Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data

Submitted: 7 January 2015
Accepted: 3 March 2015
Published: 3 June 2015
Abstract Views: 3611
PDF: 1376
HTML: 1725
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

Seventh Framework Programme (FP7) for partially funding the project

How to Cite

Dlamini, S. N., Franke, J., & Vounatsou, P. (2015). Assessing the relationship between environmental factors and malaria vector breeding sites in Swaziland using multi-scale remotely sensed data. Geospatial Health, 10(1). https://doi.org/10.4081/gh.2015.302

List of Cited By :

Crossref logo