Is missing geographic positioning system data in accelerometry studies a problem, and is imputation the solution?

Submitted: 30 July 2015
Accepted: 25 October 2015
Published: 31 May 2016
Abstract Views: 1942
PDF: 1159
HTML: 884
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.


The main purpose of the present study was to assess the impact of global positioning system (GPS) signal lapse on physical activity analyses, discover any existing associations between missing GPS data and environmental and demographics attributes, and to determine whether imputation is an accurate and viable method for correcting GPS data loss. Accelerometer and GPS data of 782 participants from 8 studies were pooled to represent a range of lifestyles and interactions with the built environment. Periods of GPS signal lapse were identified and extracted. Generalised linear mixed models were run with the number of lapses and the length of lapses as outcomes. The signal lapses were imputed using a simple ruleset, and imputation was validated against person-worn camera imagery. A final generalised linear mixed model was used to identify the difference between the amount of GPS minutes pre- and post-imputation for the activity categories of sedentary, light, and moderate-to-vigorous physical activity. Over 17% of the dataset was comprised of GPS data lapses. No strong associations were found between increasing lapse length and number of lapses and the demographic and built environment variables. A significant difference was found between the pre- and postimputation minutes for each activity category. No demographic or environmental bias was found for length or number of lapses, but imputation of GPS data may make a significant difference for inclusion of physical activity data that occurred during a lapse. Imputing GPS data lapses is a viable technique for returning spatial context to accelerometer data and improving the completeness of the dataset.



PlumX Metrics


Download data is not yet available.


Supporting Agencies

National Institute of Health, National Cancer Institute,
Kristin Meseck, Department of Family Medicine and Public Health, University of California, La Jolla, CA

Kristin Meseck

GIS Specialist, Center for Wireless and Population Health Systems

Department of Family Medicine and Public Health, UCSD

How to Cite

Meseck, K., Jankowska, M. M., Schipperijn, J., Natarajan, L., Godbole, S., Carlson, J., Takemoto, M., Crist, K., & Kerr, J. (2016). Is missing geographic positioning system data in accelerometry studies a problem, and is imputation the solution?. Geospatial Health, 11(2).

List of Cited By :

Crossref logo

Similar Articles

You may also start an advanced similarity search for this article.