Spatial dispersal of Aedes albopictus mosquitoes captured by the modified sticky ovitrap in Selangor, Malaysia

Submitted: 16 June 2021
Accepted: 12 November 2021
Published: 11 May 2022
Abstract Views: 951
PDF: 442
Annex I-VI: 77
HTML: 43
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Dengue is a major mosquito-borne disease in many tropical and sub-tropical countries worldwide, with entomological surveillance and control activities as the key management approaches. This study aimed to explore the spatial dispersal of the vector Aedes albopictus, captured by the modified sticky ovitrap (MSO) in residential areas with low-rise buildings in Selangor, Malaysia. Distribution maps were created and shown as temporally distinguished classes based on hotspot analysis by Getis-Ord; spatial autocorrelation assessed by semivariograms using the exponential Kernel function; and universal Kriging showing areas with estimated high and low vector densities. Distribution, hotspot and interpolated maps were analysed based on the total number of mosquitoes by month and week. All maps in the present study were generated and visualised in ArcMap. Spatial autocorrelation of Ae. albopictus based on the monthly occurrence of Ae. albopictus was found in March, April, October, November and December 2018, and when based on the weekly numbers, in weeks 1, 2, 3, 5, 7, 12, 14, 25, 26, 27, 31, 33, 42, 49 and 52. Semivariograms, based on the monthly and weekly numbers of Ae. albopictus, indicated spatial autocorrelation of the species extending between 50 and 70 m. The mosquito density maps reported in this study may provide beneficial information to facilitate implementation of more efficient entomological control activities.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abilio AP, Abudasse G, Kampango A, Candrinho B, Sitoi S, Luciano J, Tembisse D, Sibindy S, de Almeida A, Garcia GA, David MR, Maciel-de-Freitas R, Gudo ES, 2018. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Negl Trop Dis 12:e0006692. DOI: https://doi.org/10.1371/journal.pntd.0006692
Ahmad DM, Azman A, Hafizan J, Kamaruzzaman Y, Ismail ZA, Nur HS, Mohamed AA, Romizan O, Mohd Khairul AK, Muhammad BG, 2015. Geographical Information System (GIS) for relationship between dengue disease and climatic factors at Cheras, Malaysia. Malaysian J Anal Sci 19:1318-26.
Ahmad R, Ali WN, Nor ZM, Ismail Z, Hadi AA, Ibrahim MN, Lim LH, 2011. Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Malar J 10:361. DOI: https://doi.org/10.1186/1475-2875-10-361
Ali M, Wagatsuma Y, Emch M, Breiman RF, 2003. Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. Am J Trop Med Hyg 69:634-40. DOI: https://doi.org/10.4269/ajtmh.2003.69.634
Alias H, Surin J, Mahmud R, Shafie A, Mohd Zin J, Mohamad Nor M, Ibrahim AS, Rundi, C, 2014. Spatial distribution of malaria in Peninsular Malaysia from 2000 to 2009. Parasit Vectors 7:186. DOI: https://doi.org/10.1186/1756-3305-7-186
Arunachalam N, Tana S, Espino F, Kittayapong P, Abeyewickreme W, Wai KT, Tyagi BK, Kroeger A, Sommerfeld J, Petzold M, 2010. Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bull World Health Organ 88:173-184. DOI: https://doi.org/10.2471/BLT.09.067892
Azami NA, Salleh SA, Shah SA, Neoh HM, Othman Z, Zakaria SZ, Jamal R, 2013. Emergence of chikungunya seropositivity in healthy Malaysian adults residing in outbreak-free locations: chikungunya seroprevalence results from the Malaysian Cohort. BMC Infect Dis 13:67. DOI: https://doi.org/10.1186/1471-2334-13-67
Aziz S, 2011. Evaluation of the spatial risk factors for high incidence of dengue fever and dengue hemorrhagic fever using GIS application. Sains Malays 40:937-43.
Aziz S, Aidil RM, Nisfariza MN, Ngui R, Lim YA, Yusoff WS, Ruslan R, 2014. Spatial density of Aedes distribution in urban areas: a case study of Breteau index in Kuala Lumpur, Malaysia. J Vector Borne Dis 51:91-6.
Aziz S, Ngui R, Lim YA, Sholehah I, Nur Farhana J, Azizan AS, Wan Yusoff, WS, 2012. Spatial pattern of 2009 dengue distribution in Kuala Lumpur using GIS application. Trop Biomed 29:113-20.
Bagny Beilhe L, Arnoux S, Delatte H, Lajoie G, Fontenille D, 2012. Spread of invasive Aedes albopictus and decline of resident Aedes aegypti in urban areas of Mayotte 2007-2010. Biol Invasions 14:1623-33. DOI: https://doi.org/10.1007/s10530-012-0177-1
Brassel KE, Reif D, 1979. A procedure to generate Thiessen Polygons. Geogr Anal 11:289-303. DOI: https://doi.org/10.1111/j.1538-4632.1979.tb00695.x
Bonizzoni M, Gasperi G, Chen X, James AA, 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460-8. DOI: https://doi.org/10.1016/j.pt.2013.07.003
Carbajo AE, Schweigmann N, Curto SI, de Garin A, Bejaran R, 2001. Dengue transmission risk maps of Argentina. Trop Med Int Health 6:170-83. DOI: https://doi.org/10.1046/j.1365-3156.2001.00693.x
Chang AY, Parrales ME, Jimenez J, Sobieszczyk ME, Hammer SM, Copenhaver DJ, Kulkarni RP, 2009. Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries. Int J Health Geogr 8:49. DOI: https://doi.org/10.1186/1476-072X-8-49
Chansang C, Kittayapong P, 2007. Application of mosquito sampling count and geospatial methods to improve dengue vector surveillance. Am J Trop Med Hyg 77:897-902. DOI: https://doi.org/10.4269/ajtmh.2007.77.897
Cressie NA, 1991. The origins of kriging. Math Geol 22:239-52. DOI: https://doi.org/10.1007/BF00889887
Duncombe J, Espino F, Marollano K, Velazco A, Ritchie SA, Hu WB, Weinstein P, Clements AC, 2013. Characterising the spatial dynamics of sympatric Aedes aegypti and Aedes albopictus populations in the Philippines. Geospat Health 8:255-65. DOI: https://doi.org/10.4081/gh.2013.71
Eisen L, Eisen RJ, 2011. Using geographic information systems and decision support systems for the prediction, prevention, and control of vector-borne diseases. Annu Rev Entomol 56:41-61. DOI: https://doi.org/10.1146/annurev-ento-120709-144847
Er AC, Rosli MH, Asmahani A, Mohamad Naim MR, Harsuzilawati M, 2010. Spatial mapping of dengue incidence: a case study in Hulu Langat district, Selangor, Malaysia. Int J Human Soc Sci 5:410-4.
Flipse J, Smit JM, 2015. The complexity of a dengue vaccine: a review of the human antibody response. PLoS Negl Trop Dis 9:e0003749. DOI: https://doi.org/10.1371/journal.pntd.0003749
Focks DA, 2003. A review of entomological sampling methods and indicators for dengue vectors. World Health Organization, Geneva.
Getis A, Morrison AC, Gray K, Scott TW, 2003. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am J Trop Med Hyg 69:494-505. DOI: https://doi.org/10.4269/ajtmh.2003.69.494
Hassan H, Shohaimi S, Hashim NR, 2012. Risk mapping of dengue in Selangor and Kuala Lumpur, Malaysia. Geospat Health 7:21-25. DOI: https://doi.org/10.4081/gh.2012.101
Hazrin M, Hiong HG, Jai N, Yeop N, Hatta M, Paiwai F, Joanita S, Othman W, 2016. Spatial distribution of dengue incidence: a case study in Putrajaya J Geogr Inf Syst 8:89-97. DOI: https://doi.org/10.4236/jgis.2016.81009
Heinisch M, Diaz-Quijano FA, Chiaravalloti-Neto F, Menezes Pancetti FG, Rocha Coelho R, Dos Santos Andrade P, Urbinatti PR, de Almeida R, Lima-Camara TN, 2019. Seasonal and spatial distribution of Aedes aegypti and Aedes albopictus in a municipal urban park in Sao Paulo, SP, Brazil. Acta Trop 189:104-13. DOI: https://doi.org/10.1016/j.actatropica.2018.09.011
Honorio NA, Silva W, Leite PJ, Goncalves JM, Lounibos LP, Lourenço-de-Oliveira R, 2003. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98:191-8. DOI: https://doi.org/10.1590/S0074-02762003000200005
Hu W, Clements A, Williams G, Tong S, Mengersen K, 2012. Spatial patterns and socioecological drivers of dengue fever transmission in Queensland, Australia. Environ Health Perspect 120:260-6. DOI: https://doi.org/10.1289/ehp.1003270
Jeefoo P, Tripathi NK, Souris M, 2011. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health 8:51-74. DOI: https://doi.org/10.3390/ijerph8010051
Johari NA, Voon K, Toh SY, Sulaiman LH, Yap I, Lim P, 2019. Sylvatic dengue virus type 4 in Aedes aegypti and Aedes albopictus mosquitoes in an urban setting in Peninsular Malaysia. PLoS Negl Trop Dis 13:e0007889. DOI: https://doi.org/10.1371/journal.pntd.0007889
Kamal M, Kenawy MA, Rady MH, Khaled AS, Samy AM, 2018. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS One 13:e0210122. DOI: https://doi.org/10.1371/journal.pone.0210122
Kelly GC, Seng CM, Donald W, Taleo G, Nausien J, Batarii W, Iata H, Tanner M, Vestergaard LS, Clements AC, 2011. A spatial decision support system for guiding focal indoor residual interventions in a malaria elimination zone. Geospat Health 6:21-31. DOI: https://doi.org/10.4081/gh.2011.154
Kelly GC, Tanner M, Vallely A, Clements A, 2012. Malaria elimination: moving forward with spatial decision support systems. Trends Parasitol 28:297-304. DOI: https://doi.org/10.1016/j.pt.2012.04.002
Lam NSN, 1983. Spatial interpolation methods: a review. Am Cartogr 10:129-50. DOI: https://doi.org/10.1559/152304083783914958
Li Z, Yin W, Clements A, Williams G, Lai S, Zhou H, Zhao D, Guo Y, Zhang Y, Wang J, Hu W, Yang W, 2012. Spatiotemporal analysis of indigenous and imported dengue fever cases in Guangdong province, China. BMC Infect Dis 12:132. DOI: https://doi.org/10.1186/1471-2334-12-132
Liew C, Curtis CF, 2004. Horizontal and vertical dispersal of dengue vector mosquitoes, Aedes aegypti and Aedes albopictus, in Singapore. Med Vet Entomol 18:351-60. DOI: https://doi.org/10.1111/j.0269-283X.2004.00517.x
Ling CY, Gruebner O, Kramer A, Lakes T, 2014. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level. Geospat Health 9:131-40. DOI: https://doi.org/10.4081/gh.2014.11
Lozano-Fuentes S, Elizondo-Quiroga D, Farfan-Ale JA, Loroño-Pino MA, Garcia-Rejon J, Gomez-Carro S, Lira-Zumbardo V, Najera-Vazquez R, Fernandez-Salas I, Calderon-Martinez J, Dominguez-Galera M, Mis-Avila P, Morris N, Coleman M, Moore CG, Beaty BJ, Eisen L, 2008. Use of Google Earth to strengthen public health capacity and facilitate management of vector-borne diseases in resource-poor environments. Bull World Health Organ 86:718-25. DOI: https://doi.org/10.2471/BLT.07.045880
Maciel-de-Freitas R, Neto RB, Goncalves JM, Codeço CT, Lourenço-de-Oliveira R, 2006. Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J Med Entomol 43:1112-20. DOI: https://doi.org/10.1093/jmedent/43.6.1112
Majid NA, Nazi NM, Mohamed AF, 2019. Distribution and spatial pattern analysis on dengue cases in Seremban district, Negeri Sembilan, Malaysia. Sustainability 11:1-4. DOI: https://doi.org/10.3390/su11133572
Masnita MY, Nazri CD, Ariza Z, 2016. Spatial pattern distribution of dengue fever in sub-urban area using GIS tools. Serangga 21:127-48.
Moreno-Sanchez R, Hayden M, Janes C, Anderson G, 2006. A web-based multimedia spatial information system to document Aedes aegypti breeding sites and dengue fever risk along the US-Mexico border. Health Place 12:715-27. DOI: https://doi.org/10.1016/j.healthplace.2005.10.001
Murphy A, Rajahram GS, Jilip J, Maluda M, William T, Hu W, Reid S, Devine GJ, Frentiu FD, 2020. Incidence and epidemiological features of dengue in Sabah, Malaysia. PLoS Negl Trop Dis 14:e0007504. DOI: https://doi.org/10.1371/journal.pntd.0007504
Nazri CD, Ahmad AH, Ishak AR, Ismail R, 2013. Assessing the risk of dengue fever based on the epidemiological, environmental and entomological variables. Procedia Soc Behav Sci 105:183-94. DOI: https://doi.org/10.1016/j.sbspro.2013.11.019
Norzawati Y, Mohd Maher I, Chong JH, Husna Mahirah S, Nur Adawiyah A, Ang BY, 2015. Spatial distribution of dengue vectors in Malaysia. Med J Malaysia 70:54.
Oliver MA, Webster R, 1990. Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Syst 4:313-32. DOI: https://doi.org/10.1080/02693799008941549
Ord JK, Getis A, 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27:286-306. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
Pahrol MA, Noraishah MS, Nasir RA, 2018. Spatial distribution of malaria incidence in Sabah from 2012 to 2016. Geoinfor Geostat 6:3.
Pessanha JE, Caiaffa WT, Almeida MC, Brandao ST, Proietti FA, 2012. Diffusion pattern and hotspot detection of dengue in Belo Horizonte, Minas Gerais, Brazil. J Trop Med 2012:760951. DOI: https://doi.org/10.1155/2012/760951
Pfeiffer DU, Robinson TP, Stevenson M, Stevens KB, Rogers DJ, Clements AC, 2008. Spatial analysis in epidemiology. Oxford: Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198509882.001.0001
Richards SL, Apperson CS, Ghosh SK, Cheshire HM, Zeichner BC, 2006. Spatial analysis of Aedes albopictus (Diptera: Culicidae) oviposition in suburban neighborhoods of a Piedmont community in North Carolina. J Med Entomol 43:976-89. DOI: https://doi.org/10.1093/jmedent/43.5.976
Rohani A, Azahary A, Zurainee M, Wan Najdah W, Zamree I, Hanif M, Ariffin M, Zuhaizam H, Suzilah I, Lee H, 2016. Comparative human landing catch and cdc light trap in mosquito sampling in Knowlesi malaria endemic areas in Peninsula Malaysia. Adv Entomol 4:1-10. DOI: https://doi.org/10.4236/ae.2016.41001
Rozilawati H, Tanaselvi K, Nazni WA, Mohd Masri S, Zairi J, Adanan CR, Lee HL, 2015. Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities, peninsular Malaysia. Trop Biomed 32:49-64.
Russell RC, Dwyer DE, 2000. Arboviruses associated with human disease in Australia. Microbes Infect 2:1693-704. DOI: https://doi.org/10.1016/S1286-4579(00)01324-1
Ryan PA, Lyons SA, Alsemgeest D, Thomas P, Kay BH, 2004. Spatial statistical analysis of adult mosquito (Diptera: Culicidae) counts: an example using light trap data, in Redland Shire, Southeastern Queensland, Australia. J Med Entomol 41:1143-56. DOI: https://doi.org/10.1603/0022-2585-41.6.1143
Sithiprasasna R, Patpoparn S, Attatippaholkun W, Suvannadabba S, Srisuphanunt M, 2004. The geographic information system as an epidemiological tool in the surveillance of dengue virus-infected Aedes mosquitos. Southeast Asian J Trop Med Public Health 35:918-26.
Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M, 2006. Different spatial distribution of Aedes aegypti and Aedes albopictus along an urban-rural gradient and the relating environmental factors examined in three villages in northern Thailand. J Am Mosq Control Assoc 22:222-8. DOI: https://doi.org/10.2987/8756-971X(2006)22[222:DSDOAA]2.0.CO;2
Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA, 2010. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 4:e920. DOI: https://doi.org/10.1371/journal.pntd.0000920
Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, Khaw L, Goh X, Yap N, Sulaiman WY, Jeffery J, Zawiah AG, Nor Aszlina I, Sharma RS, Yee Ling L, Mahmud R, 2014. Plasmodium knowlesi malaria an emerging public health problem in Hulu Selangor, Selangor, Malaysia (2009-2013): epidemiologic and entomologic analysis. Parasit Vectors 7:436. DOI: https://doi.org/10.1186/1756-3305-7-436
Wieczorek, WF, Delmerico AM, 2009. Geographic information systems. Comput Stat 1:167-86. DOI: https://doi.org/10.1002/wics.21
Zimmerman D, Pavlik C, Ruggles A, Armstrong MP, 1999. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math Geol 31:375-90. DOI: https://doi.org/10.1023/A:1007586507433

How to Cite

Roslan, M. A., Ngui, R. ., Marzuki, M. F., Vythilingam, I., Shafie, A., Musa, S., & Wan Sulaiman, W. Y. (2022). Spatial dispersal of <em>Aedes albopictus</em> mosquitoes captured by the modified sticky ovitrap in Selangor, Malaysia. Geospatial Health, 17(1). https://doi.org/10.4081/gh.2022.1025