Space-time epidemiology and effect of meteorological parameters on influenza-like illness in Phitsanulok, a northern province in Thailand

  • Prakash Madhav Nimbalkar | p.nimbalkar@uw.edu.pl Department of Geoinformatics, Cartography and Remote Sensing, University of Warsaw, Warsaw, Poland.
  • Nitin Kumar Tripathi School of Engineering and Technology, Asian Institute of Technology, Klong Luang, Thailand.

Abstract

Influenza-like illness (ILI) is an acute respiratory disease that remains a public health concern for its ability to circulate globally affecting any age group and gender causing serious illness with mortality risk. Comprehensive assessment of the spatio-temporal dynamics of ILI is a prerequisite for effective risk assessment and application of control measures. Though meteorological parameters, such as rainfall, average relative humidity and temperature, influence ILI and represent crucial information for control of this disease, the relation between the disease and these variables is not clearly understood in tropical climates. The aim of this study was to analyse the epidemiology of ILI cases using integrated methods (space-time analysis, spatial autocorrelation and other correlation statistics). After 2009s H1N1 influenza pandemic, Phitsanulok Province in northern Thailand was strongly affected by ILI for many years. This study is based on ILI cases in villages in this province from 2005 to 2012. We used highly precise weekly incidence records covering eight years, which allowed accurate estimation of the ILI outbreak. Comprehensive methodology was developed to analyse the global and local patterns of the spread of the disease. Significant space-time clusters were detected over the study region during eight different periods. ILI cases showed seasonal clustered patterns with a peak in 2010 (P>0.05-9.999 iterations). Local indicators of spatial association identified hotspots for each year. Statistically, the weather pattern showed a clear influence on ILI cases and it strongly correlated with humidity at a lag of 1 month, while temperature had a weaker correlation.

Downloads

Download data is not yet available.

Author Biographies

Prakash Madhav Nimbalkar, Department of Geoinformatics, Cartography and Remote Sensing, University of Warsaw, Warsaw
Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing, PHD student
Nitin Kumar Tripathi, School of Engineering and Technology, Asian Institute of Technology, Klong Luang
Remote Sensing and GIS, School of Engg and Technology, Professor of Geoinformatics
Published
2016-11-21
Section
Original Articles
Keywords:
Influenza-like illness, Epidemiology, Space-time analysis, Weather variability, Thailand
Statistics
Abstract views: 1002

PDF: 527
HTML: 1096
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Nimbalkar, P. M., & Tripathi, N. K. (2016). Space-time epidemiology and effect of meteorological parameters on influenza-like illness in Phitsanulok, a northern province in Thailand. Geospatial Health, 11(3). https://doi.org/10.4081/gh.2016.447