Original Articles
21 July 2025

Spatial Bayesian semi-parametric Cox-Leroux modelling of stroke patient hospitalization: aspects on survival

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
102
Views
28
Downloads

Authors

Survival analysis consists of a set of statistical methods used to analyse data where the outcome variable is the time until an event occurs. When such data are collected across distinct spatial regions, incorporating spatial information into survival models can be beneficial. A common approach is to apply an intrinsic Conditional Autoregressive (CAR) prior to an area-level frailty term to account for spatial correlation between regions. We extend the Bayesian Cox semi-parametric model by incorporating a spatial frailty term using the Leroux CAR prior. The aim was to improve the model’s ability to describe stroke hospitalisations at the Stroke Centre Hospital in Makassar, Indonesia with a focus on understanding the geographic distribution of hospitalisations, Length of Stay (LOS) and factors influencing patient outcomes. The dataset was obtained from medical records of stroke patients admitted to this hospital (April 2021-June 2024). Variables included LOS, discharge outcomes, sex, age, stroke type, uric acid levels, hypertension, hypercholesterolemia, and diabetes mellitus. Our findings indicate that diabetes, stroke type and the presence of hypercholesterolemia significantly influence recovery rates in stroke patients. Specifically, patients with diabetes had lower recovery, while those with hypercholesterolemia and ischemic stroke patients had faster recovery compared to those with haemorrhagic strokes.

Altmetrics

Downloads

Download data is not yet available.

Citations

Ariyo O, Quintero A, Muñoz J, Verbeke G, Lesaffre E, 2020. Bayesian model selection in linear mixed models for longitudinal data. J Appl Stat 47:890-913. DOI: https://doi.org/10.1080/02664763.2019.1657814
Aswi A, Cramb S, Duncan E, Hu W, White G, Mengersen K, 2020. Bayesian spatial survival models for hospitalisation of Dengue: A case study of Wahidin hospital in Makassar, Indonesia. Int J Environ Res Public Health 17:878. DOI: https://doi.org/10.3390/ijerph17030878
Banerjee S, Carlin BP, Gelfand AE, 2014. Hierarchical modeling and analysis for spatial data, Chapman and Hall/CRC, 584 pp. DOI: https://doi.org/10.1201/b17115
Banerjee S, Wall MM, Carlin BP, 2003. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics 4:123-42. DOI: https://doi.org/10.1093/biostatistics/4.1.123
Bergh C, Udumyan R, Appelros P, Fall K, Montgomery S, 2016. Determinants in adolescence of stroke-related hospital stay duration in men: a national cohort study. Stroke (1970) 47:2416-8. DOI: https://doi.org/10.1161/STROKEAHA.116.014265
Brian GL, Lei X, Breslow N, Halloran M, Elizabeth BD, 2000. Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: Statistical models in epidemiology, the environment, and clinical trials. pp. 179-191. DOI: https://doi.org/10.1007/978-1-4612-1284-3_4
Cai Y, Towne JSD, Bickel CS, 2019. Multi-level factors associated with social participation among stroke survivors: China's health and retirement longitudinal study (2011-2015). Int J Environ Res Public Health 16:5121. DOI: https://doi.org/10.3390/ijerph16245121
Cox DR, 1972. Regression models and life‐tables. J R Stat Soc Series B Stat Methodol 34:187-202. DOI: https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
da Silva Paiva L, de Alcantara Sousa LV, Oliveira FR, de Carvalho LEW, Raimundo RD, Correa JA, de Abreu LC, Adami F, 2022. Temporal trend of the prevalence of modifiable risk factors of stroke: an ecological study of Brazilians between 2006 and 2012. Int J Environ Res Public Health 19:5651. DOI: https://doi.org/10.3390/ijerph19095651
Dasgupta P, Cramb SM, Aitken JF, Turrell G, Baade PD, 2014. Comparing multilevel and Bayesian spatial random effects survival models to assess geographical inequalities in colorectal cancer survival: a case study. Int J Health Geogr 13:36. DOI: https://doi.org/10.1186/1476-072X-13-36
DeVries DMS, Zhang YP, Qu MP, Ma JMS, Lin GP, 2013. Gender difference in stroke case fatality: an integrated study of hospitalization and mortality. J Stroke Cerebrovasc Dis 22:931-7. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.10.011
Elhefnawy M, Noor Harun S, Leykhim T, Tangiisuran B, Zainal H, et al., 2023. A parametric time-to-event modelling of recurrent ischemic stroke after index stroke among patients with and without diabetes mellitus: implementation of temporal validation of the model. Cureus 15:e50794. DOI: https://doi.org/10.7759/cureus.50794
Fernandez-Lazaro CI, Adams DP, Fernandez-Lazaro D, Garcia-González JM, Caballero-Garcia A, Miron-Canelo JA, 2019. Medication adherence and barriers among low-income, uninsured patients with multiple chronic conditions. Res Social Adm Pharm 15:744-53. DOI: https://doi.org/10.1016/j.sapharm.2018.09.006
Flach C, Muruet W, Wolfe CDA, Bhalla A, Douiri A, 2020. Risk and secondary prevention of stroke recurrence: a population-base cohort study. Stroke 51: 2435–2444. DOI: https://doi.org/10.1161/STROKEAHA.120.028992
GBD 2016 Causes of Death Collaborators, 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1151-210.
GBD 2017 Causes of Death Collaborators, 2018. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392:1736-88.
GBD 2019 Stroke Collaborators, 2021. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 20:795-820.
Gelman A, Hwang J, Vehtari A, 2014. Understanding predictive information criteria for Bayesian models. Stat Comput 24:997-1016. DOI: https://doi.org/10.1007/s11222-013-9416-2
Georgakakos PK, Swanson MB, Ahmed A, Mohr NM, 2022. Rural stroke patients have higher mortality: an improvement opportunity for rural emergency medical services systems. J Rural Health 38:217-27. DOI: https://doi.org/10.1111/jrh.12502
Hammond G, Luke AA, Elson L, Towfighi A, Maddox KEJ, 2020. Urban-Rural Inequities in Acute Stroke Care and In-Hospital Mortality. Stroke 51: 2131-2138. DOI: https://doi.org/10.1161/STROKEAHA.120.029318
Hussain MA, Al Mamun A, Peters SAE, Woodward M, Huxley RR, 2016. The burden of cardiovascular disease attributable to major modifiable risk factors in Indonesia. J Epidemiol 26: 515-521. DOI: https://doi.org/10.2188/jea.JE20150178
Johansson A, Drake I, Engström G, Acosta S, 2021. Modifiable and non-modifiable risk factors for atherothrombotic ischemic stroke among subjects in the Malmö Diet and Cancer Study. Nutrients 13: 1952. DOI: https://doi.org/10.3390/nu13061952
Karp DN, Wolff CS, Wiebe DJ, Branas CC, Carr BG, Mullen MT, 2016. Reassessing the stroke belt: using small area spatial statistics to identify clusters of high stroke mortality in the United States. Stroke 47:1939-42. DOI: https://doi.org/10.1161/STROKEAHA.116.012997
Kemenkes, 2023. Kenali Stroke dan Penyebabnya. Retrieved from https://ayosehat.kemkes.go.id/kenali-stroke-dan-penyebabnya
Kesehatan KDJP, 2023. World Stroke Day 2023, Greater Than Stroke, Kenali dan Kendalikan Stroke. Retrieved from https://yankes.kemkes.go.id/read/1443/world-stroke-day-2023-greater-than-stroke-kenali-dan-kendalikan-stroke
Kleinbaum DG, Klein M, 2012. Survival analysis: a self-learning text, Springer Science & Business Media, 712 pp. DOI: https://doi.org/10.1007/978-1-4419-6646-9
Lawson A, 2018a. Bayesian disease mapping : hierarchical modeling in spatial epidemiology, CRC Press. DOI: https://doi.org/10.1201/9781351271769
Lawson A, 2018b. Bayesian disease mapping: hierarchical modeling in spatial epidemiology, Chapman and Hall/CRC, 486 pp. DOI: https://doi.org/10.1201/9781351271769
Lee D, 2013. CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors. J Stat Softw 55:1-24. DOI: https://doi.org/10.18637/jss.v055.i13
Li X-D, Li M-M, 2022. A novel nomogram to predict mortality in patients with stroke: a survival analysis based on the MIMIC-III clinical database. BMC Med Inform Decis Mak 22:92. DOI: https://doi.org/10.1186/s12911-022-01836-3
Nazar E, Esmaily H, Yousefi R, Jamali J, Ghandehari K, Hashtarkhani S, Jafari Z, Shakeri MT, 2023. A spatial variation analysis of in-hospital stroke mortality based on integrated pre-hospital and hospital data in Mashhad, Iran. Arch Iran Med 26:300-9. DOI: https://doi.org/10.34172/aim.2023.46
Osnes K, Aalen OO, 1999. Spatial smoothing of cancer survival: a Bayesian approach. Statistics Med 18:2087-99. DOI: https://doi.org/10.1002/(SICI)1097-0258(19990830)18:16<2087::AID-SIM186>3.3.CO;2-G
Peng Y, Ngo L, Hay K, Alghamry A, Colebourne K, Ranasinghe I, 2022. Long-term survival, stroke recurrence, and life expectancy after an acute stroke in Australia and New Zealand from 2008–2017: a population-wide cohort study. Stroke 53:2538-48. DOI: https://doi.org/10.1161/STROKEAHA.121.038155
Rodan L, McCrindle BW, Manlhiot C, MacGregor DL, Askalan R, Moharir M, deVeber G, 2012. Stroke recurrence in children with congenital heart disease. Ann Neurol 72: 103-111. DOI: https://doi.org/10.1002/ana.23574
Romain G, Mariet AS, Jooste V, Duloquin G, Thomas Q, Durier J, Giroud M, Quantin C, Béjot Y, 2020. Long-term relative survival after stroke: the Dijon Stroke Registry. Neuroepidemiology 54:498-505. DOI: https://doi.org/10.1159/000505160
Setyopranoto I, Upoyo AS, Isworo A, Sari Y, Vidyanti AN, Olcay A, 2022. Awareness of being at risk of stroke and its determinant factors among hypertensive patients in Banyumas, Indonesia. Stroke Res Treatment 2022:1-7. DOI: https://doi.org/10.1155/2022/4891134
Shah M, Buscot M-J, Tian J, Phan HT, Marwick TH, Dwyer T, Venn A, Gall S, 2023. Sex differences in the association between stroke risk factors and pre-clinical predictors of stroke in the childhood determinants of Adult Health study. Atherosclerosis 384:117171. DOI: https://doi.org/10.1016/j.atherosclerosis.2023.06.077
Shang Y, Fratiglioni L, Marseglia A, Plym A, Welmer A-K, Wang H-X, Wang R, Xu W, 2020. Association of diabetes with stroke and post‐stroke dementia: A population‐based cohort study. Alzheimers Dement 16:1003-12. DOI: https://doi.org/10.1002/alz.12101
Sturtz S, Ligges U, Gelman A, 2005. R2WinBUGS: A Package for Running WinBUGS from R. J Stat Softw 12:1-16. DOI: https://doi.org/10.18637/jss.v012.i03
Sweetnam D, Holmes A, Tennant KA, Zamani A, Walle M, Jones P, Wong C, Brown CE, 2012. Diabetes impairs cortical plasticity and functional recovery following ischemic stroke. J Neurosci 32:5132-43. DOI: https://doi.org/10.1523/JNEUROSCI.5075-11.2012
Team RC, 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org
Thamrin SA, Aswi, Ansariadi, Jaya AK, Mengersen K, 2021. Bayesian spatial survival modelling for dengue fever in Makassar, Indonesia. Gac Sanit 35:S59-S63. DOI: https://doi.org/10.1016/j.gaceta.2020.12.017
Watanabe S, 2010. Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. J Mach Learn Res 11:3571-94.
Weng W-C, Huang W-Y, Su F-C, Chien Y-Y, Wu C-L, Lee T-H, Peng T-I, 2013. Less favorable neurological recovery after acute stroke in patients with hypercholesterolemia. Clin Neurol Neurosurg 115:1446-50. DOI: https://doi.org/10.1016/j.clineuro.2013.01.014
Willeit P, Toell T, Boehme C, Krebs S, Mayer L, Lang C, Seekircher L, Tschiderer L, Willeit K, Rumpold G, Schoenherr G, Griesmacher A, Ferrari J, Knoflach M, Lang W, Kiechl S, Willeit J; STROKE-CARD study group, 2020. STROKE-CARD care to prevent cardiovascular events and improve quality of life after acute ischaemic stroke or TIA: A randomised clinical trial. EClinicalMedicine 25:100476. DOI: https://doi.org/10.1016/j.eclinm.2020.100476
Yadav RS, Chaudhary D, Avula V, Shahjouei S, Azarpazhooh MR, Abedi V, Li J, Zand R, 2022. Social Determinants of Stroke Hospitalization and Mortality in United States' Counties. J Clin Med 11:4101. DOI: https://doi.org/10.3390/jcm11144101
Yu S, Alper HE, Nguyen AM, Maqsood J, Brackbill RM, 2021. Stroke hospitalizations, posttraumatic stress disorder, and 9/11‐related dust exposure: Results from the World Trade Center Health Registry. Am J Ind Med 64:827-36. DOI: https://doi.org/10.1002/ajim.23271

How to Cite



Spatial Bayesian semi-parametric Cox-Leroux modelling of stroke patient hospitalization: aspects on survival. (2025). Geospatial Health, 20(2). https://doi.org/10.4081/gh.2025.1380