilização do Google Maps para o georreferenciamento de dados do Sistema de Informações sobre Mortalidade no município do Rio de Janeiro, 2010-2012. Epidemiol Serv Saúde. Available from: http://dx.doi.org/10.5123/s1679-49742017000400018. DOI: https://doi.org/10.5123/S1679-49742017000400018
Skaba DA, 2009. Metodologias de geocodificação dos dados da saúde. Rio de Janeiro: Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. [Thesis] 155 pp.
Skaba DA, Carvalho MS, Barcellos C, Martins PC, Terron SL, 2004. Geoprocessamento dos dados da saúde: o tratamento dos endereços. Cad Saude Publica. Available from: https://doi.org/10.1590/s0102-311x2004000600037. DOI: https://doi.org/10.1590/S0102-311X2004000600037
Vieira FS, 2020. Health financing in Brazil and the goals of the 2030 Agenda: high risk of failure. Rev Saude Publica 54:127.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, 2019. Welcome to the Tidyverse. J Open Source Software Avaliable from: https://doi.org/10.21105/joss.01686. DOI: https://doi.org/10.21105/joss.01686
Wickham H. 2021. Mastering Shiny. 1st ed. Sebastopol. O'Reilly Media, Incorporated; 400 pp.
Winkler WE, 1990. String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage. Proceedings of the Section on Survey Research Methods. American Statistical Association; 8.
World Health Organization, 2025. Dengue and severe dengue. Geneva: WHO. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

Supporting Agencies

Brazilian National Council for Scientific and Technological Development (CNPq)

How to Cite



Use of geocoding techniques for epidemiological surveillance in the Federal District, Brazil: a case study using dengue. (2025). Geospatial Health, 20(2). https://doi.org/10.4081/gh.2025.1403