Exploring geomasking methods for geoprivacy: a pilot study in an environment with built features

Submitted: 17 April 2023
Accepted: 26 September 2023
Published: 17 October 2023
Abstract Views: 630
PDF: 294
HTML: 16
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

This study discusses the ethical use of geographical information systems (GIS) data with a focus on geomasking for upholding locational privacy. As part of a pilot study in Jeddah City, Saudi Arabia, we used open-source geomasking methods to ensure geoprivacy while examining built environment features that determine the quality of life among individuals with type-II diabetes. We employed the open-source algorithms Maskmy.XYZ and NRand-k for geomasking 329 data points. The results showed no differences between global and city-level spatial patterns, but significant variations were observed with respect to local patterns. These findings indicate the promising potential of the chosen geomasking technologies with respect to ensuring locational privacy but it was noted that further improvements are needed. We recommend developing enhanced algorithms and conducting additional studies to minimize any negative impact of geomasking in spatial analysis with the overall aim of achieving a better understanding of ethical considerations in GIS sciences. In conclusion, application of geomasking is straightforward and can lead to enhanced use for privacy protection in geospatial data analysis.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Abellanas M, Palop B, 2008. Urban Data Visualization with Voronoi Diagrams. Pp. 126–36 in Computational Science and Its Applications – ICCSA 2008. Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-540-69839-5_10
Aljoufie M, Tiwari A, 2020. Exploring Housing and Transportation Affordability in Jeddah. Housing Policy Debate 1–27. DOI: https://doi.org/10.1080/10511482.2020.1815070
Allshouse WB, Fitch MK, Hampton KH, Gesink DC, Doherty IA, Leone PA, Serre ML, Miller WC, 2010. Geomasking Sensitive Health Data and Privacy Protection: An Evaluation Using an E911 Database. Geocarto Int 25:443–52. DOI: https://doi.org/10.1080/10106049.2010.496496
Angulo JM, Bueso MC, 2001. Random Perturbation Methods Applied to Multivariate Spatial Sampling Design. Environmetrics 12:631–46. DOI: https://doi.org/10.1002/env.488
Anselin L, 2003. An Introduction to Spatial Autocorrelation Analysis with GeoDa. Illinois.
Anselin L, 2010a. Local Indicators of Spatial Association-LISA. Geogr Anal 27:93–115. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin L, Syabri I, Kho Y. 2006. GeoDa: An Introduction to Spatial Data Analysis. Geogr Anal 38:5–22. DOI: https://doi.org/10.1111/j.0016-7363.2005.00671.x
Ardagna CA, Cremonini M, Damiani E, de Capitani di Vimercati S, Samarati P, 2006. Supporting Location-Based Conditions in Access Control Policies. P. 212 in Proceedings of the 2006 ACM Symposium on Information, computer and communications security - ASIACCS ’06. New York, New York, USA: ACM Press. DOI: https://doi.org/10.1145/1128817.1128850
Armstrong MP, Ruggles AJ, 2005. Geographic Information Technologies and Personal Privacy.Cartographica: Int J Geogr Inf Geovis 40:63–73. DOI: https://doi.org/10.3138/RU65-81R3-0W75-8V21
Armstrong MP, Rushton G, Zimmerman DL, 1999. Geographically Masking Health Data to Preserve Confidentiality. Stat Med 18:497–525. DOI: https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<497::AID-SIM45>3.0.CO;2-#
Banville M-S, Torres J. 2017. On Embracing an Immanent Ethics in Urban Planning: Pursuing Our Body-without-Organs. Plan Theory 16:255–74. DOI: https://doi.org/10.1177/1473095215625707
Beresford AR, StajanoF, 2003. Location Privacy in Pervasive Computing. IEEE Pervasive Comput 2:46–55. DOI: https://doi.org/10.1109/MPRV.2003.1186725
Berman G, de la Rosa S, Accone T, 2018. Ethical Considerations When Using Geospatial Technologies for Evidence Generation. Innocenti Research Brief 2018–21. UNICEF office of Research-Innocenti, Florence, Italy
Blatt AJ, 2012. Ethics and Privacy Issues in the Use of GIS.J Map Geogr Libr 8:80–84. DOI: https://doi.org/10.1080/15420353.2011.627109
Blumberg AJ, 2010. Locational Privacy. Personal Blog. Retrieved January 10, 2023 Available form: https://web.ma.utexas.edu/users/blumberg/locational.html#:~:text=Locational privacy
Bridwell SA, 2007. The Dimensions of Locational Privacy. Pp. 209–25 in.Societies and cities in the age of instant access , Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/1-4020-5427-0_14
Brownstein JS, Cassa, CA, Kohane IS, Mandl KD, 2006. An Unsupervised Classification Method for Inferring Original Case Locations from Low-Resolution Disease Maps. Int J Health Geogr 5:56. DOI: https://doi.org/10.1186/1476-072X-5-56
Brunsdon C, Comber A, 2021. Opening Practice: Supporting Reproducibility and Critical Spatial Data Science. J Geogr Syst 23:477–96. DOI: https://doi.org/10.1007/s10109-020-00334-2
Cann K, Price M, 2023. The Ethics of Location Tracking During the COVID-19 Pandemic and Beyond: Building Awareness and Consensus. Prof Geogr 75:430–40. DOI: https://doi.org/10.1080/00330124.2022.2111691
Cetl V, Tomas R, Kotsev A, Nunes de Lima V, Smith RS, Jobst M, 2019. Establishing Common Ground Through INSPIRE: The Legally-Driven European Spatial Data Infrastructure. Pp. 63–84 in.Lecture Notes in Geoinformation and Cartography. Springer. DOI: https://doi.org/10.1007/978-3-319-72434-8_3
Charleux Laure, Schofield K, 2020. True Spatial K-Anonymity: Adaptive Areal Elimination vs. Adaptive Areal Masking. Cartogr Geogr Inf Sci 47:537–49. DOI: https://doi.org/10.1080/15230406.2020.1794975
Crampton J, 1995. The Ethics of GIS. Cartogr Geogr Inf Syst 22:84–89. DOI: https://doi.org/10.1559/152304095782540546
Crampton JW, 2003. Cartographic Rationality and the Politics of Geosurveillance and Security.Cartogr Geogr Inf Sci 30:135–48. DOI: https://doi.org/10.1559/152304003100011108
Cremonini M, Braghin C, Ardagna CA, 2013. Privcy on the Internet. Pp. 739–53 in Computer and Information Security Handbook. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-394397-2.00042-8
Dobson JE, FisherPF, 2003. Geoslavery. IEEE Technol Soc Mag 22:47–52. DOI: https://doi.org/10.1109/MTAS.2003.1188276
Engin Z, van Dijk J, Longley PA, Treleaven P, Batty M, Penn A, 2020. Data-Driven Urban Management: Mapping the Landscape. J Urban Manag 9:140–50. DOI: https://doi.org/10.1016/j.jum.2019.12.001
Frith J, Saker M,2020. It Is All About Location: Smartphones and Tracking the Spread of COVID-19. Soc Media Soc 6:205630512094825. DOI: https://doi.org/10.1177/2056305120948257
Ghinita G, Zhao K, Papadias D, Kalnis P, 2010. A Reciprocal Framework for Spatial K-Anonymity. Inf Syst 35(3):299–314. DOI: https://doi.org/10.1016/j.is.2009.10.001
Grekousis G, 2020. Spatial Analysis Methods and Practice. Cambridge University Press. DOI: https://doi.org/10.1017/9781108614528
Griffith DA, 2021. Interpreting Moran Eigenvector Maps with the Getis-Ord G i* Statistic. Prof Geogrr 73:447–63. DOI: https://doi.org/10.1080/00330124.2021.1878908
Haining R, Wise S, Ma J, 1998. Exploratory Spatial Data Analysis. J R Stat Soc Ser D 47:457–69. DOI: https://doi.org/10.1111/1467-9884.00147
Jain P, Gyanchandani M, Khare N, 2016. Big Data Privacy: A Technological Perspective and Review. J Big Data 3:25. DOI: https://doi.org/10.1186/s40537-016-0059-y
Kerski J, 2016. Location Privacy. Geogr Inf Sci Technol Body of Knowledge (3rd Quarter) 2016 Edition, John P. Wilson (ed.). DOI: https://doi.org/10.22224/gistbok/2016.3.2
Kim J, Kwan M-P, Levenstein MC, Richardson DB, 2021. How Do People Perceive the Disclosure Risk of Maps? Examining the Perceived Disclosure Risk of Maps and Its Implications for Geoprivacy Protection. Cartogr Geogr Inf Sci 48:2–20. DOI: https://doi.org/10.1080/15230406.2020.1794976
Kounadi O, Leitner M, 2014. Why Does Geoprivacy Matter? The Scientific Publication of Confidential Data Presented on Maps. J Empir Res Hum Res Ethics 9:34–45. DOI: https://doi.org/10.1177/1556264614544103
Kounadi O, Leitner M, 2016. Adaptive Areal Elimination (AAE): A Transparent Way of Disclosing Protected Spatial Datasets. Comput Environ Urban Syst 57:59–67. DOI: https://doi.org/10.1016/j.compenvurbsys.2016.01.004
Kourtit K, Elmlund P, Nijkamp P, 2020. The Urban Data Deluge: Challenges for Smart Urban Planning in the Third Data Revolution. Int J Urban Sci 24(4):445–61. DOI: https://doi.org/10.1080/12265934.2020.1755353
Lo Piccolo F, Thomas H, 2008. Research Ethics in Planning: A Framework for Discussion. Plan Theory 7:7–23. DOI: https://doi.org/10.1177/1473095207085663
Lopes IM, Oliveira P, 2018. Implementation of the General Data Protection Regulation: A Survey in Health Clinics. Pp. 1–6 in 2018 13th Iberian Conference on Information Systems and Technologies (CISTI). IEEE. DOI: https://doi.org/10.23919/CISTI.2018.8399156
Monmonier M, 2005. Lying with Maps. Stat Sci 20:215–22. DOI: https://doi.org/10.1214/088342305000000241
Monmonier M, 2003. The Internet, Cartographic Surveillance, and Locational Privacy. Pp. 97–113 in Maps and the Internet. Elsevier. DOI: https://doi.org/10.1016/B978-008044201-3/50008-6
Moran PAP, 1948. The Interpretation of Statistical Maps. J R Stat Soc Ser B 10(2):243–51. DOI: https://doi.org/10.1111/j.2517-6161.1948.tb00012.x
Moran PAP, 1950. Notes on Continuous Stochastic Phenomena. Biometrika 37(1/2):17. DOI: https://doi.org/10.2307/2332142
Nelson TA, GoodchildMF, Wright DJ, 2022. Accelerating Ethics, Empathy, and Equity in Geographic Information Science. Proc Natl Acad Sci USA 119:e2119967119. DOI: https://doi.org/10.1073/pnas.2119967119
O’Sullivan D, and UnwinD, 2003. Geographic Information Analysis. First. New York: John Wiley & Sons.
Onsrud HJ, 1995. Identifying Unethical Conduct in the Use of GIS. Cartogr Geogr Inf Syst 22:90–97. DOI: https://doi.org/10.1559/152304095782540500
Onsrud HJ, Johnson JP, Lopez XR. 1994. Protecting Petsonal Privacy in Using Geographiclnformation Systems. Photogramm Eng Remote Sens 60:1083–95.
Ordonez, JPD, de Jesus Pugliese Viloria A, Wightman Rojas P, 2019. Comparison of Spatial Clustering Techniques for Location Privacy. Pp. 1–6 in 2019 IEEE Latin-American Conference on Communications (LATINCOM). IEEE. DOI: https://doi.org/10.1109/LATINCOM48065.2019.8938006
Polzin FS, 2020. Adaptive Voronoi Masking. A Method to Protect Confidential Discrete Spatial Data. Utrecht University. (Unpublished Master's thesis)
Ribeiro AI, DiasV, Ribeiro S, Silva JP, Barros H, 2022. Geoprivacy in Neighbourhoods and Health Research: A Mini-Review of the Challenges and Best Practices in Epidemiological Studies. Public Health Rev 43:1605105 DOI: https://doi.org/10.3389/phrs.2022.1605105
Schäffer, B Baranski B, Foerster T, 2010. Towards Spatial Data Infrastructures in the Clouds. Pp. 399–418 inPainho, M., Santos, M., Pundt, H. (eds) Geospatial Thinking. Lecture Notes in Geoinformation and Cartography, vol 0. Springer, Berlin, Heidelberg. Scull, P, Burnett A, Dolfi E, Goldfarb A, Baum P, 2016. Privacy and Ethics in Undergraduate GIS Curricula. J Geogr 115:24–34. DOI: https://doi.org/10.1007/978-3-642-12326-9_21
Scull P, Burnett A, Dolfi E, Goldfarb A, Baum P, 2016. Privacy and ethics in undergraduate GIS curricula. J. of Geog 115:24-34. DOI: https://doi.org/10.1080/00221341.2015.1017517
Seidl DE, Jankowski P, Tsou M-H, 2016. Privacy and Spatial Pattern Preservation in Masked GPS Trajectory Data. Int J Geogr Inf Sci 30:785–800. DOI: https://doi.org/10.1080/13658816.2015.1101767
Sheppard E, 2015. GIS and society: towards a research agenda. Cart GIS 22:5-16. DOI: https://doi.org/10.1559/152304095782540555
Swanlund D, Schuurman N, Brussoni M, 2020. MaskMy.XYZ: An Easy‐to‐use Tool for Protecting Geoprivacy Using Geographic Masks. Trans GIS 24:390–401. DOI: https://doi.org/10.1111/tgis.12606
Tatalovich Z, WilsonJP, Cockburn M, 2006. A Comparison of Thiessen Polygon, Kriging, and Spline Models of Potential UV Exposure. Cartogr Geogr Inf Sci 33:217–31. DOI: https://doi.org/10.1559/152304006779077318
Tiwari A, 2022. An Exploration of Off-Campus Private Student Housing in Praygaraj, India. Int J Housing Markets Anal16:756-775. DOI: https://doi.org/10.1108/IJHMA-01-2022-0016
Tiwari A, Aljoufie M, 2021. Modeling Spatial Distribution and Determinant of PM2.5 at Micro-Level Using Geographically Weighted Regression (GWR) to Inform Sustainable Mobility Policies in Campus Based on Evidence from King Abdulaziz University, Jeddah, Saudi Arabia. Sustainability 13:12043. DOI: https://doi.org/10.3390/su132112043
URISA, 2002. GIS Code of Ethics. The Code of Ethics Document. Retrieved January 9, 2023 Available from: https://www.urisa.org/about-us/gis-code-of-ethics/#:~:text=Work respectfully and capably with,employees%2C contractors%2C and vendors
Venter ZS, Hjertager Krog N, Barton DN, 2020. Linking Green Infrastructure to Urban Heat and Human Health Risk Mitigation in Oslo, Norway. Sci Total Environ 709:136193. DOI: https://doi.org/10.1016/j.scitotenv.2019.136193
Wang J, Kim J, Kwan M-P, 2022. An Exploratory Assessment of the Effectiveness of Geomasking Methods on Privacy Protection and Analytical Accuracy for Individual-Level Geospatial Data. Cartogr Geogr Inf Sci 49:385–406. DOI: https://doi.org/10.1080/15230406.2022.2056510
Wightman P, Coronell W, Jabba D, Jimeno M, Labrador M, 2011. Evaluation of Location Obfuscation Techniques for Privacy in Location Based Information Systems. Pp. 1–6 in 2011 IEEE Third Latin-American Conference on Communications. IEEE. DOI: https://doi.org/10.1109/LatinCOM.2011.6107399
Zurbarán M, Pedro P, Brovelli M, Oxoli D, Iliffe M, Jimeno M, Salazar A, 2018. NRand-K: Minimizing the Impact of Location Obfuscation in Spatial Analysis. Trans GIS 22:1257–74. DOI: https://doi.org/10.1111/tgis.12462

How to Cite

Tiwari, A., Ahmad, S., Qurunflah, E. ., Helmi, M., Almaimani, A. ., Alaidroos, A. ., & Hallawani, M. M. (2023). Exploring geomasking methods for geoprivacy: a pilot study in an environment with built features. Geospatial Health, 18(2). https://doi.org/10.4081/gh.2023.1205